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1. Introduction

t is considered the following non-autonomous wave equation with linear memory on an unbounded
domain:
[0 9)

st — k(00) At — aAuty — /

A K (s)A(u(t) —u(t—s))ds+ f(u) = g(x,t) +¢ i thj(t), 1)
j=1

with initial data
u(t,x) = up(t,x),
ur(t,x) = uy(7,x), x € R", TR, 2)
n(x,7,8) =19, x €eR", 7€ R,s € R,

Where &, k(c0) > 0 and k'(s) < 0 for every s € RT, —A is the Laplacian operator with respect to the variable
x € R"withn =3, u = u(t,x) isareal functionof x € R"and t > 7, T € R, € is a positive constant. The given
function g(x,t) € £2 (R, L>(R")) is a external force depending on t, hj € H?(R") and W(t) is an independent
two sided real-valued wiener processes on probability space.

Following the idea of [1-3], it is introduced a Hilbert " history " space R, = Li(R*, H'(R")) with the

inner product and new variable, respectively

(s = || (s (Vi (s), Vpa(s))is, N
913 = (= [ (s (Vr(s), Vi),

whereas
n(x,t,s) =u(x,t) —u(x,t —s),n = %17 , s = %17.
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Let u(s) = k'(s) and k(co) = B. Thus, the Eq. (1) can be transformed into the following system

CBAu—anus— [ () An(s)ds + Fu) = o(x,b) e R
uy — AU — aNuy /OV(S) n(s)ds + f(u) = g(x,t) 5]211 @

My = —Ws + Ug,

with initial conditions

u(t,x) = up(t, x), u(t,x) = uy(t,x),x e R", T € R, )
o =1(x,T,s) = ug(x,7) —ug(x,T—s),x ER", T € R,s € RT.
The following conditions are necessary to obtain our main results, which come from [4,5].
a) Concerning the memory kernel u, it 1s assumed the followin otheses holad:
(a)C ing th y k 1y, iti d the following hypoth hold
pe CHRTHNLYRT), u(s) >0,4/(s) <0,Vs € RY, (6)
#(s)+ou(s) <0,vs € Rtand o > 0, )
and denote o
my = /0 u(s)ds < oo. 8)
(b) The nonlinear function f € C2(R) with f(0) = 0, and it satisfies the following conditions.
If'(u)] <C(1+|u|”),YueR,0<y<4, 9)
Cau"? — Cyu? < F(u) < Cruf(u) + Cou?,Vu € RO<y <4, (10)

whereas F(s) = [; f(r)dr, C,Cy, Cy, C3, Cy are positive constants.

We need the following condition on g(x,t) € £2 (R, L*(R")), there exists a positive constant ¢ such that
T
[ _emlgn|Pdr < o, WreR (11)
which implies that
T
lim / / e”"|g(x,7)Pdxdr =0, VT € R (12)
k=00 J—co J|x|>k

the condition (11) does not require (-, t) to be bounded in L?(R) when |t| — oo.

Random attractors for the stochastic dynamical system were first introduced by Crauel and Flandoli
[6,7]. In the decades, the existence of random attractors for the stochastic partial differential equations were
investigated by many authors, see [8-23] and reference therein. For instance, Yin and Liu considered the
random attractors for the non-autonomous wave equation with additive noise on the unbounded domain in
[24]. Zhou and Zhao in [25] studied the existence of random attractors for the non-autonomous wave equation
with linear memory and white noise on the bounded domain. However, there are no results on random
attractors for the non-autonomous stochastic strongly damped wave equation with memory and additive
noise on unbounded domain. Since the equation (1)-(2) is defined an unbounded domain, it brings some extra
obstacles to prove the asymptotic compactness of solutions since the Sobolev embedding are not compact on
R". The difficulty will be overcome by the uniform estimates on the tails of solution. the splitting technique
will be combined in [2,5,28] with the idea of uniform estimates of solutions to investigate the existence of a
random attractor. When & = 0 in (4)-(5), the determined damping wave equations with linear memory has
been discussed by several authors in [1,4,26,27].

This paper is organized as follows. Next Sections, we recall some preliminaries and properties for general
random dynamical system and results on the existence of a pullback random attractor for random dynamical
systems. In Section three, we define a continuous random dynamical system for (4)-(5) in H' (R") x L2(R") x
Ry,. In Section four and five, we decompose the solutions of the random differential equation into two parts
in order to obtain the asymptotic compactness of the uniform estimates of solution as t— co. Then, the last
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Section we prove the existence and uniqueness of a random attractor. Without loss of generality, the letters C
and C;(i = 1,2, ...) are denoted as some generic positive constants which may change their values from line to
line or even in the same line.

2. Preliminaries

In this Section, we recall some basic concepts related to RDS and a random attractor for RDS in [6,7,13,
14,16], which are important for getting our main results. Let (Q), 7, P) be a probability space and (X, d) be a
Polish space with the Borel o-algebra B(X). The distance between x € X and BC X is denoted by d(x, B). If
BC X and CC X, the Hausdorff semi-distance from B to C is denoted by d(B,C) = sup,.pd (x,C).

Definition 1. (), F, P, (6¢)cr) is called a metric dynamical system if 6 : R x Q — Qis (B(R) x
F, F)-measurable, 6 is the identity on Q), 651+ = 6y 0 6, for all s,t € R and 6P = P for all te R.

Definition 2. A mapping ®(t,7,w,x) : RT x R x () x X — X is called continuous cocycle on X over R and
(Q, F,P,(6)cr), ifforall T € R,w € Qand t,s € RT, the following conditions are satisfied:

) &t 1,wx):RTXxRxQxX— Xisa (B(R") x F,B(R)) measurable mapping.

ii) ®(0,7, w,x) is identity on X.

iii) ®(t+s,7,w,x) = P(t, T+5s,05w,,x) o D(s,T,w,,x).

iv) ®(t,7,w,x) : X — X is continuous.
Definition 3. Let 2% be the collection of all subsets of X, a set valued mapping (7, w) — D(tw) : R x Q)+ 2%
is called measurable with respect to F in Q if D(t w) is a(usually closed )nonempty subset of X and the
mapping w € Q — d(X,B(t,w)) is (F,B(R)) -measurable for every fixed x € X and T € R. Let B =
B(t,w) € D(t,w) : T € R,w € Qis called a random set.

Definition 4. A random bounded set B = {B(7,w) : T € R,w € Q} € D of Xis called tempered with respect
to {0() }eq, if for p-aew € O,

lim e P d(B(0_tw))=0,Vp >0,

t —o0

where

d(B) = sup || x[|x-
xeB

Definition 5. Let D be a collection of random subset of X and K = {K(7,w) : T € R,w € O} € D, then K is
called an absorbing set of ® € Difforall T € R,w € Qand B € D, there exists, T = T(7,w, B) > 0 such that.

®(t,7,0_1w,B(T,0_1w)) CK(T,w), Vt >T.

Definition 6. Let D be a collection of random subset of X, the ® is said to be D-pullback asymptotically
compact in X if for p-a.e w € O, {®(t, ,0_t,w , x,) }5y_; has a convergent subsequence in X when t,, — oo and
Xy € B(6_t,w) with {B(w) }wen € D.

