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Abstract: This study looks at the worldwide behavior of a monkeypox epidemic model that includes the
impact of vaccination. A mathematical model is created to analyse the vaccine impact, assuming that
immunisation is administered to the susceptible population. The system’s dynamics are determined by the
fundamental reproduction number, R0. When R0 < 1, the illness is expected to be eradicated, as evidenced
by the disease-free equilibrium’s global asymptotic stability. When R0 > 1, the illness continues and creates a
globally stable endemic equilibrium. Furthermore, we investigate the existence of traveling wave solutions,
demonstrating that (i) a minimal wave speed, designated as c∗ > 0, exists when R0 > 1; (ii) when R0 ≤ 1,
no nontrivial traveling wave solution exists. Additionally, for wave speeds c < c∗, no nontrivial traveling
wave solution is found, whereas when c ≥ c∗, the system admits a nontrivial traveling wave solution with
speed c. Numerical simulations are performed to further validate these theoretical results, confirming both
the stability of the equilibrium points and the traveling wave solutions.
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reproduction number.
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1. Introduction

I n this context, the study of epidemic models is crucial for understanding the transmission and control
of infectious diseases. Mathematical modeling provides insights into the underlying dynamics of

disease transmission and the effectiveness of various intervention strategies. The recent global emergence
of Monkeypox—a zoonotic disease caused by the Monkeypox virus—has heightened the demand for
comprehensive epidemic models that consider multiple factors influencing its spread. Multi-group models
have been developed in the literature and have been the subject of extensive research in recent years; see, for
instance, [1–5] and references therein.

One important aspect of these models is the impact of vaccination, which is essential for containing
disease spread. In this paper, we formulate and analyze a mathematical model that captures the global
behavior and traveling wave solutions of a Monkeypox epidemic [6–8], incorporating vaccination as a key
control strategy.

Traveling wave solutions are particularly significant as they represent the spatiotemporal spread of an
infectious disease [9], thereby enhancing the understanding of disease front propagation. By studying such
wave solutions, we can determine the speed and pattern of disease dissemination, identify critical thresholds
that may be vital for disease eradication, and evaluate the long-term effectiveness of vaccination programs.

This paper analyzes the conditions for the existence of traveling wave solutions, as well as the stability and
persistence of these waves. Within this framework, the model offers a robust approach to assess the potential
outcomes of vaccination strategies, providing valuable insights for public health planning and response efforts
against Monkeypox epidemics.

In light of the aforementioned issues, we present the following reaction-diffusion Monkeypox epidemic
model incorporating the effects of vaccination.

Open J. Math. Sci. 2024, 8, 185-207; doi:10.30538/oms2024.0235 https://pisrt.org/psr-press/journals/oms

https://pisrt.org/psr-press/journals/oms
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oms


Open J. Math. Sci. 2024, 8, 185-207 186



∂Sh(x,t)
∂t = dh∆Sh(x, t) + Λ − βhaSh(x, t)Ia(x, t)− βhhSh(x, t)Ih(x, t)− (µ + α)Sh(x, t) + θVh(x, t),

∂Vh(x,t)
∂t = yh∆Ih(x, t) + αSh(x, t)− (µ + σ + θ)Vh(x, t),

∂Ih(x,t)
∂t = qh∆Ih(x, t) + βhaSh(x, t)Ia(x, t) + βhhSh(x, t)Ih(x, t)− (µ + γ)Ih(x, t),

∂Rh(x,t)
∂t = mh∆Rh(x, t) + γIh(x, t)− µRh(x, t) + σVh(x, t),

∂Sa(x,t)
∂t = da∆Sa(x, t) + A − βahSa(x, t)Ih(x, t)− βaaSa(x, t)Ia(x, t)− ξSa(x, t),

∂Ia(x,t)
∂t = qh∆Ia(x, t) + βahSa(x, t)Ih(x, t) + βaaSa(x, t)Ia(x, t)− (ξ + κ)Ia(x, t),

∂Ra(x,t)
∂t = ma∆Ra(x, t) + κ Ia(x, t)− ξRa(x, t).

(1)

We make the assumption
(A): dh, da, yh, qh, qa, mh and ma are positive.
with βhh is the transmission rate of the susceptible human by infected human. βha is the transmission

rate of the susceptible human by an infected animal. βah is the transmission rate of the susceptible animal by
infected human. βaa is the transmission rate of the susceptible animal by an infected animal. µ is the natural
mortality coefficient of the bovines. γ is the recovering rate of the infected human. ξ is the mortality coefficient
of the animal. Λ is the constant birth rate of the susceptible human. α is the vaccination rate. θ is the return
rate to susceptible population and σ) is the term of recovery. L represents the constant birth rate of susceptible
animal and κ is the recovery rat of the animal population.

2. Preliminaries

2.1. Existence and uniqueness of the solution

The system (1) can be rewritten in the following abstract form

dX(t)
dt

= f (X(t)),

with X(t) = (Sh, Vh, Ih, Rh, Sa, Ia, Ra), and

f (X) =



f1(X)

f2(X)

f3(X)

f4(X)

f5(X)

f6(X)

f7(X)


=



Λ − βhaSh(t)Ia(t)− βhhSh(t)Ih(t)− (µ + α)Sh(t) + θVh(t)
αSh(t)− (µ + σ + θ)Vh(t)

βhaSh(t)Ia(t) + βhhSh(t)Ih(t)− (µ + γ)Ih(t)
γIh(t)− µRh(t) + σVh(t)

A − βahSa(t)Ih(t)− βaaSa(t)Ia(t)− ξSa(t)
βahSa(t)Ih(t) + βaaSa(t)Ia(t)− (ξ + κ)Ia(t)

κ Ia(t)− ξRa(t)


.

Notice that fi is of class C1 Then it is locally Lipschitz with respect to the second variable, hence according
to the Cauchy Lipschitz theorem implies the existence and uniqueness of the solution. The positivity of the
solution follows form the standard results of dynamical systems theory. Therefore, the system (1) admits a
unique solution.

2.2. Positively invariant set

Next, we initial conditions (Sh(0), Vh(0), Ih(0), Rh(0), Sa(0), Ia(0), Ta(0)) t ∈ R7
+. At first, we introduce

the following lemma.

Lemma 1. Suppose Ω ⊂ R × Cn is open, fi ∈ C(Ω,R), i = 1, 2, 3...n. If fi|xi=0Xt ∈ Cn
0+ ≥ 0, Xt =

(x1t, x2t, x3t....x1n)
T , i = 1, 2, 3...n.then Cn

0+ is the invariant domain of the following equations:

dxi(t)
dt

= fi(t, Xt), t > σ, i = 1, 2...n.
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Theorem 1. Each solution (Sh(0), Vh(0), Ih(0), Rh(0), Sa(0), Ia(0), Ra(0)) of model (1) with the non-negative initial
conditions for all t > 0. Moreover, the following set

Ω =

{
(Sh, Vh, Ih, Rh, Sh, Ih, Rh), Sh ≥ 0, Vh ≥ 0, Ih ≥ 0, Rh ≥ 0, Sa ≥ 0, Ia ≥ 0, Ra ≥ 0,

Sh + Vh + Ih + Rh ≤ Λ
µ and Sa + Ia + Ra ≤ A

ξ

}
,

is a positively invariant set.

Proof. Let X = (Sh, Vh, Ih, Rh, Sa, Ia, Ra)T and f (X) = ( f1(X), f2(X), f3(X), f4(X), f5(X), f6(X), f7(X))T then
we can rewrite model (1) as:

Ẋ = fi(X)

Note that
dSh
dt |Sh=0 = Λ + θVh > 0, dVh

dt |Vh=0 = αSh > 0, dIh
dt |Ih=0 = βhaSh Ia ≥ 0,

dRh
dt |Rh=0 = γIh + σVh ≥ 0, dSa

dt |Sa=0 = A > 0, dIa
dt |Ia=0 = βahSa(t)Ih(t) ≥ 0

dRa
dt |Ra=0 = κ Ia(t) ≥ 0.

The standard results of theory of differential equations implies that (1) has a unique positive solution. For
showing that the solution is globally defined, we sum up the three equations of (1), for each i = 1, 2, to obtain

(Sh(t) + Vh(t) + Ih(t) + Rh(t))′ = Λ − µ(Sh(t) + Vh(t) + Ih(t) + Rh(t)),

and
(Sa(t) + Ia(t) + Ra(t))′ = A − ξ(Sa(t) + Ia(t) + Ra(t)),

then
lim sup

t→+∞
(Sh(t) + Vh(t) + Ih(t) + Rh(t)) ≤

Λ
µ

,

and
lim sup

t→+∞
(Sa(t) + Ia(t) + Ra(t)) ≤

A
ξ

.

Therefore, the solution is globally defined. Therefore,

lim sup
t→+∞

Sh(t) ≤
Λ
µ

,

and
lim sup

t→+∞
Sa(t) ≤

A
ξ

.

Then it follows from Lemma 1 that Ω is invariant set.

3. Global Behavior of the ODE System

In this section, we investigate the temporal behavior. Clearly, the Rh and Ra−equations can be separated
from the system (1). Therefore, we focus on studying the following ODE system

S′
h(t) = Λ − βhaSh(t)Ia(t)− βhhSh(t)Ih(t)− (µ + α)Sh(t) + θVh(t),

V′
h(t) = αSh(t)− (µ + σ + θ)Vh(t),

I′h(t) = βhaSh(t)Ia(t) + βhhSh(t)Ih(t)− (µ + γ)Ih(t),
S′

a(t) = A − βahSa(t)Ih(t)− βaaSa(t)Ia(t)− ξSa(t),
I′a(t) = βahSa(t)Ih(t) + βaaSa(t)Ia(t)− (ξ + κ)Ia(t).

(2)

Next, we derive the following results. The BRN, R0, associated to (2) is the spectral radius of J , that is,
and we obtain that the basic reproduction number of system (2) at the disease-free equilibrium (S0

h, V0
h , 0, S0

a , 0),
denoted by R0, can be expressed as

R0 = ρ(J )
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where

J =


βhhS0

h
(µ+γ)

βhaS0
h

(µ+γ)

βahS0
a

(ξ+κ)
βaaS0

a
(ξ+κ)


and ρ(J ) denotes the spectral radius of the matrix J . The equilibrium points of the system (2) satisfies S′

h =

Vh = I′h = S′
a = I′a = 0. In this case, we will show that (2) admits two equilibrium E0 = (S0

h, V0
h , 0, S0

a , 0) which
corresponds to the Disease free equilibrium where

S0
h =

Λ
µ(µ + σ + θ) + α(µ + σ)

, V0
h =

αS0
h

(µ + σ + θ)
and S0

a =
A
ξ

.

