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Abstract: Investigating the sequence spaces er
p, 0 ≤ p < ∞, and er

∞, is the aim of this work, which is
done with some consideration to [1] and [2]. Also, we put forward some elite features of these spaces in
terms of their bounded linear operators. To be more specific, we provide a response to the following: which
of these spaces contain the properties of the Approximation, the Dunford-Pettis, the Radon-Riesz, and the
Hahn-Banach extensions. Our study also examines the rotundity and smoothness of these spaces.
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1. Introduction

I n the historical development of summability theory, Abel, Cesaro, Riesz, N örlund, Borel, Hölder,
Hausdorff and Euler transformations are the first ones that come to mind. One of the most important

methods developed to make some divergent sequences convergent is the Euler method, or Euler mean. This
method actually consists of a matrix with infinite rows and columns, and it was used by Euler to converge
a divergent sequence under this matrix transformation. This matrix, of course, cannot make all divergent
sequences convergent.

Euler means Er, for |r| < 1, is defined by the matrix Er =
(
er

nk
)

such that

er
nk =


(

n
k

)
(1 − r)n−k rk,

0,

if 1 ≤ k ≤ n,
if k > n.

More exactly

Er =


r 0 0 0 · · ·

2r (1 − r) r2 0 0 · · ·
3r (1 − r)2 3r2 (1 − r) r3 0 · · ·
4r (1 − r)3 6r2 (1 − r)2 4r3 (1 − r) r4 · · ·

...
...

...
...

. . .

 .

We know that this triangle matrix is invertible, that is, (Er)−1 exists. Altay and Başar investigated in [1]
and [2], the sequence spaces er

p, 0 ≤ p < ∞, and er
∞ , as the set of all sequences such that Er-transforms of them

are in the spaces ℓp and ℓ∞ respectively; that is

er
p =

{
v = (vn) ∈ w : Erv ∈ ℓp

}
,

and
er

∞ = {v = (vn) ∈ w : Erv ∈ ℓ∞} .
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Thus er
p, 0 ≤ p < ∞, and er

∞ are BK-spaces with the norms

∥x∥er
p
=

(
∞

∑
n=1

∣∣∣∣∣ n

∑
k=1

(
n
k

)
(1 − r)n−k rkxk

∣∣∣∣∣
p)1/p

,

and

∥x∥er
∞
= sup

n

∣∣∣∣∣ n

∑
k=1

(
n
k

)
(1 − r)n−k rkxk

∣∣∣∣∣ ,

respectively. There have been several attempts to introduce sequence spaces using the Euler matrix by several
authors and using another matrix combined with Euler matrix, for instance, er

0 and er
c [3] and er

0 (B (m)),
er

c (B (m)), er
∞ (B (m)) [4]. In a recent study, Meng and Mei, in [5], has been introduced the Euler difference

sequence spaces er
c

(
B(m)

v

)
and er

c

(
B(m)

v

)
. Furthermore they examined α, β and γ-duals of these sequence

spaces. Additionally, Bm-Riesz Sequence Spaces has been examined in [6]-[10].
This study investigates the Euler sequence spaces er

p, 0 ≤ p < ∞, and er
∞ and some of its properties.

Here we will try to understand their geometrical structures. Moreover, we will investigate whether some nice
properties related to linear operators are present on these spaces. It should be noted that many of the results
we will give for these basic classical Euler sequence spaces also hold for other generalizations or versions. To
better explain some of the nice properties of er

p, 0 ≤ p < ∞, and er
∞, we first give some well-known definitions

and results of Banach spaces. We adopt the necessary definitions and results mainly from the book meggison
in this paper. X and Y are assumed to be a Banach spaces. If T(B) is a relatively compact (i.e., T(B) is compact)
subset of Y when B is a bounded subset of X, then a linear operator T from X to Y is compact. K(X, Y) is the
set of all compact linear operators from X to Y, perhaps just K(X) if X = Y. The domain of a compact linear
operator from a Banach space into a Banach space is closed if and only if the operator has a finite rank, i.e., the
domain of the operator is finite-dimensional [11].

Definition 1. [12] A normed space X is rotund or strictly convex or strictly normed if ∥tx1 + (1 − t)x2∥ < 1
whenever x1 and x2 are distinct points of the unit sphere SX and 0 < t < 1.

Rotundity can be characterized more easily with the subsequent theorem.

Theorem 1. 1) Let X is a normed space. Then X is rotund if and only if
∥∥∥ 1

2 (x1 + x2)
∥∥∥ < 1 whensoever x1 and x2

are distinct points of SX , see [11].
2) A normed space is rotund if and only if each of its two-dimensional subspaces is rotund, see [11].