Definition 7. Let D be a collection of random subset of X and A = {A(t,w) : T € R,w € O} € D,then A
is called a D-random attractor (or D-pullback attractor ) for P, if the following conditions are satisfied:for all
teRT, TeRandw € (1:

i) A(T, w) is compact, and w — d(x, A(w)) is measurable for every x € X.

ii) A(7, w) is invariant, that is

Ot T, w, A(T,w)) = A(T+t,6iw),Vt > T
iii) A(7, w) attracts every set in D, that is for every B = {B(t,w) : T € R,w € Q} € D,

thm dX<(D(t/ T, G—tw/B(T/ O_tCL))),A(T,(JJ)) = O’
=00
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where dy is the Hausdorff semi -distance given by

dx(Y,Z) = sup 1nf lly — z|lx
yEY

foranyY € Xand Z € X.

Lemma 1. Let D be a neighborhood-closed collection of (T, w)- parameterized families of nonempty subsets of X and ®
be a continuous cocycle on X over R and (Q, F, P, (6¢)er). Then ® has a pullback D-attractor A in D if and only if
® is pullback D-asymptotically compact in X and @ has a closed, I -measurable pullback D-absorbing set K € D, the
unique pullback D-attractor A = A(t ,w) is given

AT, w) = ﬂrzoutzrq)(t’T —t,0_ 1w, K(t—t,0_1w)) TER,w € Q.

3. Existence and Uniqueness of Solution

In this Section, the focusing is on the existence of a continuous cocycle for the stochastic wave equation on
HY(R") x L2(R") x 9R,. First, we recall some important results, let A = —/\, and D(A) = H?(R"). Generally,
let Vo, = D(A”), r € R, is Hilbert space, the injection V;, < V/, is compactif r; > ;. Especially, V; — LZ(R"),
Vo — HY(R"), the space V2, = Ry 0r = L%(RJ“, Vo, (R™)). Then, it is defined
(u,v) = /R uvdx, ||u|| = (u, u) ,Vu,v € L2(R"),
((u,0)) = / VuVuvdx, |Vu|| = ((u,u))% Y u,0€ H(R"),

JRe

(( Dpeary = (A", A"), || lIpary = 1A" - I, (13)
(s = [ 16V (s), T2(s))smds

2= O = [ (s (V(s), Vi(s)ds,

I

For our purpose, it is introduced a transformation §{ = u; + du, J is a positive constant, the following
equivalent system (4)-(5) could be rewritten like

¢ =ur+du,

& — 5C+52u+aA§—a5Au+ﬁAu+/ $)Aq(s)ds + f(u) = g(x,t) +thW (19)
=

M+ 1s = Uy,

with initial data
u(t,x) = up(t, x),

u(t,x) =up(t,x),x e R", 7€ R, (15)
o =1n(x,7,8) = up(x,7) —up(x, T —s),x eR", T € R,s € R,

To study the dynamical behavior of problem(14)-(15), it is needed convert the stochastic system into
deterministic one with a random parameter. We introduce an Ornstein-Uhlenbeck process driven by the
Brownian motion, which satisfies the following differential equation

dzj + ozjdt = dW(t), (16)
its unique stationary solution is given by

2010 :—5/ “(0r;)(s)ds, s € R, t € R, w; € Q. (17)

From [11,28], it is known that the random variable |z;(w;)| is tempered and there is an invariant set O C Q) of
full P measure such that z;(0:w;) = z;(t, w;) is contmuous in t, for every w € Q). For convenience, it should
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be written ) as Q). Follows from proposition 3.4 in [28], that for any € > 0, there exists a tempered function
Y (w) > 0 such that

Y (Izj(w)) P+ |zj(wp)|772) < Y (w), (18)
=

whereas Y (w) satisfies for, p-a.e. w € Q)
Y (6iw) < ey (w), teR. (19)

Then, it follows from the above inequality, for p-a.e. w € (),
m
Y (I2j(0:w)) > + |2j(6rw))|71?) < el Y (w), t € R, (20)
j=1

put z(6iw) = 1 hjzj(0:w;), which solves dz + ézdt = Y hiW;(t).
To define a cocycle for the problem (14)-(15), let v(t, T, x, w) = &(t, T, x, w) — ez(0yw), then (14)-(15) can be
rewritten as the equivalent system with random coefficients but without white noise

U+ ou = v+ ez(Orw),
— 004 8%u — a\(v — du + ez(Biw)) — BAu — /00 u(s)An(s)ds + f(u) = g(x,t) + 20ez(6rw),
0
Nt +1s = —ou+ v+ ez(6w), 1)
u(x, t) = ug(x), us(t,x) =u(7,x),x e R", 7€ R,
0(x,T) = vo(x) = u1(x) + dup(x) — ez(rw),
o =1(x,7,8) = ug(x,7) —ug(x,T—s),x ER", T € R,s € RT.

Let E = E(R") = HY(R") x L*(R") x R, and endow with the usual inner products and norms E(R"),
respectively,

1
Iyl = (0> + 8 |ul® + [ Vul* + [7]7,1)2 (22)

Then, the following equation is equivalent to the system (21)

¢+ Ly =Q(o,t,w)
. . @)
o(t,w) = (ug(x), uq(x) + dup(x) —ez(6iw), no0) ' , ¢ = (u,v,1) ",
whereas
u
p=1 v 1,
n
ou—o
Lo=| 6(6—aA)u+PAu— (6—aA)v+ [5 u(s)An(s)ds
ou—ou + s
and
ez(Orw)
Qlo,w, t) = —f(u)+g(x, t) 4+ 20ez(0rw) — acAz(0rw)
ez(0w)

It is known from [11,29] that L is the infinitesimal generators of C° - semigroup e’ on E(R"). It is not difficult
to check that the function Q(¢,w,t) : E — E is locally Lipschitz continuous with respect to ¢ and bounded
for every w € ). By the classical semigroup theory of existence and uniqueness of solutions of evolution
differential equations [11,29], the random partial differential equation (23 has a unique solution in the mild
sense.
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Theorem 1. Put ¢(t, T, w, ¢o) = (u(t, T, w,up),v(t, T, w,v9),4(t, 7,5, w, 170))T and let (6)-(12) hold. Then, for every
w € Qand ¢y € E(R"), the problem (23) has a unique solution ¢(t,T,w, ¢o) which is continuous with respect to
(10, v0,10) " in E(R™) such that ¢(, T, w, po) = @o and @(t) satisfies the integral equation.

t
ol T,w,90) = go(w) + [ QU 1, w)dr. @)

For any ¢(t,T,w, o) € E(R"), it could be proved that for P-a.s. each w € Q, the solutions satisfy the following
properties for all T > 0:
(1)-if po(w) € E, then ¢(T, T, w, @) = ¢(T,w, ¢o) € C([T,T+ T);E),
(2)- ¢(t,w, @) is jointly continuous into t and measurable in ¢o(w),
(3)- the solution mapping of (24) holds the properties of continuous cocycle.
From the Theorem1, it can define a continuous random dynamical system over R and (Q), F, P, (0¢)tcr), that is,