The second equilibrium points satisfies the following system

0 = Λ − βhaS∗
h I∗a − βhhS∗

h I∗h − (µ + α)S∗
h + θV∗

h ,
0 = αS∗

h − (µ + σ + θ)V∗
h ,

0 = βhaS∗
h I∗a + βhhS∗

h I∗h − (µ + γ)I∗h ,
0 = A − βahS∗

a I∗h − βaaS∗
a I∗a − ξS∗

a ,
0 = βahS∗

a I∗h + βaaS∗
a I∗a − (ξ + κ)I∗a .

(3)

Motivated by [10], we let the following assumption.

Theorem 2. If R0 < 1, then the IFES, E0 = (S0
h, V0

h , 0, S0
a , 0), is global asymptotically stable, and if R0 > 1, then the

IFES is unstable, and (2) is uniformly persistent in Ω̄, and admits a unique EES, E∗, which is globally attractive. If
R0 > 1, E∗ is an arbitrary endemic equilibrium, then there exists a unique endemic equilibrium E∗ for the system (2),
and E∗ is globally asymptotically stable.

Proof. We let E = (Sh, Vh, Ih, Sa, Ia) be an arbitrary equilibrium, then, the Jacobian matrix of the system (2) at
E is given by

JE =


−βha Ia − βhh Ih − (µ + α) θ −βhhSh 0 −βhaSh

α −(µ + σ + θ) 0 0 0
βha Ia + βhh Ih 0 βhhSh − (µ + γ) 0 βhaSh

0 0 −βahSa −βah Ia − βaa Ia − ξ −βaaSa

0 0 βahSa βah Ia + βaa Ia βaaSa − (ξ + κ)

 .

First, we show the stability of the disease free equilibrium Therefore, we start wit the local stability analysis.
By evaluating this Jacobian matrix at the disease-free equilibrium, we obtain

JE0 =


−(µ + α) θ −βhhS0

h 0 −βhaS0
h

α −(µ + σ + θ) 0 0 0
0 0 βhhS0

h − (µ + γ) 0 βhaS0
h

0 0 −βahS0
a −ξ −βaaS0

a
0 0 βahS0

a 0 βaaS0
a − (ξ + κ)

 .

We remark that ł = −ξ is a negative eigenvalue. Then, we have

JE0 =


−(µ + α) θ −βhhS0

h −βhaS0
h

α −(µ + σ + θ) 0 0
0 0 βhhS0

h − (µ + γ) βhaS0
h

0 0 βahS0
a βaaS0

a − (ξ + κ)

 .

The corresponding characteristic equation is given by

p(λ) :=
[
(βhhS0

h − (µ+ δ+ γ)− λ)(βaaS0
a − (ξ + κ)− λ)− βhaS0

hβahS0
a

][
(µ+ α+ λ)(µ+ σ+ θ + λ)− αθ

]
= 0,
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then, we have
(µ + α + λ)(µ + σ + θ + λ)− αθ = 0. (4)

Clearly, by the Dickarte sign rule wee get the equation (4) admits two negative eigenvalues. Then, we have

0 = (βhhS0
h − (µ + δ + γ)− λ)(βaaS0

a − (ξ + κ)− λ)− βhaS0
hβahS0

a

= λ2 −
(

βhhS0
h − (µ + γ) + βaaS0

a − (ξ + κ)

)
ł + ((βhhS0

h − (µ + γ))(βaaS0
a − (ξ + κ))− βhaS0

hβahS0
a .

(5)
Therefore, the disease-free equilibrium E0 is locally asymptotically stable if the Routh-Hurwitz condition

are satisfy where R0 < 1 and unstable if R0 > 1. The following conditions are met:{
a1 > 0,

a1a2 > 0.

Next, we turn our attention into the global stability of the E0 if R0 < 1. By the first and the third equations
of (2), and if we rewrite the system as follow

S′
h(t) = Λ − βhaSh(t)Ia(t)− βhhSh(t)Ih(t)− (µ + α)Sh(t) + θVh(t),

S′
a(t) = A − βahSa(t)Ih(t)− βaaSa(t)Ia(t)− ξSa(t),

V′
h(t) = αSh(t)− (µ + σ + θ)Vh(t),

dIi(t)
dt =

2

∑
j=1

Fij(Si(t), Ij(t))− (µi + ϱi)Ii(t),

(6)

where (i = 1, 2) and if i = 1 represent the human compartment and i = 2 the animal compartment and
Fij(Si(t), Ij(t)) = βijSi(t)Ij(t). Then, motivated by [11, Proposition 3.1], [10, Theorem 2.1] and [12, Theorem
5.1]. From the well known Perron–Frobenius Theorem, J has a positive principal eigenvector w = (w1, w2)

with wi > 0, i = 1, 2, and wρ(J ) = wJ . First, we start with the global stability of the IFES. Let the Lyapunov
function Vi(t), with

Vi(t) =
2

∑
i=1

wi
µi + ϱi

Ii(t).

Then we have

V
′
i (t) =

2

∑
i=1

wi
µi + ϱi

I′i (t)

=
2

∑
i=1

wi
ζi + ϱi

[
Fi1(Si(t), I1(t)) + Fi2(Si(t), I2(t))− (µi + ϱi)Ii(t)

]
.

Therefore, we get

V′
i (t) =

2

∑
i=1

wi
µi + ϱi

[
Fi1(S(t), I1(t)) + Fi2(Si(t), I2(t))− (µi + ϱi)Ii(t)

]
≤

2

∑
i=1

wi
µi + ϱi

[
dFi1(S0

i , 0)
dI1

I1(t) +
dFi2(S0

i , 0)
dI2

I2(t)− (µi + ϱi)Ii(t)
]

= w.[J I(t)− I(t)] = [ρ(J )− 1]w.I(t)
≤ 0,

if and only if ρ(J ) = R0 < 1. Here, I = diag(I1, I2). If ρ(M) < 1, then V′
i = 0 if and only if I = 0. If ρ(J ) = 1,

hence V′
i = 0 yields

2

∑
i=1

wi
µi + ϱi

[
Fi1(Si(t), I1(t)) + Fi2(Si(t), I2(t))

]
=

2

∑
i=1

wi Ii. (7)

If at least for one i = 1, 2, Si ̸= 1 then
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2

∑
i=1

wi
µi + ϱi

[
Fi1(Si(t), I1(t)) + Fi2(Si(t), I2(t))

]
=

2

∑
i=1

wi Ii

<
2

∑
i=1

wi
µi + ϱi

[
dFi1(S0

i , 0)
dI1

I1(t) +
Fi2(S0

i , 0)
dI2

I2(t)
]

= w.J I = ρ(J )I.w = w.I,

which implies that (7) and only if I = 0 or Si = 1 for all i = 1, 2. Provided that ρ(J ) < 1. Clearly,
V′

i = 0 contains only the singleton {E0}. Consequently, LaSalle’s Invariance Principle [13], implies the global
asymptotic stability of E0 for R0 < 1. Now, assume that R0 > 1, hence Ii ̸= 0, then we have

w.J I = ρ(M)I.w > 0,

and thus by continuity

2

∑
i=1

wi
µi + ϱi

[
dFi1(S0

i , 0)
dI1

I1(t) +
dFi2(S0

i , 0)
dI2

I2(t)− (µi + ϱi)Ii(t)
]
> 0.

In a neighborhood of E0 in Ω̄. This ensures that E0 is unstable. The uniform persistence results, e.g. [14], and
a similar argument as in the proof of [15, Proposition 3.3] implies that the system (6) is uniformly persistent if
R0 > 1, which it can be deduced from the instability of E0. Furthermore, by [16] we ensure that there exists at
least one EESS.

To show the uniqueness of the EESS, we will show its global stability, which it can imply that it is unique
using the uniqueness of the limit.

Now, we move to prove the second part of the theorem 2. We employ a Lyapunov function to obtain the
global stability of E∗ when ever exists. We consider the following function:

V(t) = S∗
hh( Sh

S∗
h
) + V∗

h h( Vh
V∗

h
) + I∗h h( Ih

I∗h
) + cS∗

a h( Sa
S∗

a
) + cI∗a h( Ia

I∗a
), (8)

where h is Volterra function h(x) = 1− x − ln(x) , x ∈ R+, and the positive constant c will be determined later.
Recall that the endemic equilibrium E∗ satisfies

Λ = βhaS∗
h I∗a + βhhS∗

h I∗h + (µ + α)S∗
h − θV∗

h ,
(µ + σ + θ)V∗

h = αS∗
h ,

(µ + γ)I∗h = βhaS∗
h I∗a + βhhS∗

h I∗h ,
A = βahS∗

a I∗h + βaaS∗
a I∗a + ξS∗

a ,
(ξ + κ)I∗a = βahS∗

a I∗h + βaaS∗
a I∗a .

(9)

The derivative of V(t) with respect to t, we obtain

V′(t) =

(
1 − S∗

h
Sh(t)

)
S′

h(t) +
(

1 − V∗
h

Vh(t)

)
V′

h(t) +
(

1 − I∗h
Ih(t)

)
I′h(t) +

(
1 − S∗

a
Sa(t)

)
S′

a(t) +
(

1 − I∗a
Ia(t)

)
I′a(t).

Some simplifications and applied the equations of the system (9), gives

V′(t) = µS∗
h

(
1 −

S∗
h

Sh(t)

)(
1 − Sh(t)

S∗
h

)
+βhaS∗

h I∗a

(
2 +

Ia(t)
I∗a

−
S∗

h
Sh(t)

−
Sh(t)Ia(t)I∗h

S∗
h I∗a Ih(t)

− Ih(t)
I∗h

+
I∗a

Ia(t)
− I∗a

Ia(t)
+ 2 − 2

)
+βhhS∗

h I∗h

(
2 −

S∗
h

Sh(t)
− Sh(t)

S∗
h

)
+ αS∗

h

(
3 −

S∗
h

Sh(t)
−

Sh(t)V∗
h

S∗
hVh(t)

− Vh(t)
V∗

h

)
+θV∗

h

(
− 1 −

Vh(t)S∗
h

V∗
h Sh(t)

+
S∗

h
Sh(t)

+
Vh(t)

V∗
h

+
V∗

h Sh(t)
S∗

hVh(t)
−

V∗
h Sh(t)

S∗
hVh(t)

+ 2 − 2
)
+ c(ξ + βaa I∗a )S

∗
a

×
(

1 − S∗
a

Sa(t)

)(
1 − Sa(t)

S∗
a

)
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+cβahS∗
a I∗h

(
Ih(t)

I∗h
+ 2 − S∗

a
Sa(t)

− Sa(t)Ih(t)I∗a
S∗

a I∗h Ia(t)
− Ia(t)

I∗a
−

I∗h
Ih(t)

