
Article

On sequential Henstock-Stieltjes integral for interval
valued functions
lluebe V.O1,∗ and Mogbademu A.A1

1 Department of Mathematics, University of Lagos, Lagos, Nigeria.
* Corresponding author: victorodalochi1960@gmail.com

Communicated By: Waqas Nazeer
Received: 09 September 2024; Accepted: 15 December 2024; Published: 31 December 2024.

Abstract: In this paper, we introduce the concept of Sequential Henstock Stieltjes integral for interval valued
functions and prove some properties of this integral.

Keywords: sequential Henstock stieltjes integral, interval valued functions, guages.

MSC: 35K57; 37N25; 92D30.

1. Introduction and Preliminaries

H enstock and J. Kurzweil independently introduced, in the late 1950s, a Riemann-type integral widely
known as the Henstock-Kurzweil integral to overcome the deficiencies of the Lebesgue integral. It

is well established that the Henstock integral generalizes both the Riemann and Lebesgue integrals. While
the Lebesgue integral is considerably more complex than the Riemann integral, the Henstock integral is more
powerful and simpler than the Wiener, Lebesgue, and Feynman integrals [1–15]. Furthermore, the Henstock
integral has been shown to be equivalent to the Perron and Denjoy integrals, which recover a continuous
function from its derivative.

In 2000, Wu and Gong [14] introduced the notion of Henstock (H) integrals for interval-valued functions
and fuzzy number-valued functions, obtaining several properties. Two years earlier, Lim et al. [11] introduced
the concept of Henstock-Stieltjes integrals for real-valued functions, which generalized the Henstock (H)
integral, and established their properties.

Yoon [15] introduced the interval-valued Henstock-Stieltjes integral and investigated some of its
properties. In 2016, Paxton [13] introduced the notion of Sequential Henstock (SH) integrals for real-valued
functions as a generalization of the Henstock (H) integral and obtained several properties of this integral.
Hamid and Elmuiz [2] presented the concept of Henstock-Stieltjes integrals for interval-valued functions and
fuzzy number-valued functions, and established various properties of these integrals.

In this paper, we introduce the concept of Sequential Henstock-Stieltjes (SHS) integrals for interval-valued
functions and discuss some properties of this integral.

We let R denote the set of real numbers, F(X) as a function, F−, the left endpoint, F+ as right endpoint,
{δn(x)}∞

n=1, as set of gauge functions, Pn, as set of partitions of subintervals of a compact interval [a, b], X, as
non empty interval in R and ≪ as much more smaller.

A gauge on [a, b] is a positive real-valued function δ : [a, b] → R+. This gauge is δ-fine if [ui−1, ui] ⊂
[ti − δ(ti), ti + δ(ti)] while a sequence of tagged partition Pn of [a,b] is a finite collection of ordered pairs Pn =

{(u(i−1)n uin), tin}
mn
i=1 where [ui−1, ui] ∈ [a, b], u(i−1)n ≤ tin ≤ uin and a = u0 < ui1 < ... < umn = b.

Definition 1. ([13]) A function F : [a, b] → R is said to be Henstock integrable on [a, b], denoted by F ∈ H[a, b],
with Henstock integral α, written as

α = (H)
∫
[a,b]

F(x) dx,

provided that for every ε > 0, there exists a gauge function δ(x) > 0 on [a, b] such that for any δ(x)-fine tagged
partition P = {(ui−1, ui), ti}n

i=1 of [a, b], the following inequality holds:∣∣∣∣∣ n

∑
i=1

F(ti)(ui − ui−1)− α

∣∣∣∣∣ < ε.
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Definition 2. ([11]) Let g : [a, b] → R be a non-decreasing function. A real-valued function F : [a, b] → R is
Henstock-Stieltjes integrable on [a, b], denoted by F ∈ HS[a, b], with Henstock-Stieltjes integral α, written as

α = (H)
∫
[a,b]

F dg,

provided that for every ε > 0, there exists a gauge function δ(x) > 0 on [a, b] such that for any δ(x)-fine tagged
partition P = {(ui−1, ui), ti}n

i=1 of [a, b], the following inequality holds:∣∣∣∣∣ n

∑
i=1

F(ti) [g(ui)− g(ui−1)]− α

∣∣∣∣∣ < ε.

Definition 3. ([13]) A function F : [a, b] → R is Sequential Henstock integrable on [a, b], denoted by F ∈ SH[a, b],
with Sequential Henstock integral α, written as

α = (SH)
∫
[a,b]

F(x) dx,

provided that for every ε > 0, there exists a sequence of gauge functions {δn(x)}∞
n=1 such that for each n ∈ N,

whenever Pn = {(u(i−1)n , uin), tin}
mn
i=1 is a δn(x)-fine tagged partition of [a, b], the following inequality holds:∣∣∣∣∣mn

∑
i=1

F(tin)(uin − u(i−1)n)− α

∣∣∣∣∣ < ε.