O(t,w):RxQXE— E t>1,

25
§(1,) = (1, 0,10) T+ (u(t, ), 0(t,0), 76, @) = plt, ), >

it generates a random dynamical system; moreover,
O(t,w) : @(t,w) + (0,e2(0:w),0) " = @(t,w) + (0,ez(;w),0) . (26)

To show the conjugation of the solution for the stochastic partial differential equation (21) and the random
partial differential equation (23), introducing the homeomorphism P(6iw)(u,0,1(s))" = (w,ur + du —
ez(0rw),n(s))T , (u,0,1m(s))" € E(R") with an inverse homeomorphism P~ (6;w)(u,v,1(s))" = (u,up — ou +
ez(0rw),n(s)) . Then, the transformation

&(1,t,w) = P(;w)®(t, w)P 1 (6iw), E — E, t > 1. 27)

Consider the equivalent RDS ¥ (7,t,w) = Ps(6;w)P(t, w)P_s(6:w)), where ®(T,t, w) is decided by

{ Y+ Hy =0, t,w),
. 28)
¥(t,w) = (uo(x), u1(x) + dug(x),10)
where
Y= (u,w,iy)T = (u,up + 5u,;7)T,
ou—ou
Hyp= | 6(6—aA)u+BAu— (6 —aA)o+ [; pu(s)An(s)ds
ou—o + 775
and
0
Qp,w,t) = | —f(u)+g(x,t)+ ez(6iw)
0

4. Random absorbing set

In this section, to drive uniform estimates on the solutions of the stochastic strongly damped wave
equations (14)-(15) defined on R”, when ¢t — oo with the purpose of proving the existence of a bounded
random absorbing set and the asymptotic compactness of the random dynamical system associated with the
equations. In particular, it will be shown that the tails of the solutions, i.e., solutions evaluated at large values of
|x|, are uniformly become less when the time is sufficiently large. it is always assumed that D is the collection
of all tempered subsets of E(R") from now on. Let ¢ € (0, 1) be small enough such that
21110(5 1)

_ 0,
o 4)>

3&/\0
2

(B—as— —5>0. (29)

The next Lemma shows that ® has a random absorbing set in D.
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Lemma 2. Let (6)-(12) and hj € H*(R") hold. There exists a random ball {K(w)}weq € D centered at 0 with random
radius M(w) > 0 such that {K(w)} is a random absorbing set for ® in D, that is for any B={B(w)}wcq € D, there
exists T = T(T,w, B) > 0and ¢o(w) € B(w) such that

D(t,7,0_4w,B(1,0_4w)) CK(t,w) forallt>T. (30)

Beside, we have

0
/ 26| Vo|2ds < R(7, w)

Proof. Taking the inner product of the second term of (21) with v in L?(R"), we fine that

[e9)

(01,0) = & (0,0) + 0% (,0) + & [ Vo2 — a6(Au,0) + B (Aw,0) + [ p(s) (An(s), o) ds
= (g(x,t),v) — (f(u),v) —ae(Az(6rw), v) + 20¢ (z(6iw), ) .

@D

Substituting the following Eq. (32) into the third, fourth and fifth term on the left hand side of (31), it obtained

v= % + ou — ez(6yw), (32)
J— . < R _ o
(u,0) = ( > + éu sz(@tw)) < ZdtHu” + 2||u|| 225|8| |z(0rw)|”, (33)

1
(Au,v) = (—Au,v) = (Vu V(— + ou —ez(@w)) < EEHVL{HZ f||VuH2 - %\£|2|Vz(9tw)|z. (34)

Using second Eq. (4), similar to the estimates of [15,26,27], it get

7 wts) (ans),0pas = [ s <—An<s>,v> as= [ (s (w<s>,w‘f;‘ Fou-ex(Ow) ) ds o
= o 1(s)(Vn(s), Vug)ds + 6 [ u(s)(Vn(s), Vu)ds — e [y u(s)(V(s), Vz(6rw))ds.

Integrating by parts and using second Eq. (4) and Young inequality, to show

7 ) (), s = 5 S n) 1+ 1) (36)

Also, integrating by parts and using (7) and (8), it follows that

2mpd?
6 [ () (V(s), Vuds = =) 3, — 22Vl 37)
According to (8) and Young inequality, yields
*© o 2me?
*8/0 1) (Vn(s), Va(Bw))ds = =l (s) 171 — =11 Vz(8w) | (38)
Combining with (36)-(38) and (35), it is arrived
© 1d o 2mpd? 2mge?
| ue)Aan(s),00s = S LG R + T InE)IE: - 2= Vul? = T2 | vzew)B @9

In addition,

(—f(u),v) = (—f(u) fl + ou — ez(6;w) ) = dt/ dx—é/ f(u udx+e/ f(u)z(6pw)dx.
(40)
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Combining with (9)-(10) and Young inequality, it follows that

e (F(10)2(610)) < eC o (] -+ [u"*1) 2(61co)x < C e][2(0rw)] ]+ Clel (for "2 ) ™™ fz(@rw)l

2
< el 200) 1l + C el (& (o FCex + Ca ) ) 72 @)z < § el 2(010) + G ]

CCyCy 15 CCy 15 2
+ =12 2+ =3 F(u)dx + g | [2(810) [} 13,
(41)
and Cod
(5/f udx>—/ d-i ||dx 42)
substituting (41)-(42) into (40), there for
-1 -1 -1 -1
p s (207" - cc;) s (26,67 +CHCaics ) ,
_ > __ _
(~Fw0) 2 [, Fwax - [, Fwax+ oy IVulP (a3
55 le? 12(00) * + 55 €] [z(0r0) [T 15 -
By means of the Cauchy-Schwartz inequality and the Young inequality, it result
x |2 s
(3(x,6),0) < g Dol < BEIT | 22 (a4)
(26ez(0rw) + aeAz(0rw), v) < 6 |e* |2(8;w0) |* + 6 ||o||* + = | 2 |Vz(6w))* + = HV 1. (45)
Thus, substituting (33)-(45) into (31) and due to F(u f]R” u)dx, it obtained
d N
7 (Hv(f)ll2 +0|u(D)]* + (B — ad) | Vu(t)|* + [l (s)(D15,1 + 2F(u(t)))
2mpd  (2CCy ' 4+ C +CCyCy 1o
s (HU(f)llz+52||M(f)||2 (p—ad— =2 — =) Vu(h)?
’ (46)

+ gHﬂ(S)(i‘)lli,l +0(2C; "~ CCs_l)F(M(t))

3aA
< G, ([a(6ro) 2+ [Va(6) 2 + (6 13+ 18 0IF) + (30 = 252 ) o)

In condition to choose ¢ small enough and using ||Vo||2 > Ag||o||?, Ag is the first eigenvalue of — /A, such that

2C,C7 +C+CCCt) 6
(5§U,(5S%, (ﬁ_ms_Zmo(S_( 1 3) < B—as,

o Ao 47)
Cu = max B —ad — 20, G e, G |ef"*, 5, 8¢l -
Let -
o :min{é,é(ﬂ—wé),é(ZCfl fccs—l),i}. (48)
By using (11)-(12) and (18), the equation could be written as follows
(£ (0w)) = 2C, (Y (0rw) + [Ig(x, 1)) (49)
From (47)-(49)and (25), we can recall the norm ||’ ||2 Y which it equivalents to (46) such that
d N .
= (g2 +2F() <o (llgl} +2F(w) <T (t,w). (50)