+
I∗h

Ih(t)
+ 2 − 2

)
= µS∗

h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+βhaS∗

h I∗a

(
h
(

Ia(t)
I∗a

)
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)Ia(t)I∗h
S∗

h I∗a Ih(t)

)
− h
(

Ih(t)
I∗h

))
+βhhS∗

h I∗h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+ αS∗

h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)V∗
h

S∗
hVh(t)

)
− h
(

Vh(t)
V∗

h

))
+θV∗

h

(
− h
(

Vh(t)S∗
h

V∗
h Sh(t)

)
+ h
(

S∗
h

Sh(t)

)
+ h
(

Vh(t)
V∗

h

))
+ c(ξ + βaa I∗a )S

∗
a

(
− h
(

S∗
a

Sa(t)
− h
(

Sa(t)
S∗

a

))
+cβahS∗

a I∗h

(
h
(

Ih(t)
I∗h

)
− h
(

S∗
a

Sa(t)

)
− h
(

Sa(t)Ih(t)I∗a
S∗

a I∗h Ia(t)

)
− h
(

Ia(t)
I∗a

))
,

if we take c = βhaS∗
h I∗h

βahS∗
a I∗h

, then we get

V′(t) = µS∗
h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+ βhaS∗

h I∗a

[
h
(

Ia(t)
I∗a

)
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)Ia(t)I∗h
S∗

h I∗a Ih(t)

)
−h
(

Ih(t)
I∗h

)
+ h
(

Ih(t)
I∗h

)
− h
(

S∗
a

Sa(t)

)
− h
(

Sa(t)Ih(t)I∗a
S∗

a I∗h Ia(t)

)
− h
(

Ia(t)
I∗a

)]
+

βhhS∗
h I∗h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+ αS∗

h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)V∗
h

S∗
hVh(t)

)
− h
(

Vh(t)
V∗

h

))
+

θV∗
h

[
− h
(

Vh(t)S∗
h

V∗
h Sh(t)

)
+ h
(

S∗
h

Sh(t)

)
+ h
(

Vh(t)
V∗

h

)]
+

βhaS∗
h I∗h

βahS∗
a I∗h

(ξ + βaa I∗a )S∗
a

(
− h
(

S∗
a

Sa(t)
− h
(

Sa(t)
S∗

a

))
= µS∗

h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+ βhaS∗

h I∗a

[
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)Ia(t)I∗h
S∗

h I∗a Ih(t)

)
−h
(

S∗
a

Sa(t)

)
− h
(

Sa(t)Ih(t)I∗a
S∗

a I∗h Ia(t)

)]
+ βhhS∗

h I∗h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+

αS∗
h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)V∗
h

S∗
hVh(t)

)
− h
(

Vh(t)
V∗

h

))
− θV∗

h h
(

Vh(t)S∗
h

V∗
h Sh(t)

)
θV∗

a

[
h
(

S∗
h

Sh(t)

)
+ h
(

Vh(t)
V∗

h

)]
+

βhaS∗
h I∗h

βahS∗
a I∗h

(ξ + βaa I∗a )S∗
a

(
− h
(

S∗
a

Sa(t)
− h
(

Sa(t)
S∗

a

))
.

We replace θV∗ by αS∗
a − (µ + σ)V∗

h , we get

V′(t) = µS∗
h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+ βhaS∗

h I∗a

[
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)Ia(t)I∗h
S∗

h I∗a Ih(t)

)
−h
(

S∗
a

Sa(t)

)
− h
(

Sa(t)Ih(t)I∗a
S∗

a I∗h Ia(t)

)]
+ βhhS∗

h I∗h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+

αS∗
h

(
h
(

S∗
h

Sh(t)

)
+ h
(

Vh(t)
V∗

h

)
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)V∗
h

S∗
hVh(t)

)
− h
(

Vh(t)
V∗

h

))
− θV∗

h h
(

Vh(t)S∗
h

V∗
h Sh(t)

)
−(µ + σ)V∗

a

[
h
(

S∗
h

Sh(t)

)
+ h
(

Vh(t)
V∗

h

)]
+

βhaS∗
h I∗h

βahS∗
a I∗h

(ξ + βaa I∗a )S∗
a

(
− h
(

S∗
a

Sa(t)
− h
(

Sa(t)
S∗

a

))
= µS∗

h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
+ βhaS∗

h I∗a

[
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)Ia(t)I∗h
S∗

h I∗a Ih(t)

)
−h
(

S∗
a

Sa(t)

)
− h
(

Sa(t)Ih(t)I∗a
S∗

a I∗h Ia(t)

)]
+ βhhS∗

h I∗h

(
− h
(

S∗
h

Sh(t)

)
− h
(

Sh(t)
S∗

h

))
− αS∗

hh
(

Sh(t)V∗
h

S∗
hVh(t)

)
−θV∗

h h
(

Vh(t)S∗
h

V∗
h Sh(t)

)
− (µ + σ)V∗

a

[
h
(

S∗
h

Sh(t)

)
+ h
(

Vh(t)
V∗

h

)]
+

βhaS∗
h I∗h

βahS∗
a I∗h

(ξ + βaa I∗a )S∗
a

(
− h
(

S∗
a

Sa(t)

−h
(

Sa(t)
S∗

a

))
,

≤ 0.

and equality holds if and only if Sh(t) = S∗
h , Vh(t)− V∗

h , Ih(t) = I∗h , Sa(t) = S∗
a , I(t) = I∗a . Which implies that

E∗ is globally attractive.
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4. Existence and Non-existence of Traveling Wave Solution

In this section, we will always assume that R0 > 1. In this case, (2) have two equilibria E0, E∗. Our main
interest is to study the existence (resp. nonexistence) of a TWS of (2) that connects E0, and E∗. A TWS of (2) is
a particular solution of the form

(Sh(z), Vh(z), Ih(z), Sa(z), Ia(z)), z = x + ct ∈ R. (10)

Plugging (10) into (2) to obtain

cS′
h(z) = dhS′′

h (z) + Λ − βhaSh(z)Ia(z)− βhhSh(z)Ih(z)− (µ + α)Sh(z) + θVh(z),
cV′

h(z) = yhV′′
h (z) + αSh(z)− (µ + σ + θ)Vh(z),

cI′h(z) = qh I′′h (z) + βhaSh(z)Ia(z) + βhhSh(z)Ih(z)− (µ + γ)Ih(z),
cS′

a(z) = daS′′
a (z) + A − βahSa(z)Ih(z)− βaaSa(z)Ia(z)− ξSa(z),

cI′(z) = qh I′′a (z) + βahSa(z)Ih(z) + βaaSa(z)Ia(z)− (ξ + κ)Ia(z).

(11)

We can also write as follow
cS′

h(z) = dhS′′
h (z) + Λ − βhaSh(z)Ia(z)− βhhSh(z)Ih(z)− (µ + α)Sh(z) + θVh(z),

cS′
a(z) = daS′′

a (z) + A − βahSa(z)Ih(z)− βaaSa(z)Ia(z)− ξSa(z),
cV′

h(z) = yhV′′
h (z) + αSh(z)− (µ + σ + θ)Vh(z),

cI′i (z) = qi I′′i (z) + βihSi(z)Ih(z) + βiaSi(z)Ia(z)− (µi + γi)Ii(z).

(12)

Where i = h, a, µh = µ, µa = ξ, γh = γ, γa = κ and with the boundary conditions

(Sh(z), Vh(z), Ih(z), Sa(z), Ia(z))(−∞) = (S0
h, V0

h , 0, S0
a , 0),

(Sh(z), Vh(z), Ih(z), Sa(z), Ia(z))(+∞) = (S∗
h , V∗

h , I∗h , S∗
a , I∗a ).

(13)

We intend to establish a positive solution of (11) that satisfies the boundary condition (13). The linearized
equations of the third and forth equation of (11) at E0 is as follows{

cI′h(z) = qh I′′h (z) + βhaSh(z)Ia(z) + βhhSh(z)Ih(z)− (µ + γ)Ih(z),
cI′(z) = qh I′′a (z) + βahSa(z)Ih(z) + βaaSa(z)Ia(z)− (ξ + κ)Ia(z).

Letting Ih(z) = ω1 expλz, and Ia(z) = ω2 expλz, we get{
cω1λ = qhiω1λ2 + βhaS0

hω2 + βhhS0
hω1 − (µ + γ)ω1

cω2λ = qaω2λ2 + βahS0
aω1 + βaaS0

aω2 − (ξ + κ)ω2.
(14)

Let

A =

[
qh 0
0 qa

]
, B =

[
c 0
0 c

]
, D =

[
µ + γ 0

0 ξ + κ

]
,

and

E =

βhhS0
h βhaS0

h

βahS0
a βaaS0

a

 .

Denote p(λ, c) = λ2A− λB −D + E . Then, the system (14) reduces to

p(λ, c)
(

κ1

κ2

)
= 0.

Let A′ = D′−1A, B′ = D′−1B and F′ = D′−1F , thus p(ϑ, c) becomes

(−A′λ2 + B′λ + I)−1F′ω = ω (15)
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where ω =

(
ω1

ω2

)
, mh(λ, c) = −qhλ2 + cλ + (µ + γ), ma(λ, c) = −qaλ2 + cλ + (ξ + κ) and

(−A′ϑ2 + B′ϑ + I)−1F′ =

 βhhS0
h

mh(λ,c)
βhaS0

h
mh(λ,c)

βahS0
a

ma(ł;c)
βaaS0

a
ma(λ,c)

 .

Let N(λ, c) = (−A′λ2 + B′λ + I)−1F′, then (1) becomes

N(λ, c)ω = ω.

Let L(ω, c) be the principal eigenvalue of N(ω, c). Now, we solve mh(λ, c) = 0 and ma(λ, c) = 0 in λ.
Clearly, mh(0, c) = (µ + γ) > 0, ma(0, c) = (ξ + κ) > 0, mh,a(+∞, c) = −∞ and

∂mh(λ, c)
∂λ

∣∣∣∣
λ=0

= c > 0,
∂2mh(λ, c)

∂λ2 = −2qh < 0.

We applied the same calculation in the ma(λ, c). Therefore, there is always λh
c > 0 and λa

c > 0 satisfying

mh(λ
h
c , c) = 0 and ma(λa

c , c) = 0, for all c > 0. We let λc = min
{

c+
√

c2+4qh(µ+γ)
2qh

, c+
√

c2+4qa(ξ+κ)
2qa

}
. If c ≥ 0,

λ ∈ [0, λc), some calculations gives

L(ϑ, c) =
1
2

[(
βhaS0

h
ma(λ, c)

+
βhhS0

h
ma(λ, c)

)
+

{(
βhhS0

h
mh(λ, c)

− βaaS0
a

ma(λ, c)
.
)2

+
4βhaS0

hβahS0
a

mh(λ, c)ma(λ, c)

} 1
2
]

. (16)

Proposition 1. The three claims that follow are true:

(i) λc is increasing in c ∈ [0,+∞), and limc→+∞ λc = +∞.
(ii) L(0, c) = R0, ∀c ∈ [0,+∞), L(λ, c) is increasing in λ ∈ [0, λ0), and limł→λc L(λ, c) = +∞, ∀c ≥ 0.