Definition 2. [11] Presume x0 is an element of the unit sphere SX of a normed space X. Then x0 is a point of
smoothness of the unit sphere BX if there is no more than one support hypersurface for BX that supporting BX
at x0. The space X is smooth if every point of SX is a point of smoothness of BX .

Assume that X is a normed space, that x ∈ SX and that y ∈ X. Let

G− (x, y) = lim
t→0−

∥x + ty∥ − ∥x∥
t

,

and

G+ (x, y) = lim
t→0+

∥x + ty∥ − ∥x∥
t

.

Then G− (x, y) and G+ (x, y) are, the left-hand and right-hand Gateaux derivatives of the norm at x in the
direction y, respectively. The norm is Gateaux differentiable at x in the direction y if G− (x, y) = G+ (x, y),
in this case the common value of G− (x, y) and G+ (x, y) is demonstrated by G (x, y) and is named the Gateaux
derivative of the norm at x in the y direction. If the norm is Gateaux differentiable at x in any direction y, then
the norm is Gateaux differentiable at x. At last, we simply say that the norm is Gateaux differentiable if it is
Gateaux differentiable at every point of the unit sphere SX [11].

Theorem 2. 1. A normed space is smooth if and only if its norm is Gateaux differentiable [11].
2. A normed space is smooth if and only if each of its two-dimensional subspaces is smooth [11].
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Definition 3. [11] Consider X as a normed space. Define a function ρX : (0, ∞) → [0, ∞) by the formula

ρX (t) = sup
{

1
2
(∥x + ty∥+ ∥x − ty∥)− 1 : x, y ∈ SX

}
,

if X ̸= {0}, and by the formula

ρX (t) =

{
0,

t − 1,
if 0 < t < 1,
if t ≥ 1,

if X = {0}. Then ρX is the modulus of smoothness of X. The space X is uniformly smooth if limt→0+ ρX (t) /t = 0.

Remark 1. The circumstance limt→0+ ρX (t) /t = 0 implies that the norm of the space is uniformly Gateaux
differentiable, which includes the Frechet differentiability of the norm function at any point in any direction.
Thus, uniformly smooth spaces are smooth, but the converse may not be true [11].

Now let us mention about special properties of some Banach spaces.

Definition 4. [13] A Banach space X has the approximation property if, for every Banach space Y, the set of
finite-rank members of B (Y, X) is dense in K(Y, X).

Proposition 1. The spaces c0 and ℓp, 1 ≤ p < ∞, have the approximation property [11].

Now we refer to the reader to [11] for the definition of weak topology and weak convergence in Banach
spaces. Let X and Y be two Banach spaces. If T(B) is a relatively weakly compact subset of Y when B is a
bounded subset of X, then a linear operator T from X to Y is weakly compact. Kw(X, Y) denotes the collection
of all weakly compact linear operators from X to Y, or simply Kw(X) when X = Y. It is important to note
that a subset U of X is relatively weakly compact which means that U is a weakly compact subset of Y.In
its weak topology, U is a weakly compact subset of Y if and only if U is a compact subset of Y. From the
Eberlein-Smulian theorem comes the following result [11].

Proposition 2. The operator T can be defined as a linear operator from a Banach space X to a Banach space Y. Then T

is weakly compact if and only if for every bounded sequence (xn) in X has a subsequence
(

xnj

)∞

j=0
such that

(
Txnj

)
converges weakly.

Definition 5. Let X and Y are Banach spaces. If T(K) is a compact subset of Y when K is a weakly compact
subset of X, then a linear operator T from X to Y is completely continuous, or a Dunford-Pettis operator. If any
weakly compact linear operator from Banach space X to Banach space Y is completely continuous then Banach
space X has the Dunford-Pettis property [11].

Proposition 3. [11] ℓ1 has the Dunford-Pettis Property.

Let us now mention another special property of Banach spaces.

Definition 6. [11] If a normed space meets the following criteria, it is referred to as a Radon-Riesz space. A
normed space possesses the Radon-Riesz property, also known as the Kadets-Klee property. Whenever (xn) is a
sequence in the space and x is an element of the space such that xn

w→ x and ∥xn∥ → ∥x∥, it follows that
xn → x.

The Hahn-Banach extension property is an unconventional property of the sequence space ℓ∞, as
demonstrated by R.S. Phillips. More specifically, the following theorem contains this property.