Applying Gronwall’s lemma over [T, t], to fine that, for all t> 0,

t
(¢, 7, 0, o)) 17 + F(ult, 7, w, po(w)) < e ([lgo|E + F(uo)) +/ I(r,6,0)e 1 Ddr. (51)
T
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By replacing w by §_;w, to get from (51) such that forall ¢t > 0

@(t, T, 01w, Po(6_1w))||7 + F(u(t, T, 0—w, ug))

52
< e (Tt (||<p0( )||2 + F(ug )+fT I(r t,0r_tw)e‘71(”t)dr. (52)

Note that (9)-(10) implied that there is a constant C > 0 such that
F(uo) < C ([luoll® + luoll73) (53)

For any set B € D, which is tempered with respect to the norm of E(R"), since ¢y (0—tw) € B(6_;w), there
exists constant Cy > Oand a T = T(7,w, B) > 0 such that

“ (ol + F(uo) < 1. (54)
forall t > T. Substitute (54) into the first term of right- hand side of (52), and note that (9) implies

2F(u(t, T, 01w, up(w))) < 2C (Hu(t, 7,0 4w, ug(w))||? + |u(t, 7, 0w, uo(w))nm) . (55)
Since Y (w) is tempered random variable by (12) and (52) it then follows from (16)-(20), ¢o(6—tw) € B(0—iw)
and that due to pg = (g, v0,70) ' € B(T,0—w) and B € D, we get from (50)

. 0 0
Em e’ <||g00||% + F(uo)> = 0,/ T(r—t,0,_1w)e? " Hdr < / T(r—t,0,_4w)e”* " Ddr < +oo,
r—r—00 T—t —o0

(56)
then

lp(t, 7, 0160, go(0-1c0)) |3 + lu(t, 7, 0—1c0, o (6_1c0)) 772 < e~ 1) ([l g (0_1c0) |2 + E(ug)) + M(w),
(57)
whereas f_ooo T(r—t,6,_1w)er"Ddr = M(w).

Obviously, by Theorem1, (11)-(12) and (56)-(57), it is concluded that there is a closed measurable D-
pullback absorbing set for the continuous cocycle associated with problem (21) in D, that is for, every
TER we Qand B = {B(t,w) : T € R, w € O} € D, there exists T = T(t,w,B) > 0, such that for
allt > T,

D(t,1,0_4w,B(T,0_1w)) C K(T,w).

The proof is completed. [

In order to verify the asymptotically compact property, it is chosen a smooth function p defined on R™
such that 0 < p(s) < 1foralls € Rand

() 0,VO<|S|§1, (58)
S =
: 1, ]s| >2

Then there exist constants y7 and pip such that |p’(s)| < py, [p”(s)| < pa forany s € R, given k > 1, denoted by
Hy = {x € R" : |x| < k} and {R"\H}} the complement of Hj. First it will be proved by the following Lemma.

Lemma 3. Assume that(6)-(12) and h; € H?(R™) hold. Let B={B(w)}wen € D and ¢o(w) € B(w). There exists
T = T(B,w) > 0and K = K(w) > 1 such that the solution ¢(t,T,0—tw, po(6—tw)) of (21) satisfies for P-a.e
weQ Vt>Tk>K

(£, 010, g0(6-10)) [ Fmm ) < C- (59)
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Proof. Multiplying the second term of (21) by p( i )vin L2(R") and integrating over R”, to find that

2 2 2
VL (S wian-s [ p (BE) wfae st [ o (F) was
i [pn A v—éu—l—ez(etw)) (‘ x? )de—i—[%fRn Aup (‘ |2> vdx 60)
+ Jru Jo H( (s))p (‘x‘ ) vdsdx + [gu p (‘x‘ )f( Jodx
= Jgup ( ) xt)vdx—l—ZéefRn (—‘2) (6rw)vdx.

Substituting v in first term of (21) into the third, fourth and fifth term on the left- hand side of (60), to obtain

/Rnp (’i;) uodx = /Hp (Bﬁ;) (tjlt + du —EZ(Gtw)) dx (61)

2
< S (B5) (B + $lup — [ePlz(0w) ) ax,

/n( Au)p ('if) vdx = /R (Vu)Vv (p ('if) (du + du —ez(@w))) dx

= Jgn Vu (i;‘p’ ('x‘ ) ) dx + [ga Vu (p ('ﬂ ) \Y (E +ou — ez(Gtw))) dx

< fk<\x|<2fk i1 Vuodx + jﬁ fRn 72) |Vu|?dx ©)
+6 [gn p (‘xl ) (Vul?dx — & [pu p (‘xl ) |Vz(6;w)||Vu|dx

< iy (| Vul?+ |lol?) + e (& ) 4 17u2dx
+§ Jpup (‘x‘ )|V“\2dx 5 fRn (‘XI ) |Vz(6rw)|?dx.

From second Eq. (4), similar to the estimate of (35), to get

// 1(s))p ( )vdsdx </ / (( (|x|2) (fﬁ +(5u—ez(9tw))) dsdx

= Jgn fo (iﬁ‘p’ (‘x‘ ) )dsdx + Jgn fo (s)Vn(s) ‘x| ) (— —I—fSu—sz(Gtw)) dsdx
< fk<\x|<2\fk kz i fo )Vy(s)odsdx + [o [5n(s)o () ¥ ( )V urdsdx

+0 [ fo (p 2 ) V1 (s)Vudsdx

—& [pu fo 1 ('xl )Vn( )Vz(0rw)dsdx.

(63)
Integrating by parts, by using second equations (4), (7)-(8) and Young inequality, it follows that

/n /Oooy(s)p ( |2> V1(s)Vurdsdx < %% Rnp (|x|2) 1n(s) 1dx—|— 2/ ( 2) (s) irldx, (64)

and

| |2 4 / |x‘ 27”052 / |x| 2
> - 7
(5/n/ ( V;7( YVudsdx 3 np |17( ) np |Vu|dx.
(65)
Due to (8) and Young inequality, we confirm that

—S/Rn /Owi‘(s)f’<| IZ)W( 5)Vz(fpw)dsdx > / <| |2) VIO (66)
2 fanp (5) 192(00w) P

Thus, applying (64)-(66) and (63), to find

0o 2
L] y<s><2—An<s>>p('kz')vdsdx<{ 1o+ 55 Lo (G ok
+5 fun 0 (55 ) 19() 2y — 222 [ p (BE) [Wupax — 282 [ o (B2 |V2(610) P,
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in addition

/ Y (|kl2> u)vdx = / 0 <|X|2> () <‘Zl + du —suz(@w)) dx )
= Ef]Rn (%) F(u)dx + 08 [gup k—z)f( wudx  —€ [pup (ﬁ) u)z(0rw)dx.