(iii) ∀λ ∈ (0, λc), ∂
∂c L(λ, c) < 0.

For the sake of proving this proposition (we refer Proposition 3.1 in [6]). Let

λ̃(c) = min
λ∈[0,λc)

L(λ, c) f or c ≥ 0.

Thus λ̃(0) = R0, limc→+∞ λ̃(c) = 0 and λ̃(c) is continuous and decreasing in c ∈ [0, ∞). When R0 > 1, thus
there is a constant c∗ > 0 verifying λ̃(c∗) = 1, λ̃(c) > 1, ∀c ∈ [0, c∗) and λ̃(c) < 1, ∀c ∈ (c∗, ∞).
Let

λ∗ = inf
{

λ ∈ [0, λc∗) : L(λ, c) = 1
}

.

Hence, L(λ∗, c∗) = 1, l(λ∗, c) < 1, ∀c > c∗. Denote

λ1(c) = sup{λ ∈ (0, λ∗) : L(λ, c) = 1, L(λ′, c) ≥ 1 ∀λ′ ∈ (0, λ)}.

As L(λ∗, c) < 1, ∀c > c∗, the following results are satisfied

Proposition 2. If R0 > 1, then there is c∗ > 0, λ∗ ∈ (0, λc∗) satisfying

(i) L(λ, c) > 1, ∀0 ≤ c < c∗, ∀λ ∈ (0, λc), where λc ∈ [0,+∞);
(ii) L(λ∗, c∗) = 1, L(λ, c∗) > 1 when λ ∈ (0, λ∗), and L(λ, c∗) ≥ 1 when λ ∈ (0, λc∗);

(iii) ∀c > c∗, there is λ1(c) ∈ (0, λ∗) satisfies L(λ1(c), c) = 1, L(λ, c) ≥ 1 for λ ∈ (0, λ1(c)), and L(λ1(c) +
εn(c), c) < 1 for some decreasing sequences {εn(c)} verifying limn→∞ εn = 0 and εn + λ1(c) < ϑ∗, ∀n ∈ N.
Particularly, λ1(c) decreases in c ∈ (c∗, ∞).

As N(λ, c) is irreducible nonnegative matrix for λ ∈ [0, λc), we obtain by applying the Perron–Frobenius
theorem.
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Proposition 3. Suppose that R0 > 1. When c > c∗, there exists positive unit vectors ω(c) = (ω1(c), ω2(c))T and
ξn(c) = (ξn

1 (c), ξn
2 (c))

T(n ∈ N) verifying

N(λ1(c), c)ω(c) = ω(c),

N(λ1(c) + εn(c), c)ξn(c) = L(λ1(c) + εn(c), c)ξn(c), n ∈ N.

Now, let fix c > c∗. Suppose that λ1(c), ω(c) = (ω1(c), ω2(c))T , εn(c), and ξn(c) = (ξn
1 (c), ξn

2 (c))
T(n ∈

N) are mentioned in Propositions 2 and 3. Without loss of generality, we substitute ω1(c), ω(c) =

(ω1(c), ω2(c))T , εn(c), and ξn(c) = (ξn
1 (c), ξn

2 (c))
T(n ∈ N) for λ1, ω = (ω1, ω2)

T , εn and ξn(c) =

(ξn
1 (c), ξn

2 (c))
T(n ∈ N). Given that L(ϑ1 + εn, c) < 1, Proposition 3 implies that

−mh(λ1, c)ω1 ++

(
βhaS0

hω1 + βhhS0
hω2

)
= 0,

−ma(λ1, c)ω2 +

(
βahS0

aω1 + βaaS0
aω2

)
= 0,

and 
−mh(λ1 + εn, c)ξn

1 +

(
βhaS0

hω1 + βhhS0
hω2

)
< 0,

−ma(λ1 + εn, c)ξn
2 +

(
βahS0

aω1 + βaaS0
aω2

)
< 0,

for any n ∈ N.

Lemma 2. The vector function K(z) = (o1(z), o2(z))T with oi(z) = ωi expł1z satisfies{
cp′1(z) = qh p′′1 (z) + βhaS0

h p1(z) + βhhS0
h p2(z)− (µ + γ)p1(z),

cp′2(z) = qa p′′2 (z) + βahS0
a p1(z) + βaaS0

a p2(z)− (ξ + κ)p2(z),

for any z ∈ R.

5. Non-existence of Traveling Wave

5.1. Case I: R0 < 1

In this subsection, we assume that R0 < 1, then we by the contradiction we prove the non-existence of
TWS for (2).

Theorem 3. Assume that R0 < 1. Thus, there exists no nonnegative bounded solution
(Sh(z), Vh(z), Ih(z), Sa(z), Ia(z)), of (11) satisfying (13).

Proof. Assume that there is (Sh(z), Vh(z), Ih(z), Sa(z), Ia(z)) that solves (11)-(13). Let (Ih)sup = supz∈R Ih(z)
and (Ia)sup = supz∈R Ia(z) . By (11){

cI′h(z) = qh I′′h (z) + βhaS0
h(Ia)sup(z) + βhhS0

h(Ih)sup(z)− (µ + γ)Ih(z),
cI′(z) = qh I′′a (z) + βahS0

a(Ih)sup(z) + βaaS0
a(Ia)sup(z)− (ξ + κ)Ia(z).

The comparison principle implies that(
Ih(z)
Ia(z)

)
≤ M

(
(Ih)sup(z)
(Ia)sup(z)

)
∀z ∈ R,

by the definition of J and R0 in the section 2. Clearly, J is nonnegative and irreducible. The Perron-Frobenius
theorem ensures the existence of a vector P = (p1, p2)

T ∈ R2, p1 > 0, p2 > 0, satisfies J P = R0P. Noting that
there is a constant ϵ > 0 large enough, that satisfy(

(Ih)sup

(Ia)sup

)
≤ R0P,
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(
(Ih)sup

(Ia)sup

)
≤ J n

(
(Ih)sup

(Ia)sup

)
≤ ϵJ nP = ϵRn

0 P → 0,

for n → ∞, that is a contradiction with Ih(z) > 0 and Ia(z) > 0, ∀z ∈ R.

5.2. Case II: R0 > 1 and 0 < c < c∗

The next theorem we show the case when (11) do not admits a TWS.

Theorem 4. Assume that R0 > 1 and 0 < c < c∗. Thus, (11) has no TWS of the form
(Sh(z), Vh(z), Ih(z), Sa(z), Ia(z)) that satisfies (13).

Proof. We argue by contradiction. Fixing 0 < c < c∗, and assume that there is a positive solution
(Sh(z), Vh(z), Ih(z), Sa(z), Ia(z)) of (11) the verifies (13). By [? , Lemma 3.7] there exists µ0 > 0 satisfying

sup
z∈R

|Ih(ξ)e−µ0z| < +∞, |Ia(ξ)e−µ0z| < +∞

sup
z∈R

|I′h(z)e
−µ0z| < +∞, |I′a(z)e−µ0z| < +∞,

sup
z∈R

|I′′h (z)e
−µ0z| < +∞, |I′′a (z)e−µ0z| < +∞.

Consider p1(z) := 1 − Sh(z). Then p1(z) satisfies

cp′1(z) = qh p′′1 (z)− (µ + γ)p1(z) + βhaSh(z)Ia(z) + βhhSh(z)Ih(z).

By the inequality

∥p′1∥L∞((−∞,0]) ≤ 2
√
∥p1∥L∞((−∞,0])∥p′′1 ∥L∞((−∞,0])

and
lim

z→−∞
p1(z) = 0,

we obtain that
lim

z→−∞
p′1(z) = 0. (17)

Furthermore, as p′1(z) is bounded by Sh(z) for z ∈ R and (17), we integrate the above inequality between
−∞ and z, (z < 0), then there is a constant G > 0 that satisfy

(µ + γ)
∫ z

−∞
p1(η)dη = −cp1(z) + qh p′1(z) +

∫ z

−∞
βhaSh(η)Ia(η) + βhhSh(η)Ih(η)dη ≤ G, z ≤ 0.

Let
E1(z) =

∫ z

−∞
βhhSh(η)Ih(η) +

∫ z

−∞
βhaSh(η)Ia(η)dη

and
B1(z) = [µ + γ]

∫ z

−∞
p1(η)dη, ∀z < 0.

Therefore, E1(z) ≤ CMeµ0z, ∀z ∈ R, with CM > 0 is a constant. By p1(z), we obtain

qh p′1(z)− cp1(z) = B1(z)− E1(z), z < 0.

Solving the last equation yields

p1(z) = ĈMe
c

qh
z
+ 1

qh
e

c
qh

z ∫ z
0 e−

c
qh

η
[E1(η)− B1(η)]dη,

≤ ĈMe
c

qh
z
+ 1

qh
e

c
qh

z ∫ 0
z e−

c
qh

ηE1(η)dη, z < 0,
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where ĈM = p1(0). According to E1(z) = O(eµ0z) as z → −∞, it is obvious that p1(z) = O(eµ′
0z) as z → −∞,

with µ′
0 = min{µ0, c

qh
, c

qa
}. In the view of 0 ≤ p1(z) ≤ S0

h, one has

sup
z∈R

{p1(z)e−µ′
0z} < +∞.

Let p2(z) := 1 − Sa(z), z ∈ R. Similarly, we have

sup
z∈R

{p2(z)e−µ′
0z} < +∞.

Since that supz∈R{Ih(z)e−µ′
0z} < +∞ and {Ia(z)e−µ′

0z} < +∞, we define the one-side Laplace transform
of Ih, Ia by

Ti(λ) =
∫ 0

−∞
e−λz Ii(z)dz, i = 1, 2.

Next, let λ ∈ R+. As Ih(z) > 0, Ia(z) > 0, ∀z ∈ R and Th(·), Ta(·) is increasing on R+, either there
is a constant αk > µ0 satisfies Ti(λ) < +∞ for all 0 < λ < αi, with i = h, a and limλ→αh−0 Th(λ) = +∞,
limλ→αa−0 Ta(λ) = +∞, or Th(λ) < +∞, Ta(λ) < +∞, ∀λ ≥ 0. Now, we let the two-sides Laplace transform
of Ih and Ia as

Ti(ϑ) =
∫ +∞

−∞
e−ϑz Ii(z)dz, i = 1, 2.