Definition 4. ([12,15]) Let

IR = {I = [I−, I+] | I is a closed and bounded interval on the real line R}.

For X, Y ∈ IR, define the following operations and relations:

(i) Order: X ≤ Y if and only if Y− ≤ X− and X+ ≤ Y+.
(ii) Addition: X + Y = Z if and only if Z− = X− + Y− and Z+ = X+ + Y+.

(iii) Multiplication: X · Y = {x · y | x ∈ X, y ∈ Y}, where

(X · Y)− = min{X−Y−, X−Y+, X+Y−, X+Y+}

and
(X · Y)+ = max{X−Y−, X−Y+, X+Y−, X+Y+}.

The metric distance between intervals X and Y is defined by

d(X, Y) = max
(
|X− − Y−|, |X+ − Y+|

)
.

Definition 5. ([2]) An interval-valued function F : [a, b] → IR is Henstock integrable on [a, b], denoted by F ∈
IH[a, b], with Henstock integral I0 ∈ IR, written as

I0 = (IH)
∫
[a,b]

F,

provided that for every ε > 0, there exists a gauge function δ(x) > 0 on [a, b] such that for any δ(x)-fine
Henstock tagged partition P = {(ui−1, ui), ti}n

i=1 of [a, b], the following inequality holds:

d

(
n

∑
i=1

F(ti)(ui − ui−1), I0

)
< ε.

Definition 6. ([2]) Let g : [a, b] → R be a non-decreasing function. An interval-valued function F : [a, b] → IR
is Henstock-Stieltjes integrable on [a, b] with respect to g, denoted by F ∈ IHS[a, b], with Henstock-Stieltjes
integral I0 ∈ IR, written as

I0 = (IHS)
∫
[a,b]

F dg,



Open J. Math. Sci. 2024, 8, 227-233 229

provided that for every ε > 0, there exists a gauge function δ(x) > 0 on [a, b] such that for any δ(x)-fine
Henstock tagged partition P = {(ui−1, ui), ti}n

i=1 of [a, b], the following inequality holds:

d

(
n

∑
i=1

F(ti) [g(ui)− g(ui−1)] , I0

)
< ε.

Definition 7. Let g : [a, b] → R be a non-decreasing function. An interval-valued function F : [a, b] → IR
is Sequential Henstock-Stieltjes integrable on [a, b] with respect to g, denoted by F ∈ ISHS[a, b], with Sequential
Henstock-Stieltjes integral I0 ∈ IR, written as

I0 = (ISHS)
∫
[a,b]

F dg,

provided that for every ε > 0, there exists a sequence of gauge functions {δn(x)}∞
n=1 such that for each n ∈ N,

whenever Pn = {(u(i−1)n , uin), tin}
mn
i=1 is a δn(x)-fine Henstock tagged partition of [a, b], the following inequality

holds:

d

(
mn

∑
i=1

F(tin)
[

g(uin)− g(u(i−1)n)
]

, I0

)
< ε.

Remark 1. If g is the identity function, the Sequential Henstock-Stieltjes integral reduces to the definition of
the Interval Sequential Henstock integral as presented in [14].

2. Main Results

We examine some of the properties of the interval Sequential Henstock integral.
Theorem 1. Let g : [a, b] → R be non decreasing function. If F ∈ ISHS[a, b], then there exists a unique integral value.

Proof. Suppose the integral is not unique and let I1 = (ISHS)
∫
[a,b] F and I2 = (ISHS)

∫
[a,b] F such that

I1 ̸= I2. Let ε > 0 then there exists a {δ1
n(x)}∞

n=1 and {δ2
n(x)}∞

n=1 such that for each δ1
n(x)-fine tagged partitions

P1
n of [a, b] and for any δ2

n(x)-fine tagged partitions P2
n of [a, b], we have

d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n)), I1) <
ε

2
,

and

d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n)), I2) <
ε

2
.

We define a positive function δn(x) on [a, b] by δn(x) = min{δ1
n(x), δ2

n(x)}. Let Pn be any δn(x)-fine tagged
partition of [a, b]. Then, we have

d(I1, I2) = d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n), I1) +
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n)), I2)

≤ d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n), I1)) + d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n)), I2)

<
ε

2
+

ε

2
= ε.

So for all ε > 0, there exists a δn(x) > 0 as above, then I1 = I2.