According to (10) and (42), we have

é 2 Coé 2
) . f(u)udx > CT/ Y <|]i2|> F(u)dx — Czl / 0 (g) |u|* dx. (69)

From (9)-(10) and Young inequality, to concentrate

for(55) vwz@en <ecs [ o () rwetorar
< Clel 2(610)] [ (55 ) uldx

7+1

+CIl (frop () I +2d) 7 2(60) 12
< Cle||2(6:0)] fgn p ('x‘ ) luldx (70)

+C|s (L Janp (L)( (u )+C4|u|2))m| 2(04w) |y 426x
S el fan 0 ('X‘ )1z2@w)Pdx+ G (14 G5 fanp ("" ) luldx

ccyle 2
+952 o (BE) Fdx+ S 122 fnp (BF) f2(000)) 3,

applying (69)-(70) and (68), we get

()=t () pn- UG ) 1 (Y

5(2C,Cr1+CH+CCyCT 71
+ ( 2 —iZ_/\0+ ! 3 fR” ‘x‘ >|Vu\ dx ( )

2
+5 16 o (B5) 12(000) s S1el™ fanp (55 12(010) (115 .

By the Cauchy-Schwartz inequality and the Young inequality, we deduce that

/p(|;f> g(x,t)vdxg/Rnp(;zz) |g(x,t)||v|dx§/Rnp<|;§f) g P . +2/ < )|v|2dx

(72)

285/ (22) (Brw)vdx < d|e|? / <| |2> |2(6:w) |*dx +5/ ( 2) |v|dx, (73)
/n(—Az(Gtw))p ('if) vdx = / Vz(6:w)Vp <|x|2) vdx
= [ 2ty (B1) ivz@afos+ [ p (""2) V2(610) Vol

X
< _
= /k<|x\<ﬁk 2 1lVz(6iw) v|dx+/ ( ) V|| Vz(8iw) |dx (74)
V2
k

<

(920 + o)+ 5 [ o (BF) voras

1 |x[? 2
+25/Rnp( )Vz(etw)| dx.

a/]R”p (b]zf)zA (v—éu—i—sz(ﬂtw))vdx < ‘X/]Rﬂp (| |2> ‘AU||U|dx a(S/ <|X| ) |Au||v\dx 75)
e fyn (o () loll Az(01c0) ld,
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and

|x[? B |2
/R( AU)P<k2 vdx—/RnVU Vip 2 v ) dx
< Jgn VO (ifp/ (Ix\ ) )dx—i—fRn (\xl ) |Vo|?dx < fk<|x\<fk = Y11 |Vol|o|dx + 4 3 Jgp (|T) \Vo|2dx
< (VoI + [0lP) + § oo (55 ) [VoPx.

(76)
Collecting (61)-(76) and (60), to obtain
| | 2 2 2 2 2 =
& o (55) (1B 21 4 6 = 00) [V 4 Iy 9,1+ 2 ()
|x? S, L 32GCT +C+CaG ) )
+6 Rnp( 2 [o|” 4+ 0%|u|”+ (B —ad g )| Vu|~ | dx
st e [ o (B raax o [ o (BF) inio) e
) 3 Jen P\ H2 ol 77)
/3
< =M ( (vl + [lol*) + (B —M)(IIWIIZ+HUHZ)JH’CHUHZ)+0II17||§,,1+IIUII2

k
‘x‘z 2 2 )
+2C P\ e 14 2|z(0w)|” + | Vz(6iw) |~ + 2|z(6rw) | dx

[0 (’kf) (26252 + 0o + g, )2 .
2mge?

Setting 0, = min %yl (B—ad,a,0), Ce is a positive constant depending on g, a, 9 & L | |72, A, 4€?.
Moreover, using by || Vo||? > Al|v||?, (47)-(48) and (18), equations could be written the follows

d X -
o Lo (55 (e o+ <—a5>|w|2+|n<s>21+2F<u>)dx

2
+01 Jan p (5 ) (o + 2[ul2 + (B — a0)| Va2 + F(u) + |y (5) )dx (78)
< (oa(Ivol2 + I Vul2 + [V 2(@) P + 17121 + o)) + fp 0 (ﬁ) Lt w)dx,

Whereas
T(t,w) = 2C: [14202(01w) 2 + [V2(01w) 2 +2]z(010) "2 + || (x, 1))

and let
X(t,T,w,Xo(w)) = [v(t, T,w, v9(w))|? + 6*|u(t, T, w, ug(w))|?

+(B —ad)[Vu(t, T, w,uo(w)) [ + 5 (t, T, w, 10 (w), 5)[7 .-

(79)

Substituting (79) into (78), then applying Gronwall’s lemma over |7, t], we find that, for all t> 0,

x* (\X(t T,w,X0)|% + 2F(u(t, T, w,u )) dx < 2(t=7) L (\X |2+ F(u ))) dx
Rnp kz sy LW, A0 E s Ly, B = p kz 0lE 0
+Bo [ 20D (|[Vo(r, T, w,00) | + | Vu(r, T, @, uo) |2 ®0)
+lln(t T8, w,m0)I1% 1 + llo(r, T, w,v0) | )dr+f e '—2 )L (r, 6,w)dxdr.

By replacing w by 8_;w, to get from (71), such that forall t > 0

|x[? 2 =
/ o (k2> (IX(t, T, 0w, Xo(0—tw)) | + 2F (u(t, T,0—tw, ug) )dx

<@ [ (5 (Xo0-10) f + Flo)) d
+fT, e201(r=t) f nP(M ) [(r—t,0,—w)dxdr
B2 [0, 2|V (r, T, 0,40, v0) |2 + || Vue(r, T, 6,— 40, ug) |2
+lln(r, 7,8, 0—tcw, o) 15, 1 + 0 (r, T, 0r—1cw, o) |*)dr

(81)
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Follows the procedures in the proof of Lemma 2, it is similar to (46) and (49)and from (30), it is estimated the
term of right hand side of (81). By (9) for any initial data Xo = (ug,v0,70)' € B(t,0_;w) and the the fact
{B(w)} € D is tempered, to have that,

2
tim e [ p (55 (Mol0-)f + Flun)) < 22 (52)

r——00

Then there exists T = T (1,B,w) > 0such that t > T;.