Theorem 3. (R.S.Phillips, [14]) Assume that T : Y → ℓ∞ is a bounded linear operator and that Y is a linear subspace
of the Banach space X. Subsequently, T can be expanded to a bounded linear operator S : X → ℓ∞ with a identical norm
to T.

We refer to this theorem as the Hahn-Banach extension property of ℓ∞. This terminology can be used to
rewrite the classical Hahn-Banach theorem as "K = (R or C) has the Hahn-Banach extension property".
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2. Main Results

A Banach space with uniform smoothness indicates that all the balls in the space have no sharp edges or
cliffs. Let us now see that most er

p spaces have this nice property.

Theorem 4. The space er
p is uniformly smooth for 1 < p < ∞.

Proof. Primarily, let us compute ∥x + ty∥er
p

and ∥x − ty∥er
p

.

∥x + ty∥p
er

p
=

∞

∑
n=1

∣∣∣∣∣ n

∑
k=1

(
n
k

)
(1 − r)n−k rk (xk + tyk)

∣∣∣∣∣
p

,

and

∥x − ty∥p
er

p
=

∞

∑
n=1

∣∣∣∣∣ n

∑
k=1

(
n
k

)
(1 − r)n−k rk (xk − tyk)

∣∣∣∣∣
p

limt→0+ ρX (t) /t gives the 0/0 uncertainty in the primary stage, and we can perform the L’Hospital rule here.
At that time

lim
t→0+

ρX (t) /t = lim
t→0+

d
dt

(ρX (t)) .

Let’s find out what d
dt (ρX (t)) is now.The linearity of the derivative and the properties of the supremum lead

us to write

d
dt

(ρX (t)) = sup
{

1
2

(
d
dt

∥x + ty∥+ d
dt

∥x − ty∥
)

: x, y ∈ SX

}
.

Let us recall

(Erx)n =
n

∑
k=1

(
n
k

)
(1 − r)n−k rkxk.

Now we have

d
dt
(
∥x + ty∥p) =

d
dt

(
∥Er (x + ty)∥p

lp

)
=

d
dt

∞

∑
n=1

|(Er (x + ty))n|
p

=
∞

∑
n=1

d
dt

|(Er (x + ty))n|
p

=
∞

∑
n=1

(
p |(Er (x + ty))n|

p−1 d
dt

|(Er (x + ty))n|
)

,

and similarly

d
dt
(
∥x − ty∥p) =

∞

∑
n=1

(
p |(Er (x − ty))n|

p−1 d
dt

|(Er (x − ty))n|
)

.

In particular,

d
dt

|(Er (x + ty))n| =

{
d
dt ((Er (x + ty))n) ,

− d
dt ((Er (x + ty))n) ,

if (Er (x + ty))n ≥ 0
if (Er (x + ty))n < 0

=

{
(Ery)n ,
− (Ery)n ,

if (Er (x + ty))n ≥ 0
if (Er (x + ty))n < 0

and similarly

d
dt

|(Er (x − ty))n| =

{
− (Ery)n ,
(Ery)n ,

if (Er (x − ty))n ≥ 0,
if (Er (x − ty))n < 0.
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When we apply t → 0+ we get the following equations:

lim
t→0+

d
dt

∥x + ty∥p =


p

∞
∑

n=1
|(Erx)n|

p−1 (Ery)n ,

−p
∞
∑

n=1
|(Erx)n|

p−1 (Ery)n ,

if (Erx)n ≥ 0
if (Erx)n < 0

and

lim
t→0+

d
dt

∥x − ty∥p =


−p

∞
∑

n=1
|(Erx)n|

p−1 (Ery)n ,

p
∞
∑

n=1
|(Erx)n|

p−1 (Ery)n ,

if (Erx)n ≥ 0,
if (Erx)n < 0.

We just see that

lim
t→0+

d
dt

∥x + ty∥p + lim
t→0+

d
dt

∥x − ty∥p = 0.

Remember that |a| ≤ |a|p for 1 < p < ∞, and so

lim
t→0+

d
dt

∥x + ty∥+ lim
t→0+

d
dt

∥x − ty∥ = 0

Eventually we get

lim
t→0+

d
dt

(ρX (t)) = 0.

The proof is now complete.

Theorem 5. er
1 and er

∞ are not uniformly smooth.

We know that all ℓp, 1 < p < ∞, spaces inform us that the unit spheres of them are rotund. er
p enjoys this

property as ell.

Theorem 6. For 1 < p < ∞, all er
p spaces are rotund.