Let ϑ ∈ R+. As Ii(z) is bounded in R and i = h, a, then
∫ +∞

0 e−ϑz Ii(z)dz < +∞ ∀λ > 0. Hence, Th(λ),
Ta(overlineλ), and Th(λ), Ta(λ) have the same properties in λ > 0, either there is a constant αh > µ0, αa > µ0

satisfying Th(λ) < +∞, Ta(λ) < +∞, ∀0 < λ < αh, ∀0 < λ < αa, and limλ→αh−0 Th(λ) = +∞, or Th(λ) < +∞
and and limλ→αa−0 Ta(λ) = +∞, or Ta(λ) < +∞, ∀λ > 0.

First, we prove that there are αh, αa = +∞, satisfying, Th(λ) < +∞,Ta(λ) < +∞, ∀λ > 0. We argue by
contradiction. Without loss of generality, let 0 < αh < +∞ and αa ≤ +∞ on the contrary. Then we have two
cases: (1) 0 < αa < +∞; (2) αh = +∞. For (1), let 0 < αa < αh ≤ +∞. In view of

qh I′′1 (z)− cI′1(z)− (µ + γ)Ih(z) = ϵ1βhhS0
h Ih(z)) + βhaS0

h Ia(z))
= βhh(1 − Sh(z))Ih(z) + βha(1 − Sh(z))Ia(z).

One has
Th(ϑ)(qhλ2 − cλ − (µ + γ) + βhhS0

h) + Ta(λ)βhaS0
h

=
∫ +∞
−∞ e−λzβhh(1 − Sh(z))Ih(z)dz

∫ +∞
−∞ e−λzβha(1 − Sh(z))Ia(z)dz.

(18)

Similarly, we have

Th(λ)(qaλ2 − cλ − (κ + ξ) + βahS0
a) + Ta(λ)βaaS0

a

=
∫ +∞
−∞ e−λzβah((1 − Sa(z)Ih(z))dz +

∫ +∞
−∞ e−λzβaa(1 − Sa(z))Ia(z)dz.

(19)

Since 0 < 1 − Sh(z) ≤ S0
h, 0 < 1 − Sa(z) ≤ S0

a for any z ∈ R and supz∈R {(1 − Sh(z))e−µ0z} < +∞,
supz∈R {(1 − Sa(z))e−µ0z} < +∞, we obtain that

∫ +∞

−∞
e−λzβhhSh(z)Ih(z)dz < +∞, ∀ϑ ∈ (0, αh + µ0),

∫ +∞

−∞
e−λzβahSa(z)Ih(z)dz < +∞, ∀ϑ ∈ (0, αh + µ0),

∫ +∞

−∞
e−λzβhaSh(z)Ia(z)dz < +∞, ∀ϑ ∈ (0, αa + µ0),

and ∫ +∞

−∞
e−λzβaaSa(z)Ia(z)dz < +∞, ∀ϑ ∈ (0, αa + µ0).

In view of αh < αa, letting λ → αh − 0 in (19) that is a contradiction due to the fact that the first term tends
to ∞ and the other terms is bounded as λ → αh − 0. It follows that the case 0 < αh < αa ≤ +∞ is not possible.
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For (2), that is, assume that 0 < αh = αa = α0 ≤ +∞. If one of inequalities

qhα2
0 − cα0 − (µ + γ) + βhhS0

h ≥ 0,

and
qaα2

0 − cα0 − (ξ, κ) + βaaS0
a ≥ 0,

holds, then letting λ → αh − 0 in (18) or (19) yields a contradiction. If both inequalities

qhα2
0 − cα0 − (µ + γ) + βhhS0

h < 0

and
qaα2

0 − cα0 − (ξ, κ) + βaaS0
a < 0,

hold, then we rewrite (18) and (19) as

N(λ, c)

(
Th(λ)

Ta(λ)

)
−
(

Th(λ)

Ta(λ)

)
=

 hh(λ)
mh(ϑ̃,c)
ha(λ)

ma(ϑ̃,c)

 λ ∈ (0, α0),

where hh(λ) :=
∫ +∞
−∞ e−λzβha((1 − Ia(z))Ih(z) + βhh((1 − Ih(z))Ih(z) + βah((1 − Ih(z))Ia(z) + βha((1 −

Ia(z))Ia(z)dz. Clearly, α0 < µc due to

qhα2
0 − cα0 − (µ + γ) + βhhS0

h < 0

and
qaα2

0 − cα0 − (ξ + κ) + βaaS0
a < 0.

(with N(λ, c) and L(λ, c) are defined in section 5). As 0 < c < c∗, and R0 > 1, then Proposition 2 ensures that
infλ∈[0,α0)

ρ(λ, c) > 1. As N(λ, c) is positive matrix, then we need to prove either

βhhS0
h

Th(λ)

mh(λ, c)
+ βhaS0

h
Ta(λ)

mh(λ, c)
≥ L(λ, c)Th(λ), λ ∈ (0, α0),

is satisfied. Thus, for all λ ∈ (0, α0) there holds either

(L(λ, c)− 1)Th(λ) ≤
hh(λ)

mh(λ, c)
, (20)

or

(L(λ, c)− 1)Ta(λ) ≤
ha(λ)

ma(λ, c)
. (21)

Since infλ̄∈[0,α0]
mh(λ̄, c) > 0, ma(λ̄, c) > 0, hh(λ̄), ha(λ̄) are well posed in [0, α0 + µ′

0), we let λ̄ → α0 − 0
in (20) and (21) yields a contradiction due to limλ̄→α0

Th(λ̄) = +∞, limλ̄→α0
Ta(λ̄) = +∞. Consequently,

0 < α1 = αa = α0 = +∞ is also not possible. Lh(λ̄) < +∞, La(λ̄) < +∞, ∀(λ̄ > 0). Therefore, we get

ah I′′h (z)− cI′h(z)− (µ + γ)Ih(z) + βhaS0
h Ia(z) + βhhS0

h Ih(z)
= βha((1 − Sh(z)Ia(z)) + βhh(1 − Sh(z))Ih(z)
< βhaS0

h Ia(z)) + βhhS0
h Ih(z)).

(22)

The same with Ia − equation, ∀(ζ ∈ R). Then we get

∫ +∞

−∞
e−λz Ih(z)χh(λ)dz +

∫ +∞

−∞
e−λz Ia(z)χa(λ)dz ≤ 0, (23)

where

χh(λ) := −mh(λ, c) + βhhS0
h,

χa(λ) := −ma(−λ, c) + βhaS0
h.
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However, letting (λ̄ → +∞) in (23), that is a contradiction with the boundedness of the solution
(limλ̄→+∞ χh(λ̄) = +∞) and (limλ̄→+∞ χa(λ̄) = +∞).

6. Non Critical Traveling Wave

In this section, we suppose that R0 > 1 and c > c∗. The existence of a traveling wave solution is discussed
through the following subsections.

6.1. Upper-lower solution

For c > c∗, we build a pair of upper and lower solutions of (12) by an iteration procedure. In particular,
we build the Sh,a-component of the supper solution S+

h,a first, and then use that expression to build the
Vh-component of the supper solution V+

h , and then use that expression to build the Ih,a-component of the
supper solution I+i (i = 1, 2). The lower solution S−

h,a for Sh,a-component is then produced by using I+h,a in
turn.The same for V−

h . Lastly, we build the Ih,a-component of the lower solution I−h,a using S−
h,a. The concept

behind such a building is

Definition 1. (S+
h,a, V+

h , I+h,a) and (S−
h,a, V−

h , I−h,a) stand for the pair of super- and sub-solutions of (11),
respectively, and satisfy the following inequalities:

−c(S+
h )

′(z) + dh(S+
h )

′′(z) + L− (µ + α)S+
h (z) + θV+

h (z)− βhhS+
h (z)I−h (z)− βhaS+

h (z)I−a (z) ≤ 0, (24)

−c(S−
h )

′(z) + dh(S−
h )

′′(z) + L− (µ + α)S−
h (z) + θV+

h (z)− βhhS−
h (z)I+h (z)− βhaS−

h (z)I+a (z) ≥ 0, (25)

−c(S+
a )

′(z) + da(S+
a )

′′(z) + A − ξS+
a (z)− βahS+

a (z)I−h (z)− βaaS+
a (z)I−a (z) ≤ 0, (26)

−c(S−
a )

′(z) + da(S−
a )

′′(z) + A − ξS−
a (z) + αS−

a (z)− βahS−
a (z)I+h (z)− βaaS−

a (z)I+a (z) ≥ 0, (27)

c(V+
h )′(z) = yh(V+

h )′′(z) + αS+
h (z)− (µ + σ + θ)V+

h (z) ≤ 0, (28)

c(V−
h )′(z) = yh(V−

h )′′(z) + αS−
h (z)− (µ + σ + θ)V−

h (z) ≥ 0, (29)

−c(I+i )′(z) + qi(I+i )′′(z) + βihS+
i (z)I+h (z) + βiaS+

i (z)I+a (z − cτ)− (µi + γi)I+i (z) ≤ 0, (30)

−c(I−i )′(z) + qi(I−i )′′(z) + βihS−
i (z)I−h (z) + βiaS−

i (z)I−a (z)− (µi + γi)I−i (z) ≥ 0, (31)

except for finite points of z ∈ R.

In the remainder of this section, we assume that R0 > 1.
The following lemma illustrates the construction of the upper and lower solutions that satisfy (24)-(31).

Lemma 3. Suppose that R0 > 1, and c > c∗. Let

S+
i (z) = S0

i , V+
h (z) = V0

h , , I+i = κi expλ1z,

S−
i = max

{
1 − Mi expρz, 0

}
, V−

h = max
{

1 − Ki expωz, 0
}

, I−i (z) = max{κieλ1z(1 − Jieηz), 0},

for some positive constants γ, Ji and Mi (i = h, a) that will be determined later, then (24)-(31) are satisfied.

Proof. The proof is achieved through the following points

(i): Clearly S+
i (z) = S0

i satisfies

−c(S+
h )

′(z) + dh(S+
h )

′′(z) + Λ − (µi + α)(S+
h )(z) + θV+

h (z)− βhhS+
i (z)I−h (z))− βhaS+

h (z)I−a (z) ≤ 0,
−c(S+

a )
′(z) + da(S+

a )
′′(z) + A − ξ(S+

a )(z)− βahS+
a (z)I−h (z))− βaaS+

a (z)I−a (z) ≤ 0

then, (24) and (26) are satisfied.
(ii): Clearly V+

h (z) = V0
h satisfies

−c(V+
h )′(z) = yh(V+

h )′′(z) + αS+
h (z)− (µ + σ + θ)V+

h (z) ≤ 0, ,

then, (28) is satisfied.
(iii) Clearly, for z < z0, with z0 = 0, we obtain I+i (z) = 0, Therefore, we have
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−c(I+i )′(z)+ qi I(i
+)′′(z)+ βih(S+

i (z− cτ))(z)I+h (z− cτ)+ βiaS+
i (z− cτ)I+a (z− cτ)− (µi +γi)I+i (z) = 0,

For z > z0, we obtain I+i (z) = κi expλ1z, we show that I+i fulfills (30). It is easy to check that

−c(I+i )′(z) + qi Ii(
+)′′(z) + βih(S+

i (z)I+h (z)) + βiaS+
i (z)I+a (z)− (µi + γi)I+i (z)

≤ −c(I+i )′(z) + qi I(i
+)′′(z) + βihS0

i I+h (z) + βiaS0
i I+a (z)− (µi + γi)I+i (z)

= qiλ
2
1 expλ1z +βihS0

i κh expλ1z +βiaS0
i κa expλ1z −(µi + γi)κi expλ1z −cκi expλ1z

= expλ1z L(λ1, c)

= 0, (32)

by the definition of λ1 .