For the second and last terms on the right hand side of (81), there exists K; = K(t,w); > 1such that for all
k > Ki, by Lemma 2, (47)-(48), Theorem1 and (11)-(12), there are T, = T>(7, B,w) > 0 and K; = K;(7,w) > 1
such that forall t > T, and k > K;

0 2
Ce/ o201 (r—t) / 0 <|xk2|) T(r—t,0,—w)dxdr <. (83)
T—t n

Next to estimate the third term on the right hand side of (81), by Lemma 2, there are Tz = T3(T, B,w) > 0and
Ky = Ky (7, w) > 1 such that for all t > T3 and k > KK,

0
&/ fm“ﬂmVMW#Jﬁpwme+ﬂVMW#Jﬁme@W
T—t

(84)
+||17(7’ - t/ T/ S/ Grftwr 170) szl,l + H'U(T - t/ T/ Qrftw/ UO) ||2) d?’ S g
Let B o
T =max{T1, 1>, T
['=max{Ty, T, Ts} (85)
K= {Klr KZ}
By applying (82)-(84) and (81), we have for all t > T and k > k
x| 2 &
g e (|X(t, T,0_1w, Xo(0—1w) |5 + 2F (u(t, 7,0_sw, uo(07tw)))) dx <4, (86)
which implies
1X(t, T, 610, Xo (0-10)) | E or 1,y < 4C- (87)

The proof is completed. O

5. Decomposition of Equations

In this section, the Eq. (21) is decomposed into two parts (91) and (92). Then to decompose the nonlinear
growth term f € C? in equation (21) into two parts f = f; + f», whereas f1, f, satisfy the following (88)-(89)
respectively.

f1(0) =0,ufi(u) >0, -
()] < Cs(1+ |ul*),Vue R,
f2(0) =0, )
() < Co(1+[ul),Vue RO<y<4,
and
kou"* — agu* < Fi(u) < kyufi(u) + pu®,Vu € R,0< v <4, (90)

whereas Cs, Cg, 1, k1, g, ko are positive constants. F> (1) = [y f2(r)dr and Fy(u) = [’ f1(r)dr.
In order to prove the asymptotic compactness solution of stochastic PDE uniform estimate, it is
decomposed the solution ¢(t,w) = (u(t,w),v(t,w),n(t,s,w))" into the sum

p(t,w) = ¢(t,w) + p(t,w),
u=y+uw,

' =1+,
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whereas @(t,w) = (y(t),y:(t),7i(t,s))" and y(t,w) = (w(t,w),wt(t,w),iyé(t,s,w))T, then the equation
(4)-(5) could be transformed into the following system.

yu — BAY —alyr — ./:o u(s)Am(s)ds + fi(y) =0,

Mt = —H1s + Yt 91)
y(T,x) =up(7,x), ye(t,x) =u1(t,x), x e R", T € R,
me(x,7,8) = up(x,7) —up(x,t—s), x eR", t € R,s € RT,

wtt—,BAw—aAwt—/Oooy(s)Aiyz(s)ds—l-f( ) — fi(y) = g(x, t) +£Zh Wi,
j=

Not = —H2s + Wt, (92)
w(t,x) =0, w(t,x) =0, x eR", T € R,

me(x,7,8) =0, x eR", T € R,s € RT,

Lety; =yand y1; = ys
Y2 = Y1t + 0y, (93)

then (91) could be rewritten as the following equivalent system.

Yot — Oy + aAya + 6%y1 + (B — ad) Ay +/ s)An(s)ds + fi(y1) =0,

M = —Ms + Y2 — 6y, (94)
y1(x,7) = uo(x), y2(x,T) = vo(x) = u1(x) + dup(x),
me(x,T,8) = up(x,7) —up(x, T —s), x eR", T € R,s € RY,

Also supposed that ¢, = w and ¢y = w;

2 = Y11+ 0Y1 — ez1(6rw) (95)

then (92) could be rewritten like (94).

Yot — 02 + 821 + aAgpy + (B — ad) Ay + / s)Ani(s)ds + f(u) — fi(e1),
= 20ez1(Orw) + eAz1 (Orw) + (x, F)

Mot = —12s + P2 — 0Py + ez1(Orw),

P1(x,7) =0, Po(x,7) =0, x e R", T € R,

me(x,7,8) =0, x eR", 7€ R,s€ RT.

(%6)

Lemma 4. Under condition (6)-(12) and (88)-(90). Let B1(t,w) C By(t,w) and By = {B1(7,w)}wen € D(E)
and $o(w) € By (T, w).There exists Ty = T1(By,w) > 0 and My(w), such that the solution ¢(Ty,w, Po(w)) of (91)
satisfies for P-a.ew € Q, Vit > Ty
.
19(t, T, @, o)) IE < Il goll®e ™" + /T r1(w)dr < Mo(w) 97)

Proof. Taking inner product of (94) with y, in L2(R"), to find that

2 7 L1122 = 6llyall? + (Aya,y2) + (w1, y2) + (B — 20) (Ays, ) 8)
[ HE A (), 25+ (i) 2) = 0,

using the Holder inequality and the Young inequality, easily to get

(y1,y2) < 2dt”yl|l2 *||y1\|21 (99)
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1d o
(Ay1,y2) < 5?”W1 12+ §HVV1||2/ (100)

o d
[ ko) A s = oIz, + S~ 2 vy (101)

By using of (88) and (90), to conclude

(f1iv1),y2) = (fi(y1), yar + y1)

d ) m ) (102)
< = — - .
<4 L Roaxt £ [ R - E V)
Applying together (99)-(102 )and (98), to obtain that
1d 215 — )|V (1) |12 2 +F
57 22 + &y (1> + (B — « )II yi)I" + il + F(va(e))
%(|\yz<>||2+52||y1<r>u + (B2 — a6 — 220) |7y, () |2) (103)
+ollm (M5, + £ () <0,

suppose that ¢(t, 7, w, po(w)) = §(t, T, w, po(w)) — (0,z(6;w),0) € By(T,w), by definition of By(T,w), it
follows that ||¢(t, T, w, go(w))||2 < M(w) + |z(6iw)| = 11 (w).
Applying Gronwall’s Lemma to [t, 7], to arrive to (97).

(¢, 7,0, go(w)) [ < Mo(w).
The proof is completed O

Lemma 5. Assume that (88) hold, let $o = (y1(x,T),y1:(x,T) + oy1(x,7),71((x,7),5)) ") € BT ER,w € Q,B €
Dand §(t,w) = (y1(t),y2(t), 1L (t,5)) " satisfies the system of (91), where B is bounded non-random subset of E, there
exists o5(w) > 0and Ms(w) > 0 such that.

1@(t, 7,0 1w, §o) |2 < M2(w)e 2%@=T) 1yt > 7, (104)

Proof. Let ¢ = (y1,y2,71)" = (y1,y1t +0y1,71) " be solution of (91). By (88) and Sobolev embedding relation
HY(R") — L(R") < L2(R"), there exists 7(w) > 0 and &(w), such that, we get that

F(y1) >0, fily1)y1 20, VyeR xeR,
0<F(n)= / Fi(y1)dx

< Cs(lya | + ) (105)
< 7(@) Iy By

0 = _

oy Pl <ol vizo

Togethers with (88),, (105) and (99)-(101), from (98) yields

d . . - B ~ Jg(w) _ ~
191 +2R0) + 20l gl + H 2R ) 2 0, (106)
whereas 05(w) = min [(T(w), ;((z))} :

By using the Gronwall’s Lemma, to arrive the following result
19t 7,010, @) [ < M(ew)e 23Tt > 7.

Then, the proof is completed [
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Lemma 6. Under conditions (6)-(12) and (88)-(90) hold. Let B1(t,w) C By(t,w) and By = {B1(T,w) }weq € D(E)
and P(t,w) € By(T,w). There exists T, = Tp(By,T,w,) > 0 and a random radius 7(7T,w), such that the solution

P(t, T, w, Po(w)) of (95)-(96) satisfies for P-a.e w € Q, V> T
19 (8,7, 010, Y0 (0-10)) [ < Ilo(6-10)|Pe > +ra(w) < H(r,w),t > .
to denote that 15
v=min{;, 22T}, Yo <y <4

Proof. According to (57), (97), and ¢ = ¢ — @, there exists a random variable p(w) > 0, such as

max { ||y (t, 7, 010, o (0-tc))IIF, Il (8,7, 010, o (6-1c0)) I} } < 0 (cw).