Proof. By the Theorem 1 it is sufficient to prove the rotundity of the space span {e1, e2} = Z in er
p where e1, e2

are elements of the unit vector basis of ℓp. In other words, we will think about the two-dimensional subspace

Z =
{
(x1, x2, 0, 0...) : (x1, x2, 0, 0...) ∈ er

p

}
.

Let x and y be arbitrary elements of SZ and let x + y = (x1 + y1, x2 + y2, 0, 0, · · · ) .∥∥∥∥1
2
(x + y)

∥∥∥∥p

er
p

=

∥∥∥∥((Er
(

1
2
(x + y)

))
n

)∞

n=1

∥∥∥∥p

ℓp

=

∥∥∥∥1
2
[
((Er (x))n)

∞
n=1 + ((Er (y))n)

∞
n=1

]∥∥∥∥p

ℓp

.

Remember that
∥x∥p

er
p
=
∥∥((Er (x))n)

∞
n=1

∥∥p
ℓp

= 1 = ∥y∥p
er

p
=
∥∥((Er (y))n)

∞
n=1

∥∥p
ℓp

and ℓp is rotund. Then ∥∥∥∥1
2
[
((Er (x))n)

∞
n=1 + ((Er (y))n)

∞
n=1

]∥∥∥∥p

ℓp

< 1.

In general, finite rank linear operators are easy to study. If any linear operator between normed spaces
can be approximated by a set of finite rank operators, then any problem or scientific model can be easily solved
with an acceptable error rate. But in order to do this, the Banach space in which the problem is constructed
must have the approximation property. Many such fortunate circumstances are allowed by Banach spaces
with this characteristic.
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Theorem 7. The Banach space er
p has the approximation property for 1 ≤ p < ∞.

Proof. Assuming T be a compact linear operator from a Banach space Y into er
p. We will find a sequence (Tn) of

bounded linear operators of finite-rank from Y into er
p such that Tn → T in B

(
Y, er

p

)
. From the assumption, for

any x ∈ Y, Tx ∈ er
p and for any bounded sequence (xn) in Y, the sequence (Txn) has a convergent subsequence(

Txnj

)∞

j=0
in er

p. Thus ∥∥∥Txni − Txnj

∥∥∥
er

p
=
∥∥∥T
(

xni − xnj

)∥∥∥
er

p
→ 0 for i, j → ∞.

Recalling the definition of the space ℓp(Er),∥∥∥T
(

xni − xnj

)∥∥∥
er

p
=
∥∥∥(ErT)

(
xni − xnj

)∥∥∥
ℓp

,

we get the operator ErT : Y → ℓp is well-defined and compact. The matrix transformation Er is bounded (See
[15]) linear operator and so is ErT. Since ℓp has the approximation property, there exits a sequence (Am)

∞
m=0 of

bounded linear operators of finite-rank from Y to ℓp such that ∥ErT − Am∥ → 0 as m → ∞. Now the sequence(
(Er)−1 Am = Tm

)∞

m=1
is the desired sequence of finite-rank from Y to er

p. It is easy to see that any (Er)−1 Am

has the finite-rank.and is bounded linear. Further

∥T − Tm∥ =
∥∥∥T − (Er)−1 Am

∥∥∥
= sup

∥x∥=1

∥∥∥(T − (Er)−1 Am

)
x
∥∥∥

er
p

= sup
∥x∥=1

∥∥∥Tx −
(
(Er)−1 Am

)
x
∥∥∥

er
p

= sup
∥x∥=1

∥∥∥ErTx − Er
(
(Er)−1 Am

)
x
∥∥∥
ℓp

= sup
∥x∥=1

∥(ErT − Am) x∥ℓp

→ 0 as m → ∞.

This completes the proof.

Theorem 8. er
1 has the Dunford-Pettis Property.

Proof. Let T : er
1 → Y be a weakly compact linear operator and compose T with (Er)−1 . It follows that

T (Er)−1 is clearly a bounded linear operator from ℓ1 into Y. It is also just weakly compact. Let’s demonstrate
this: Assume U is a bounded set in ℓ1.We know that (Er)−1 (U) is a bounded subset of er

1 because to the
boundedness of the matrix operator (Er)−1. For this reason

T
(
(Er)−1 (U)

)
=
(

T (Er)−1
)
(U)

is a relatively weakly compact set in Y. Because of this T (Er)−1 : ℓ1 → Y is weakly compact. Now, we can
deduce that T (Er)−1 is entirely continuous because ℓ1 possesses the Dunford-Pettis Property. Let W be a
weakly compact subset of er

1. As a result Er (W) is a weakly compact subset of ℓ1 [11, Exercise 3.50.], and(
T (Er)−1

)
Er (W) = T (W)

is a compact subset of Y.