(iv) Choosing 0 < ρ < min
{

λ1, c
di

}
. Suppose that z ̸= 1

ρ ln 1
Mi

:= z∗, and we claim that S−
i satisfies

−c(S−
i )′(z) + di(S−

i )′′(z) + Λi − (µi + α)(S−
i )(z) + θV+

h (z)− βihS−
i (z)I+h (z)− βiaS−

i (z)I+a (z) ≥ 0,
−c(S−

a )
′(z) + da(S−

a )
′′(z) + A − ξ + αS−

a (z)− βah(S−
a (z)I+h (z))− βaa(S−

a (z), I+a (z)) ≥ 0.

We will prove the first equation and the second equation is in the same way. To prove this claim, we first
suppose that z > z∗, this implies that S−

i (z) = 0 in (z∗, ∞), the inequality holds directly. If z < z∗, we
have S−

i (z) = 1 − Mieκz. Then, we have βihS+
i (z)I+h (z) ≤ βihS0

i I+h (z) and βi2S+
i (z)I+a (z) ≤ βi2S0

i I+a (z).
Then, we have

−c(S−
h )

′(z) + dh(S−
h )

′′(z) + Λ − (µ + α)(S−
h )(z) + θV+

h (z)− βhhS−
h (z)I+h (z)− βhaS−

h (z)I+a (z)
≥ cMhρ expρz −dh Mhρ2 expρz +(µ + α)Mh expρz −βhhS0

h I+h (z)− βhaS0
h I+a (z)

= cMhρ expρz −dh Mhρ2 expρz +(µ + α)Mh expρz −βhhS0
hκh expλ1z −βhaS0

hκa expλ1z

= expρz
[

Mhρ(c − dhρ) + (µ + α)Mi − βhhS0
hκh exp(λ1−ρ)z −βhaS0

hκa exp(λ1−ρ)z
]

≥ expρz
[

Mhρ(c − dhρ) + (µ + α)Mh − βiaS0
hκh − βhhS0

hκa

]
≥ 0.

for Mh sufficiently large, and 0 < ρ < min
{

λ1, c
dh

}
. The claim is proved.

(v) The proof of Eq. (29) is similar with the Eq. (25).
(vi) Choosing 0 < η < min{λ2 − λ1, λ1}, and Ji > 0 sufficiently large. Then, we claim that I−i (z) satisfies

−c(I−i )′(z) + qi(I−i )′′(z) + βih(S−
i (z)I−h (z) + βiaS−

i (z)I−2 (z)− (µi + γi)I−i (z) ≥ 0, (33)

with z ̸= z2 := −lnJi
η .

We show this claim for two separated cases, that are, z > z2, and z < z2, respectively. If z > z2, thus
I−i (z) = 0, which means that (33) is satisfied. If z < z2, we get I−i (z) = κieλ1z(1 − Jieηz). In this case, we
show that (33) holds for L sufficiently large, which it will be determined later. Notice that the inequality
(33) can be expressed as follows

βihS0
i I−h (z)+ βiaS0

i I−a (z)− βihS−
i (z)I−h (z)− βiaSi(zIa(z))

≤ −c(I−i )′(z) + qi(I−i )′′(z)βihS0
i I−h (z) + βiaS0

i I−a (z)− (µi + γi)I−i (z)
≤ −Ji p(λ1 + η, c)κi exp(λ1+η)z .

For all ξ ∈ (0, max{βihS0
i , βiaS0

i }), βihSi and βiaSi(z) are a decreasing function on (0, ∞). As I−i is a
bounded function for z < z2, then there is δ0 > 0 satisfies 0 < I−i < δ0 for all z < z2. The boundedness of
I−i for z < z2, and the fact that βihS0

i , βiaS0
i > 0 implies the existence of ξ > 0 small as necessary in such

a way the following inequality
βihS−

i ≥ βihS0
i − ξ > 0,
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and
βiaS−

i ≥ βiaS0
i − ξ > 0,

hold for all 0 < I−i < δ0. Using the fact that 0 < I−i < δ0, we obtain

βihS0
i I−h (z) + βiaS0

i I−a (z) =

(
βihS0

i I−h (z) + βiaS0
i I−a (z)− βihS−

i I−h (z)− βiaS−
i I−a (z),

≤
(

βihS0
i I−h (z)+βiaS0

i I−a (z)−βihS−
i −βiaS−

i +I−j (z)
2

)2

≤
[

βihS−
i I−h (z)− βiaS−

i I−a (z)−
(

βihS−
i I−h (z)− ξ − βiaS−

i I−a (z)− ξ
)

+I−j (z)2
]2

.

Then, we have

βihS−
i I−h (z) + βiaS−

i I−a (z)− βihS−
i (z)I−h (z)− βiaS−

i (z)I−a (z) ≤ (I−h (z))2 + (I−a (z))2.

Therefore, to prove the inequality (33), it is sufficient to show that

(I−h (z))2 + (I−a (z))2 ≤ −Ji p(λ1 + η, c)κi exp(λ1+η)z . (34)

Noting that I−i ≤ I+i , then we have (I−i (z))2 ≤ e2λ1z. To ensure (34), we show that

e2λ1z ≤ −Ji p(λ1 + η, c)κi exp(λ1+η)z . (35)

As the two sides of the inequality (35) are bounded for all z < z2, and both tends to 0 as z → −∞, then
the inequality (35) holds for Ji sufficiently large. The proof is completed.

6.2. Truncated problem

Next, for c > c∗, we let the truncated problem



cS′
h(z) = dhS′′

h (z) + Λ − βhaSh(z)Ia(z)− βhhSh(z)Ih(z)− (µ + α)Sh(z) + θVh(z) z ∈ Il = (−l, l),
cV′

h(z) = yhV′′
h (z) + αSh(z)− (µ + σ + θ)Vh(z) z ∈ Il = (−l, l),

cI′h(z) = qh I′′h (z) + βhaSh(z)Ia(z) + βhhSh(z)Ih(z)− (µ + γ)Ih(z) z ∈ Il = (−l, l),
cS′

a(z) = daS′′
a (z) + A − βahSa(z)Ih(z)− βaaSa(z)Ia(z)− ξSa(z) z ∈ Il = (−l, l),

cI′(z) = qh I′′a (z) + βahSa(z)Ih(z) + βaaSa(z)Ia(z)− (ξ + κ)Ia(z), z ∈ Il = (−l, l),
Si(z) = S−

i (z), Vh(z) = V−
h (z), Ii(z) = I−i (z), z ∈ R \ Il ,

(36)

where l > −z2. We define the following spaces

X = C(R)× C(R) and Y = C1(Il)× C1(Il).

The Schauder fixed point theorem will be utilized to demonstrate the existence of a pair of functions
(Si, Vh, Ii) ∈ X ∩ Y that fulfill (36). Firstly, we define

E = {(Si, Vh, Ii) ∈ X/S−
i ≤ Si ≤ S+

i V−
h ≤ Vh ≤ V+

h and I−i ≤ Ii ≤ I+i in R}, (37)

that is a closed convex set X equipped with the norm ∥( f1, f2)∥X = ∥ f1∥C(R) + ∥ f2∥C(R). Then, we let F : E →
E such that for all ((Si)0, (Vh)0, (Ii)0) ∈ E,

F ((Si)0, (Vh)0, (Ii)0) = (Si, Vh, Ii),
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with (Si, Ii) ∈ X ∩ Y that solves

cS′
h(z) = dhS′′

h (z) + Λ − βhaSh(z)(Ia)0(z)− βhhSh(z)(Ih)0(z)− (µ + α)Sh(z) + θ(Vh)0(z) z ∈ Il = (−l, l),
cV′

h(z) = yhV′′
h (z) + αSh(z)− (µ + σ + θ)Vh(z) z ∈ Il = (−l, l),

cI′h(z) = qh I′′h (z) + βha(Sh)0(z)(Ia)0(z) + βhh(Sh)0(z)(Ih)0(z)− (µ + γ)Ih(z) z ∈ Il = (−l, l),
cS′

a(z) = daS′′
a (z) + A − βahSa(z)(Ih)0(z)− βaaSa(z)(Ia)0(z)− ξSa(z) z ∈ Il = (−l, l),

cI′(z) = qh I′′a (z) + βah(Sa)0(z)(Ih)0(z) + βaa(Sa)0(z)(Ia)0(z)− (ξ + κ)Ia(z), z ∈ Il = (−l, l),
Si(z) = S−

i (z), Vh(z) = V−
h (z), Ii(z) = I−i (z), z ∈ R \ Il .

(38)
Any fixed point of F is the pair (Si, Ii) ∈ X ∩ Y that fulfill (38). Here, we shall confirm that the F meets the
Schauder fixed point theorem’s conditions.

Lemma 4. For any ((Sh)0, (Sa)0, (Vh)0, (Ih)0(Ia)0) ∈ E, there is a unique solution (Sh, Sa, Vh, Ih, Ia) ∈ X ∩ Y
fulfilling (36). Furthermore, (Sh, Sa, Vh Ih, Ia) ∈ E with i = 1, 2.

Proof. As (38) is a system of decoupled inhomogeneous linear equations, then the existence and uniqueness
of solutions to the (38) can be obtained from Theorem 3.1 in Chapter 12 of [7]. Moreover, since −cS′

h(z) +
dhS′′

h (z)− βhaSh(z)(Ia)0(z)− βhhSh(z)(Ih)0(z)− (µ+ α)Sh(z) + θ(Vh)0(z) = −Λ ≤ 0 and −cS′
a(z) + daS′′

a (z)−
βahSa(z)(Ih)0(z)− βaaSa(z)(Ia)0(z)− ξSa(z) ≤ A ≤ 0 on Il and Si(±l) = S−

i (±l) ≥ 0, thus S > 0 on Il (by the
maximum principle). Similarly, we get Ii > 0 over Il . Next, we prove that S−

i ≤ Si ≤ S+
i in Il . By the second

equation of (36) and (Ii)0 ≤ I+i , we arrive at

−cS′
h(z) + dhS′′

h (z) + Λ − βhaSh(z)(Ia)0(z)− βhhSh(z)(Ih)0(z)− (µ + α)Sh(z) + θ(Vh)0(z) ≤ 0

and
−cS′

a(z) + daS′′
a (z)− βahSa(z)(Ih)0(z)− βaaSa(z)(Ia)0(z)− ξSa(z) + A ≤ 0.