Multiplying (96) by A2V, (r) and integrating over R”, to achieve that

3 3 1470l = 614"yl +aHA "o 8 (90, 42)
(B~ a8) (Aps, A*2) + [ 1(5) (Ana(s), A% 2) ds

+ (f(u) = fi(1), A% )
= (20ez(Orw) — we(Az(Orw), A2 y) + (g(x,t), AV y),

to deal with each term in (109) one by one, to conclude the following inequalities.

1d é 1
(1, 4292) < 5 ZIA" B2 + S 1A 1|2 = S 1elA72(000)

1d 1 1 1
(Apr, 4242) < 2 TNA |2 + 2| A2 |2 = S JeA (o) 2

by second Eq. (4), (7)-(8), to conclude that
" u(s) (Amas), 47 >**IIAV ()21 + 214" 72(5) 2
, P (Amn(s), P2 ) ds 12(8) 1 + 5 1A 72(8) 1,1
g 2 282 a0,
from (88)and the Cauchy-Schwartz inequality and the Young inequality, straightforward to show that
(2562(9tw) - ocsAz(Gtw),Az”l/J2>

7

2
< 26 |4 2(010) P + § | AVl — §lef? |47+ Ez(0w)| — §

‘ 2

(s(0,0), 4% < o A" (O 4+ 2 [ A"l

From (9), (89)-(90) and the Young inequality, it is to deduce that

(f( )= fi(y), 2]/1/’2) = (f( ) — fi(y), A% (p1; + 6y _gz(gtw)))
= & S (f (1) = f1(9)) A% 9rdx 46 fi (f (1) — f( ) A prdx
_fRn(f/(u) f{(]/)]/t)szlpldx_EfRn(f — fly ))AZV 2(6yw)dx
= i Jeo (F(0) = fi(y) A + 5 o, (F(u) — () A% i
= S (1) = 1)) ue + () 1e + f3(u)ue) Ay dx
—¢ Jpu (f (1) = f1(y)) A?z(Orw)dx,

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)
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hence to get the following inequalities

L 00 = )l A% dx < 7 [ /(4000 =)l = yllon]| A | dx

<eo ([ @ wlyax) ([ i) ©

1+4v

X / |A2V¢|ﬁdx N / |u|%dx i
JRr ! Jra (116)

<o (T4 [l + I3 ) Il o 1A%l o el

L1+4

< c1o (1+ | VulP + | Vy]?) ”1/’1””_% 1A%l s, el

53
< enMi(t, T, 0h0) + S AT 2,

where 6 € (0,1), after using the embedding theorem to get that H; — L® and H; 5, = D(A 2 ) LTw

5—4v

6
/R" fﬁ(u)utAhlpldx < c1o /R" (T4 |u|") | ‘Ahlpl‘ dx < cy3 (/Rn(l + |u|7)564vdx>

X (fR"

1+4v

| dx) ()’

(117)
< (1417 gy ) 4] s, < st 1907 4" 4
< cigM2 (tTGtw fHAHml/)l‘z,
and
L A@euA? iz < ey [ (14 1) pul [ 4% | ax
< et (foo 1+ Iy ) (Jeo 4295 ax) (el ) (118)
< cao (14 Iylite) A% pull o lnll o < en(+[991%) A%l + & 4"

where to have employed the inequality 1 < 1and < 6, and exploited the embedding H; — L® and

Hl ZV—D(

1+4

) s L1+41/

() = F1(), A% (e2(010)) ) < carle] [42'2(00)| [ | 1f' -+ 0 = )] |l

4 4v
< C22|€| ’AZVZ (GtCU)| (fRn(l + |1/l‘4 + |}/|4)%dx) ’ X (f]Rn Wﬁ'ﬁdx) ’ (119)
< colel 422 @) | (14 |Vl + 1 9911) Il o
< o2 [Ms (7, 010) + |e|*|AV2(00) |*] + & || A2y ||

Thus, by putting (110)-(119) into (109), to obtain that

1d 142v 2
57 <||AV¢2||2 +8% | Apr|* + (B — o) HAT%H + AV 2)l7 ) + f(w) fl(y))

1+2v 2
; (||AV¢2||2 + 2 AV |2+ (B — s — 2% | ATy |

(45—3aA
ol A2 5 + bew (F(1) = f1(y)) + 55 |AVg(x, B)F + L300 || Avyy |2
< co5[1+ My (t T,0:w0) + M3 (t,7,0:w) + M3 (t, T, 0pw)
+el*| AVz(01)[* + [e]2| A2 (0r0)  + [e[2] AV HEz(0rw) 2,

(120)

let
D = | A > + 82| A1 ||> + (B — af)

PP+ Al + () = ()



Open J. Math. Sci. 2024, 8, 82-105 99

Then
1
E%G + 0@ < op5[1 + My (1,7, 0:0) + M3 (1,7, 010) + M3 (£, T, 6:0) 121)
+He[H AVZ(8rw)[* + [e2| AVz(B1w) 2 + [e2| AV z(B0) ),
where cp5 depends on c11, 16, €20, €24, %, 22, (B —wd — 2"%,0‘5), g.
Applying Gronwall’s Lemma over [T , t] and replacing w to 0_;w, to find that, forall t > 0,
l9(t, 7, 6-1c0, o (6-10)) I} < B2, T, 010, Bo(61t0))I 122)
< 2= || @ (0_sw) |2 + [2, Talr — t,6,_sw)e2~dr,
where 0, depends on [g,a, ocm, (26 — 3“2% )] and
Io(r—t,0,1w) = co5[1+ My (r — t,7,0,—1w) + M? (r—t,7,0—1w) (123)
FM; (r— 7,0, 1w) + |e]*| AVZ(0,_pw) |* + |e[2| AVz2(60, 1) |? + e[| AV T 22(6,w) |2
Similar to (119), it is easy to show
(f(u) = f1(y), A1) < c26 /Rn (If" (u+ 6 — ) ) — yl| A> 9y |dx
1-4v 1+4v (124)

4 1-4v
< o7 (o (1 + ul* 1y 8dx) * x (Jun (1|77 dx) ° (o |42 T ax) °
< My (1,7, 60) + &4 21 |2,

similar to (56)-(57), we can attain

[9(t, T, 01w, Yo(0-1w))|[3 < B(t,T, 01w, Do (0—1w)) ||
< 20 || @ (0_4) |3 + [, Ta(r — t,6,w)e 2 dr < F(T,w).

the proof is completed. [J

Lemma 7. (see [27] Lemma 4.3) Under condition (6)-(12),(88)-(90). Let ¢ be solution of equation (29)-(30) with initial
data Y-, then for any B > 0, there exists a random variable Cg(w) and Mg (T, w) such that

U=y +wp.
where Y1, w, satisfies as following
1A w0y |> < My(t, ), VT <7 <t (125)
T
LIV () Pdr < B(ry = 12) + Cplw), Ve < m < <, (126)
n

whereas a random variable Mg (T, w) (independent of t) and Cg(w) (independent of t and T) now to establish asymptotic
reqularity by using the technique in [2,4,27].