We will show that er
∞ possesses the Hahn-Banach extension property.

Theorem 9. Let Y be a linear subspace of the Banach space X and suppose T : Y → er
∞ is a bounded linear operator.

Then T may be extended to a bounded linear operator S : X → er
∞ having the identical norm as T.
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Proof. For any bounded linear operator T : Y → er
∞, ErT ∈ B (Y, ℓ∞) and from the Theorem 3, ℓ∞ has the

Hahn-Banach extension property. Therefore, we get ErT may be extended to a bounded linear operator U :
X → ℓ∞ having the identical norm as ErT. We can now think about the operator (Er)−1 U. According to
conventional operator algebra, the (Er)−1 U = S operator from X to er

∞ is a bounded linear operator. Our goal
is to demonstrate that S is an extension of T and ∥T∥ = ∥S∥ . For any y ∈ Y,

Sy =
(
(Er)−1 U

)
y = (Er)−1 (Uy)

= (Er)−1 (ErT) y = Ty.

Now

∥S∥ =
∥∥∥(Er)−1 U

∥∥∥ =
∥∥∥(Er)−1 (ErT)

∥∥∥
=

∥∥∥((Er)−1 Er
)

T
∥∥∥ =

∥∥Ier
∞ T
∥∥ = ∥T∥

where Ier
∞ is the identity operator on er

∞.

We see that er
2 has an elegance property which we call as the Radon-Riesz Property. we refer the reader to

sources [16–18]. Radon-Riesz Property also named as the Kadets-Klee property since their further investigation
and application of the topic [19–21].

Theorem 10. er
2 has the Radon-Riesz Property.

Proof. Let (xn) be a sequence in er
2 and x be an element of er

2. Take into account xn
w→ x and ∥xn∥er

2
→ ∥x∥er

2
.

We’ll demonstrate that xn → x. Since we now suppose that xn
w→ x, for each y ∈ (er

2)
∗ yx we find yxn → yx.

To finish the proof, let’s demonstrate that ∥xn − x∥er
2
→ 0:

∥xn − x∥2
er

2
= ∥Erxn − Erx∥2

ℓ2

= ⟨Erxn − Erx, Erxn − Erx⟩ℓ2

= ⟨Erxn, Erxn⟩ℓ2
− ⟨Erxn, Erx⟩ℓ2

− ⟨Erx, Erxn⟩ℓ2
+ ⟨Erx, Erx⟩ℓ2

= ∥Erxn∥2
ℓ2
+ ∥Erx∥2

ℓ2
− ⟨Erxn, Erx⟩ℓ2

− ⟨Erx, Erxn⟩ℓ2

Let z = Erx ∈ ℓ2 = ℓ∗2 and let us consider z ◦ Er such that (z ◦ Er) x = ⟨Erx, Erx⟩ℓ2
. Then from the properties

of the matrix Er and by the Riesz’s Theorem (on ℓ2) we have z ◦ Er is a continuous linear functional on er
2 and

(z ◦ Er) xn = z (Erxn) = ⟨Erxn, Erx⟩ℓ2
.

In accordance with the assumption xn
w→ x we get

(z ◦ Er) (xn) = ⟨Erxn, Erx⟩ℓ2

→ ⟨Erx, Erx⟩ℓ2
, as n → ∞,

= (z ◦ Er) (x)

= ∥Erx∥2
ℓ2

Let us now take zn = Erxn ∈ ℓ∗2 = ℓ2, for each n, then

(zn ◦ Er) x = zn (Erx) = ⟨Erx, Erxn⟩ℓ2
.
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Now, each zn ◦ Er is a continuous linear functional on er
2 and again based on the assumption xn

w→ x we have

(zn ◦ Er) (x) = zn (Erx)

= ⟨Erx, Erxn⟩ℓ2

= ⟨Erxn, Erx⟩ℓ2

→ ( f ◦ Er) (x), as n → ∞,

= ⟨Erx, Erx⟩ℓ2

= ∥Erx∥2
ℓ2

.

Eventually, by the assumption ∥xn∥er
2
→ ∥x∥er

2
, we obtain

∥xn − x∥2
er

2
= ∥Erxn∥2

ℓ2
+ ∥Erx∥2

ℓ2
− ⟨Erxn, Erx⟩ℓ2

− ⟨Erx, Erxn⟩ℓ2

→ ∥Erx∥2
ℓ2
+ ∥Erx∥2

ℓ2
− ∥Erx∥2

ℓ2
− ∥Erx∥2

ℓ2

= 0, as n → ∞.
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