Together with (1), we notice that (wh)1 = Sh − S−
h verifies dh(wh)

′′
1 (z) − c(wh)

′
1(z) − (µ + α + βhh I+h (z) +

βha I+a (z))(wh)1(z) + θV+
h (z) ≤ 0 and (wa)1 = Sa − S−

a verifies da(wa)′′1 (z) − c(wa)′1(z) − (ξ + βah I+h (z) +
βaa I+a (z))(wa)1(z) ≤ 0. In addition, from the third line of (36) and the fact Si(z1) > 0 and S−

i (z0) = 0, it is
known that (wi)1(z) > 0 and (wi)1(l) = 0. Hence, the maximum principle gives (wi)1 ≥ 0 in (−l, z0), that
implies S− ≤ S . Together with S−

i = 0 in [z1, l), yields S−
i ≤ S in Il . Next, showing that Si ≤ S+

i , Vh ≤ V+
h in

Il . Since (Ii)0 ≥ I−i , it follows that

−c(Sh)
′(z) + dh(Sh)

′′(z) + Λ − (µ + α)Sh(z)− βhhSh(z)Ih(z)− βhaSh(z)Ia(z) + θVh(z) ≥ 0 in Il ,

and
−c(Sa)′(z) + da(Sa)′′(z) + A − ξSa(z)− βahSa(z)Ih(z)− βaaSa(z)Ia(z) ≥ 0 in Il .

Similarly with the equation of Sh and Sa we get Vh(±l) ≤ V+
h (±l). Noting Si(±l) ≤ S+

i (±l), then, by the
maximum principle yield Si ≤ S+

i in Il . Next, claiming that I−i ≤ Ii ≤ I+i in Il . Since

βihS−
i (z)I−h (z) ≤ βih(Si)0(z)(Ih)0(z) ≤ βihS+

i (z)I+h (z),

and
βiaS−

i (z)I−a (z) ≤ βia(Si)0(z)(Ia)0(z) ≤ βiaS+
i (z)I+a (z),

it follows that
qi I′′i (z)− cI′i (z) + βihS+

i (z)I+h (z) + βiaS+
i (z)I+a (z)− (µi + γi)Ii(z) ≤ 0

and
qi I′′i (z)− cI′i (z) + βihS+

i (z)I+h (z) + βiaS+
i (z)I+a (z)− (µi + γi)Ii(z) ≥ 0, z ∈ Il .

Let (wi)2 = Ii − I−i . By the second equation of (36) and Ii(z∗) > 0, I−i (z∗) = 0, we have (wi)2(z∗) > 0, (wi)2(−l)
= 0. Also, both (33), and

qi I′′i (z)− cI′i (z) + βihS+
i (z)I+h (z) + βiaS+

i (z)I+a (z)− (µi + γi)Ii(z) ≤ 0,
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gives that
(wi)

′′
2 (z) + c(wi)

′
2(z)− (µi + γi)(wi)2(z) ≤ 0, z ∈ (−l, z2).

Therefore, the maximum principle ensures that (wi)2 ≥ 0 in (−l, z∗), which means I−i ≤ Ii in (−l, z2). Together
with I−i = 0 ≤ Ii in [z2, l), then I−i ≤ Ii in Il . To prove Ii ≤ I+i on Il , we let Īi(z) = κi expλ1z satisfies

qi Ī′′i (z)− cĪ′i (z) + βihS+
i (z) Īh(z) + βiaS+

i (z) Īa(z)− (µi + γi) Īi(z) = 0 in Il .

Since βih(Si)0(z)(Ih)0(z) ≤ βihS+
i (z) Īh(z) and βia(Si)0(z)(Ia)0(z) ≤ βiaS+

i (z) Īa(z), it follows that

qi I′′i (z)− cI′i (z)βihS+
i (z) Ī+h (z) + βiaS+

i (z) Ī+a (z)− (µi + γi)Ii(z) ≥ 0 in Il .

Notice that Ii(±l) ≤ κi expλ1z. The maximum principle implies Ii ≤ κi expλ1z in Il . Further, as I+i (z) =

κi expλ1z in [z0, l), then Ii ≤ I+i in [z0, l). To show Ii ≤ I+i in (−l, z0], notice that Ii(−l) ≤ I+i (−l) and
Ii(z0) ≤ κi expλ1z = I+i (z0). This result, (32),

qi I′′i (z)− cI′i (z) + βihS+
i (z)I+h (z) + βiaS+

i (z)I+a (z)− (µi + γi)Ii(z) ≥ 0

and the maximum principle, we obtain Ii ≤ I+i in (−l, z0].

Before starting on showing the existence of a fixed point, we consider an axillary result that will be helpful
in the proof of the existence of the fixed point, and the traveling wave solution. Letting the following problem

w′′(z)− Aw′(z) + f (z)w(z) = h(z) (39)

with A is a positive constant, and f , h ∈ C([a, b]), with [a, b] is an arbitrary interval of R. The following lemma
is the result of Lemma 3.1-3.3 in [8].

Lemma 5. Suppose that w ∈ C([a, b]) ∩ C2((a, b)) satisfies the differential equation (39) in (a, b) with the boundary
conditions w(a) = w(b) = 0. If

−C1 ≤ f ≤ 0 and |h| ≤ C2 on [a, b],

for some constants C1, C2 > 0, then there exists a positive constant C3, depending only on A, C1, and (b − a), such that

∥w∥C([a,b]) + ∥w′∥C([a,b]) ≤ C3.

Finally, it is possible to confirm that the mapping F is continuous and precompact by arguing as the
proofs of Lemma 4.4-4.5 in [8] and utilizing lemma 5. The fixed point ((Si)l , (Vh)l(Ii)l) ∈ X ∩ Y for F is
then determined by using the Schauder fixed point theorem. This pair satisfies (36) and S−

i ≤ (Si)l ≤ S+
i ,

V−
h ≤ (Vh)l ≤ V+

h and I−i ≤ (Ii)l ≤ (Ii)
+ on R. For the truncated problem (36), the existence result is as

follows, based on the description above.

Lemma 6. There is ((Si)l , (Vh)l , (Ii)l) ∈ X ∩ Y satisfying (36). Moreover,

0 ≤ (Si)
− ≤ (Si)l ≤ (Si)

+ = S0
i , 0 ≤ (Vh)

− ≤ (Vh)l ≤ (Vh)
+ = V0

h and 0 ≤ I−i ≤ (Ii)l ≤ I+i ≤ B

on R.

Lemma 7. There is ((Si)l , (Ii)l) ∈ X ∩ Y satisfying (12). Moreover,

0 ≤ (Si)
− ≤ (Si)l ≤ (Si)

+ = 1 and 0 ≤ I−i ≤ (Ii)l ≤ I+i ≤ B

on R.

6.3. Existence of traveling wave solution

In this step, we use the solution ((Si)l , (Vh)l , (Ii)l) of (12) to show that (S+
i , V+

h , I+i ), and (S−
i , V−

h , I−i )

are the upper and lower solution of (12), respectively. Also, we will show that (Si, Vh, Ii) → (S+
i , V∗

h , I∗i ) as
z → +∞ by constructing a Lyapunov function with i = h, a. At first, we show that
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Lemma 8. The solution (Si, Vh, Ii) of the system (12) satisfies (Si, Vh, Ii) ∈ E and is defined by (37). Moreover,

0 < Si < S0
i , 0 < Vh < V0

h , 0 < Ii < κi expλ1z,

for all z ∈ R.

Proof. Let {ln}n ∈ N be an increasing sequence in (z2, ∞) such that l1 > max{−z2, |z0|} and ln → +∞, and let
((Si)n, (Vh)n, (Ii)n) ∈ X ×Y , n ∈ N, solving (12) with l = ln and 7 on R. For any N ∈ N, we have

{(Si)n}n≥N , {(Vh)n}n≥N , {(Ii)n}n≥N ,

are uniformly bounded in [−lN , lN ], we can use Lemma 5 to ensure that

{(Si)
′
n}n≥N , {(Vh)

′
n}n≥N , {(Ii)

′
n}n≥N

are also uniformly bounded in [−lN , lN ]. By (12), we have that (Si)
′′
n , (Vh)

′′
n and (Ii)

′′
n can be written terms

of (Si)n, (Vh)n, (Ii)n, (Si)
′
n, (Vh)

′
n and (Ii)

′
n. This means that (Si)

′′
n , (Vh)

′′
n and (Ii)

′′
n are uniformly bounded in

[−lN , lN ]. By a differentiation of the equations of (12), and utilizing the boundedness of (Si)
′′
n ,(Vh)

′′
n , (Ii)

′′
n ,

(Si)n, (Vh)n(Ii)n, (Si)
′
n, (Vh)

′
n, (Ii)

′
n, we can ensure that

{(Si)
′′
n}n≥N , {(Vh)

′′
n}n≥N , {(Ii)

′′
n}n≥N , {(Si)

′′′
n }n≥N , {(Vh)

′′′
n }n≥N and {(Ii)

′′′
n }n≥N

are uniformly bounded in [−lN , lN ]. The Arzela-Ascoli theorem, and diagonal process ensure that there is a
subsequence {((Si)nj , (Vh)nj , (Ii)nj)} of {((Si)n, (Vh)n, (Ii)n)} satisfies

(Si)nj −→ (Si), (Si)
′
nj
−→ (Si)

′, (Si)
′′
nj
−→ (Si)

′′,

(Vh)nj −→ (Vh), (Vh)
′
nj
−→ (Vh)

′, (Vh)
′′
nj
−→ (Vh)

′′,

and
(Ii)nj −→ Ii, (Ii)

′
nj
−→ (Ii)

′, (Ii)
′′
nj
−→ (Ii)

′′,

uniformly in any compact interval of R as n −→ ∞, for some Si, Vh, Ii in C2(R). the definitions of S±
i , V±

h and
I±i implies that (Si, Vh, Ii) → (S0

i , V0
h , 0) as z → −∞. Next, we claim that 0 < Si < S0

i , 0 < Vh < V0
h and

0 < Ii < Bi on R. We prove this result by contradiction, we let Ii(z̃2) = 0 for some z̃2 ∈ R. Thus Ii(z̃′2) = 0.
Hence Ii ≡ 0 (by the uniqueness), that is a contradiction with Ii ≥ I−i > 0 on (−∞, z2). To show that Si < 1 on
R, assume by contradiction that Si(z̃3) = S0

i for some z̃3 ∈ R. Then, S′
i(z̃3) = 0 and S′′

i (z̃3) ≤ 0 and Vh(z̃6) = V0
h

for some z̃6 ∈ R. Then, V′
h(z̃6) = 0 and V′′

h (z̃6) ≤ 0.. Also a contradiction with the first and third equation of
(12) z = z̃3, z = z̃6 and . The proof is complete.