Theorem 2. Let g : [a, b] → R be non decreasing function. Then F ∈ ISHS[a, b] if and only if F−, F+ ∈ SHS[a, b]
and

(ISHS)
∫
[a,b]

Fdg = [(SHS)
∫
[a,b]

F−dg, (SHS)
∫
[a,b]

F+dg]
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Proof. Let F ∈ ISHS[a, b], from Definition 7 there exists a unique interval number I0 = [I−0 , I+0 ] in the property,
then for any ε > 0, there exists a {δn(x)}∞

n=1, n ≥ µ on [a, b] ∈ R such that for any δn(x)-fine partition Pn, we
have

d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n)), I0) < ε.

Observe that

d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n)), I0)

= max(|
mn∈N
∑
i=1

F−(tin)(g(uin)− g(u(i−1)n))− I−0 |, |
mn∈N
∑
i=1

F+(tin)(g(uin)− g(u(i−1)n)− I+0 )|).

Since uin − u(i−1)n ≥ 0, for 1 ≤ in ≤ mn, then it follows that

|
mn∈N
∑
i=1

F−(tin)(g(uin)− g(u(i−1)n))− I−0 | < ε,

|
mn∈N
∑
i=1

F−(tin)(g(uin)− g(u(i−1)n)− I+0 )| < ε,

for every δn(x)-tagged partitions Pn = {(u(i−1)n , uin), tin}
mn
i=1. Thus, we obtain F+, F− ∈ SHS[a, b],

I−0 = (SHS)
∫
[a,b]

F−dg

and

I+0 = (SHS)
∫
[a,b]

F+dg.

Conversely, let F− ∈ SH[a, b]. Then there exist a unique β1 ∈ R such that for any ε > 0, there exists a
{δ1

n(x)}∞
n=1, such that

|
mn∈N
∑
i=1

F−(tin)(g(uin)− g(u(i−1)n))− β1| < ε,

whenever P1
n is a δ1

n(x)-fine tagged partition of [a, b].
Also, Let F+ ∈ SHS[a, b]. Then there exist a unique β2 ∈ R such that ε > 0, there exists a {δ2

n(x)}∞
n=1,

such that

|
mn∈N
∑
i=1

F+(tin)(g(uin)− g(u(i−1)n)− β2)| < ε,

whenever P2
n is a δ2

n(x)-fine tagged partitions of [a, b].
Let β = [β1, β2]. If F− ≤ F+, then β1 ≤ β2. We define δn(x) = min(δ1

n(x), δ2
n(x)) and I0 = [β1, β2], then if

Pn is a δn(x)− f ine tagged partition of [a, b], we have

d(
mn∈N
∑
i=1

F(tin)(g(uin)− g(u(i−1)n)), β) < ε.

Hence, F : [a, b] → IR is Sequential Henstock integrable with respect to g on [a, b]. This completes the proof.

Theorem 3. If F, G ∈ ISHS[a, b] and γ, ξ ∈ R. Then γF + ξG ∈ ISHS[a, b] and

(ISHS)
∫
[a,b]

(γF + ξG)dg = γ(ISHS)
∫
[a,b]

Fdg + ξ(ISHS)
∫
[a,b]

Gdg.
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Proof. If F, G ∈ ISHS[a, b], then [F−, F+] and [G−, G+] ∈ SHS[a, b] by Theorem 2.2. Hence, γF−+ ξG−, γF−+

ξG+, γF+ + ξG−, γF+ + ξG+ ∈ SHS[a, b].
Case 1. If γ > 0 and ξ > 0, then

(SHS)
∫
[a,b]

(γF + ξG)−dg = (SHS)
∫
[a,b]

(γF− + ξG−)dg

= γ(SHS)
∫
[a,b]

F−dg + ξ(SHS)
∫
[a,b]

G−dg

= γ((ISHS)
∫
[a,b]

Fdg)− + ξ((ISHS)
∫
[a,b]

Gdg)−

= (γ(ISHS)
∫
[a,b]

Fdg + ξ(ISHS)
∫
[a,b]

Gdg)−.

Case 2. If γ < 0 and ξ > 0, then

(SHS)
∫
[a,b]

(γF + ξG)−dg = (SHS)
∫
[a,b]

(γF+ + ξG+)dg

= γ(SHS)
∫
[a,b]

F+dg + ξ(SHS)
∫
[a,b]

G+dg

= γ((ISHS)
∫
[a,b]

Fdg)+ + ξ((ISHS)
∫
[a,b]

Gdg)+

= (γ(ISHS)
∫
[a,b]

Fdg + ξ(ISHS)
∫
[a,b]

Gdg)−.