Remark 1. The first and second equations of (11) and the boundary conditions (13) . We have already shown
that Si, Ii are bounded for all z ∈ R.

The next step is to show that S′
i , V′

h, I′i are also bounded. This will be used to prove (Si, Vh, Ii) →
(S∗

i , V∗
h , I∗i ) as z → +∞ by using the Lyapunov-LaSalle Theorem. To prove the existence of non-critical

traveling wave, we need to prove that (Sh, Sa, Vh, Ih, Ia) → (S∗
h , S∗

a , V∗
h , I∗h , I∗a ) as z → ∞ by applying the

Lyapunov-LaSalle Theorem. We define

E =


Sh(.), Sa(.), Vh(.), Ih(.), Ia(.) ∈ C1(R, (0,+∞))× C1(R, (0,+∞)),
Sh(.) > 0, Sa(.) > 0, Vh(.) > 0, Ih(.) > 0, Ia(.) > 0

∃M > 0,
∣∣∣∣ I′h(z)

Ih(z)

∣∣∣∣+ ∣∣∣∣ I′a(z)
Ia(z)

∣∣∣∣ ≤ M

 .
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We construct the Lyapunov functional.

V(z) = c
(

S∗
hh( Sh(z)

S∗
h
) + V∗

h h(Vh(z)
V∗

h
) + I∗h h( Ih(z)

I∗h
) + CS∗

a h( Sa(z)
S∗

a
) + CI∗a h( Ia(z)

I∗a
)

)
−dhS′

h(z)
(

1 − S∗
h ,

Sh(z)

)
− daS′

a(z)
(

1 − S∗
a ,

Sa(z)

)
− yhV′

h(z)
(

1 − V∗
h ,

Vh(z)

)
−qh I′h(z)

(
1 − I∗h

Ih(z)

)
− qa I′a(z)

(
1 − I∗a

Ia(z)

) (40)

with h(x) = x − 1 − ln(x); x ∈ R+, clearly h(x) > 0 for all x > 0. Then we claim the below lemma

Lemma 9. Let( A) be satisfied and (Sh(.), Sa(.), Vh(.), Ih(.), Ia(.)) be a positive solution of system (12) satisfying

1
N

≤ Si(z) ≤ S∗
i , (41)

Vh ≤ NV∗
h , (42)

Ii(z) ≤ NI∗i , (43)

and ∣∣∣∣ I′h(z)
Ih(z)

∣∣∣∣+ ∣∣∣∣ I′a(z)
Ia(z)

∣∣∣∣ ≤ N, (44)

for any z ∈ R and i = h, a, where N is a positive constant. Then, there exists a constant m > 0 depending on N, such
that

−m ≤ V(z) < +∞, ∀z ∈ R.

Where the map V(z) is defined as a formula (40). Moreover, the map V(z) is not increasing. In particular,
(Sh, Sa, Vh, Ih, Ia) → (S∗

h , S∗
a , V∗

h , I∗h , I∗a ) uniformly as z → +∞. as the map V(z) is a constant.

Proof. The previous description has shown Sh and Sa are bonded in C2(R). Via inequalities (41)-(44), we have

V
′
(z) =

(
1 − S∗

h
Sh(z)

)
(cS′

h(z)− dhS′′
h (z)) +

(
1 − S∗

a
Sa(z)

)
(cS′

a(z)− daS′′
a (z)) +

(
1 − V∗

h
Vh(z)

)
(cV′

h(z)

−yhV′′
h (z)) +

(
1 − I∗h

Ih(z)

)
(cI′h(z)− qh I′′h (z)) +

(
1 − I∗a

Ia(z)

)
(cI′a(z)− qa I′′a (z))

−dh
(S′

h(z))
2

S∗
h

(
S∗

h
Sh(z)

)2

− da
(S′

a(z))2

S∗
a

(
S∗

a
Sa(z)

)2

− yh
(V′

h(z))
2

V∗
h

(
V∗

h
Vh(z)

)2

− qh
(I′h(z))

2

I∗h

(
I∗h

Ih(z)

)2

−qa
(I′a(z))2

I∗a

(
I∗a

Ia(z)

)2

.

By the proof of second part of Theorem 2, we obtain

V′(z) = µS∗
h

(
− h
(

S∗
h

Sh(z)

)
− h
(

Sh(z)
S∗

h

))
+ βhaS∗

h I∗a

[
− h
(

S∗
h

Sh(z)

)
− h
(

Sh(z)Ia(z)I∗h
S∗

h I∗a Ih(z)

)
−h
(

S∗
a

Sa(z)

)
− h
(

Sa(z)Ih(z)I∗a
S∗

a I∗h Ia(z)

)]
+ βhhS∗

h I∗h

(
− h
(

S∗
h

Sh(z)

)
− h
(

Sh(z)
S∗

h

))
− αS∗

hh
(

Sh(z)V∗
h

S∗
hVh(z)

)
−θV∗

h h
(

Vh(z)S∗
h

V∗
h Sh(z)

)
− (µ + σ)V∗

a

[
h
(

S∗
h

Sh(z)

)
+ h
(

Vh(z)
V∗

h

)]
+

βhaS∗
h I∗h

βahS∗
a I∗h

(ξ + βaa I∗a )S∗
a

(
− h
(

S∗
a

Sa(z)

−h
(

Sa(z)
S∗

a

))
− dh

(S′
h(z))

2

S∗
h

(
S∗

h
Sh(z)

)2

− da
(S′

a(z))2

S∗
a

(
S∗

a
Sa(z)

)2

− yh
(V′

h(z))
2

V∗
h

(
V∗

h
Vh(z)

)2

− qh
(I′h(z))

2

I∗h

(
I∗h

Ih(z)

)2

−qa
(I′a(z))2

I∗a

(
I∗a

Ia(z)

)2

≤ 0.

Hence, V(z) ≤ 0, and V(z) = 0 if and only if Sh = S∗
h , Sa = S∗

a ,Vh = V∗
h , Ih = I∗h and Ia = I∗a .
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Finally, we deduce that (Sh, Sa, Vh, Ih, Ia)(∞) = (S∗
h , S∗

a , V∗
h , I∗h , I∗a ), We let the set D corresponding to (11)

as follows:

D =

{
(Sh, Sa, Vh, Ih, Ia)|0 < Sh < S0

h, 0 < Sa < S0
a , 0 < Vh < V0

h , 0 < Ih < I+h , 0 < Ia < I+a ,

−L1Si(z) < S′
i(z) < L2Si(z), L3Vh(z) < V′

h(z) < L4Vh(z), −L5 Ii(z) < I′i (z) < L6 Ii(z).
}

.

Then, Lemma 9 implies that D is is positively invariant for (12), for all z ≥ 0. Remember that L has a
non-positive orbital derivative along Ψ(z). Furthermore, L is clearly continuous and bounded below on D.
This, and the Lyapunov-LaSalle Theorem indicates that Ψ(z) → (S∗

1 , S∗
2 , I∗1 , I∗2 ) as z → ∞, and as a result,

(Sh, Sa, Vh, Ih, Ia) → (S∗
h , S∗

a , V∗
h , I∗h , I∗a ) as z → +∞. This concludes the proof.

It worth noting that Lemma 8 implies that the solution of (12) satisfies S−
i ≤ Si ≤ S+

i , and I−i ≤
Ii ≤ I+i , and (Sh, Sa, Vh, Ih, Ia) → (S0

1, S0
2, V0

h , 0, 0) as z → −∞. By Lemma 9, we have (Sh, Sa, Vh, Ih, Ia) →
(S∗

h , S∗
a , V∗

h , I∗h , I∗a ) as z → +∞. Therefore, we deduce that the system (11) admits a unique positive solution
that satisfies the boundary conditions (13), which is the TWS of the system (11).

7. Numerical Simulation

In this section, we investigate the model (2) numerically to determine the effect of the vaccination of the
humans on the temporal behavior of the Monkeypox disease. In this simulation, we will focus only of the
infected classes which have a direct effect on the evolution of the disease. In this figure, we consider the
following set of parameters

µ = 0.01, α = 0.02, θ = 0.01; σ = 0.03; γ = 0.05; ξ = 0.03; κ = 0.02;

and the initial data
Sh(0) = 5, Vh = 2, Sa(0) = 4, Ih(0) = 3, Ia(0) = 1,

and for the right hand figure, we consider that βha = 0.02; βhh = 0.01, βah = 0.3, βaa = 0.04. In this case, we
get R0 > 1. However, for βha = 0.002; βhh = 0.001, βah = 0.03, βaa = 0.004 Then, we obtain R0 < 1.
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Figure 1. The global stability results for the system (2)
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Figure 2. The impact of α on the final size of the populations

In this figure, we look at how vaccination rates affect the sick human population. As the "α" parameter
grows, the vulnerable human population falls quicker owing to increased vaccination rates. A higher "α" value
implies a more successful immunisation measure, limiting transmission of illness.

The graphic shows the development of the infected human population over time (Ih(t)). As "α" grows,
the infected population drops faster. Overall, raising the "α" parameter stringent vaccination policy, which can
assist minimise the spread of the virus by lowering the number of vulnerable and infected humans over time.
Now, we focusing on the traveling wave solutions of system (11), we perform some numerical simulations.
We also, consider the following initial conditions

(Sh)0(x) =

{
3.2 if x ∈ [0, 50],
0.9 if x ∈ [50, 100[,

(Vh)0(x) =

{
2.3 if x ∈ [0, 50],
1 if x ∈ [50, 100[,

(Ih)0(x) =

{
0 if x ∈ [0, 50],
0.01 if x ∈ [50, 100[,

(Sa)0(x) =

{
4 if x ∈ [0, 50],
9 if x ∈ [50, 100[,

(Ia)0(x) =

{
0 if x ∈ [0, 50],
0.6 if x ∈ [50, 100[,
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Figure 3. Cross section curves of solutions of the model (11) for different time values, which ensures the
existence of a TWS with Λ = 0.5, A = 0.01, βha = 0, 02, βhh = 0, 04, βah = 0.02, βaa = 0.03, µ = 0.01,
γ = 0.01, κ = 0.05, α = 0.05, θ = 0.01 and ξ = 0.01.
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