Case 3. If γ > 0 and ξ < 0 (or γ < 0 and ξ > 0), then

(ISHS)
∫
[a,b]

(γF + ξG)−dg = (SHS)
∫
[a,b]

(γF− + ξG+)dg

= γ(SHS)
∫
[a,b]

F−dg + ξ(SHS)
∫
[a,b]

G+dg

= γ((ISHS)
∫
[a,b]

Fdg)− + ξ((ISHS)
∫
[a,b]

Gdg)+

= (γ(ISHS)
∫
[a,b]

Fdg + ξ(ISHS)
∫
[a,b]

Gdg)−.

Similarly, for the three cases above, we have

(ISHS)
∫
[a,b]

(γF + ξG)+dg = (γ(ISHS)
∫
[a,b]

Fdg + ξ(ISHS)
∫
[a,b]

Gdg)+.

Hence, by Theorem 2, γF, ξG ∈ ISHS[a, b] and

(ISHS)
∫
[a,b]

(γF + ξG)dg = γ(ISHS)
∫
[a,b]

Fdg + ξ(ISHS)
∫
[a,b]

Gdg.

This completes the proof.

Theorem 4. Let g : [a, b] → R be non decreasing function. Let F, G ∈ ISHS[a, b] and F(x) ≤ G(x) nearly everywhere
on [a, b], then

(ISHS)
∫
[a,b]

Fdg ≤ (ISHS)
∫
[a,b]

Gdg

Proof. Let F(x) ≤ G(x) nearly everywhere on [a, b] and F, G ∈ ISHS[a, b], then F−, F+ ∈ SHS[a, b] and
, G−, G+ ∈ SHS[a, b] with F− ≤ F+, and G− ≤ G+ nearly everywhere on [a, b].

(SHS)
∫
[a,b]

F−(x)dg ≤ (SHS)
∫
[a,b]

G−(x)dg
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and

(SHS)
∫
[a,b]

F+dg ≤ (SHS)
∫
[a,b]

G+(x)dg.

Hence by Theorem 2, we have

(ISHS)
∫
[a,b]

F(x)dg ≤ (ISHS)
∫
[a,b]

G(x)dg.

This completes the proof.

Theorem 5. Let F, G ∈ ISHS[a, b] and d(F, K) is Sequential Henstock Stieltjes(SHS) integrable on [a, b], then

d((ISHS)
∫
[a,b]

Fdg, (ISHS)
∫
[a,b]

Gdg) ≤ (SHS)
∫
[a,b]

d(F, G)dg.

Proof. By metric definition, we have

d((ISHS)
∫
[a,b]

Fdg, (ISHS)
∫
[a,b]

Gdg)

=max(|((SHS)
∫
[a,b]

Fdg)− − ((SH)
∫
[a,b]

Gdg)−|, |((SHS)
∫
[a,b]

Fdg)+ − ((SHS)
∫
[a,b]

Gdg)+|)

=max(|(SHS)
∫
[a,b]

(F− − G−)dg|, |(SHS)
∫
[a,b]

(F+ − G+)dg|)

≤max((SHS)
∫
[a,b]

|(F− − G−)|dg, (SHS)
∫
[a,b]

|(F+ − G+)|dg)

≤(SHS)
∫
[a,b]

max(|(F− − G−)|, |(F+ − G+)|)dg

≤(SHS)
∫
[a,b]

d(F, G)dg.

This completes the proof.

Theorem 6. Let F ∈ ISHS[a, c] and F ∈ ISHS[c, b], then F ∈ ISHS[a, b] and

(ISHS)
∫ b

a
Fdg = (ISHS)

∫ c

a
Fdg + (ISHS)

∫ b

c
Fdg.

Proof. If f ∈ ISHS[a, c]) and f ∈ ISHS[c, b]) then by Theorem 2, f−, f+ ∈ SHS[a, c]) and f−, f+ ∈ SHS[c, b]).
Hence, f−, f+ ∈ SHS[a, b]) and

SHS)
∫ b

a
f−dg = (SHS)

∫ c

a
f−dg + (SHS)

∫ b

c
f−dg

= ((ISHS)
∫ c

a
f dg + (ISHS)

∫ b

c
f dg)−.

Similarly,

(SHS)
∫ b

a
f+dg = (SHS)

∫ c

a
f+dg + (SHS)

∫ b

c
f+dg

= ((ISHS)
∫ c

a
f dg + (ISHS)

∫ b

c
f dg)+.

Hence by Theorem 2, f ∈ ap-ISHS[a, b] and

(ISHS)
∫ b

a
f dg = (ISHS)

∫ c

a
f dg + (ISHS)

∫ b

c
f dg.
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