Lemma 8. Under conditions (9)-(12) and (88)-(90) hold. Let B,(T,w) C By (T, w) and {B, = {By(T,w)}weq €
D(EY) and ¢(7,w) € By(T,w). There exists a random variable time T, = T,(B1, T,w) > 0 and a tempered random
variable M, (T, w) such that for every t > 0, the solution (t, T,0_sw, Po(6—¢w)) of (95)-(96) satisfies for P-a.e w €
Q,¥t>T, M> M, o(0_1w) € {Bu(T,0_w),

1A (2, 7,610, 0 (6-10)) [ < lp(0)|Pe 70 4 13(w) < My(r,w) 1> .
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Proof. After simple computation and combining (110)-(119) with (109), to obtain the following equation

%%(HA”%HZ+52||A“¢1\|2+( — a8)[|ATE gy |2+ | A2 + (F(u) — 1))
HS (Al + 82 Ay > + (B — a8 — 20 ) | ATE gy |2 )+U||A"772H +(f(u) — fiy))

< & (114780 D)2+ 20el? (414" 22(010) 2 + | AV E2(81c0) |2 + | AV2( (6rc0)| )12)] (127)
+ Jge (( ) f1)) ue + ()1 + f5(u )Mt) Az”l/Jldx
— fo (F(0) = Fi(y)) A% 2(0pc0)dx + 520 || vy, |2,

1-2v

applying Lemma 7 and embedding theorem Hj(R") < L®(R") and Hy_5, = D(A 2
that

6
) — LT+, to deduce

L (A0 = ) Ay < cas [ (/(u+ 0 =) [u =yl sl [ 42 g1 | d
< 29 Ju (1P + [y[?) [pr] [AZ ¢ | | dx
<30 Jpn (T |y2 PP+ [w01P + [y[?) [91] A2 1] Jus|dx

(1-4v)
3 _6_ 6
<on <1+|y1||L6+ Jo (1r| =) 4 ylIBe ) A9l o Jl 4254

6
L14

1+
wi|?) A" i,

(128)

6
L1+4v
1+21/

< $14" 112, + caMs (r, 7, 01c0) (1| Ty |2 + | A

1+4v

+
6
1+4v 6
(4] dx

1
3 " 6
/ F)u A% prdx < ca3 / (L4 u]7) e [ A% 1 |dx < caq </ (1+ |”7)6dx> (/ ’AZV
Rn JR" JR? R
1 v
X (fi [1e19) ® < 55 (14| Vu] ) [ Vuel] || A" 1| < cseM] (1,7, 00) || 477

(129)
whereas 6 € (0,1) depends on ¢, and the following inequality is similar to (128), we have
/Rn AW A* prdx < cz7 /Rn (1 + |y|4> ‘lPuHAzV% dx
4 1+4v
6 6 _6 6
< ca <fR" (1+yl*)* d ) (fRn | Ay T dx)
1-4v
N (130)
< (o 92l ™ dx) © <o (14 ylide) el o 42 1]] o
1+21/
< cao (1+VyIP) (IAvg2 ] +0) A"
B 2 &6 11 Av B 2
<ea(@) VY [AF g + L1l +cnlw) [AF 0|
and
(F00) = i), eA® 0w ) i [ (14 [t + 191¥) Il o] | A2(000) | 131
< cas(w) |e]? |A2(6:0) > + ME (r, T, 610) ,
similar to (128), using Cauchy inequality and the embedding theorem, to get
(F60) = i), A% 91) s [, (1F e+ 0u =) [l 427pa | ax
< cao Sy (U + o) [on] [A%gafax
4(5—-4v
6\ 6 i (132)
<y [ 1+ lyallfs + (fRn |wq [465-4) dx) + ||v||i6> x| ‘ Vil e

+21/

< ca(@) A1 + cao (W) M7 (1,7, 000) % ([|Vya2+ A" wl|\2)||A ¢1||2
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.2
let @ = || AVipo |2 + 82| A1 ]2 + (B — ad) HA%%H + ||AV772||’24,1 + (f(u) — fi(y)). Then, it is concluded that

330+ 3 (140l + 2IAIE 46— a0 = 22| 4™ 2 + oAy + 28700~ ()
< LR (|AV2Z(6iw0) 2 + & AT 2z(6,w) |2 + | AV T 2z(Byw) 2
+|A472(810) ) e 0.0) x (IVyll? + )14 *”w1|\2) A g2 + 411 A7 12,
+e36M] (1,7, 0r0) (@) 9y |4
+4 || A2 + e () ¢1]\+Mg R 0w) 4 calel2|A2(0,0) P+ (205 — 252) +8)[ 4V 2] 2,

(133)
it could be rewritten that

d
S0 +2p0 < cso(w )[|s|2 (|Av+%z(etw)|2+|sz(etw)|2) +M§(r,f,erw)} + e (w)Ms(r, T, By

1+2v 1+1/
x (IVor]? + A" w1 |2) |45 g |2
1+2v 14+2v 142v
+ep(w HA E 1/’1“ + czg(w) MY (1, T, 6,w) HA E 1P1H + cq1(w)|| Vo2 HA Ea ’ ,
(134)
whereas p = {g,a, cmd, (36 — 3“4% ), "Z—"}
Applying Gronwall’s Lemma over [, t], to show that, for all t > T,
[ (t, 7,01, Po(0—1w))|E < B(t,T,0- 1w, xo(8—1w)) | < ™77 || @ (6_4w)||3 (135)
+ fTO_t T3(r —t,0_,w)e™—Ddr,
where
T(r = t,w) = cso(@) [[ef? (| A7 22(6,1w) 2 + |A"2(8 1) [2) + M3(r — 1,7, 8- 10) | (136)
and
02 (r) = p = |Vor1 (r, 7,0, o (6—,w)) ||* = ¢51(w) |V (7, 7,00, o (6—,w)) |2
Forr > ry > r1 > 7, from (97) and (125)-(126), to get
r _ gy) 2
[ e = [ (p(r) = 11V01 (7,7, 0-r0,90(6-10)) |
" a1
—c51(w) | Vo (1, 7, 00, Yo (6—r0)) |*) dr (137)
> p(rp —r1) — cp(w) — csp(w)ry (w) f:lz e (r=t)dr
> p(rp —r1) — Mo(w).
Thus, from (115)-(116), (135) and (137), to reach
||¢(frT/9—tw/¢o(9—tW))|I% % 1a(t, 7, 94w,xo(?7tw))\l%
< (=7 || @ (0_sw) 12 + Jo_ Ta(r—t, 0,_1w)e2(r=tdy (138)

< 211G (0_sw) |12 + fBOO T3(r —t,0,_sw)e20—Ddr
< M, (T, w).

Since that fi)oo T3(r — t,0,_1w)e®2=Ddr = r3(w). The proof is completed. []

Lemma 9. Under conditions f,g, f1, (3)-(12) and (88)-(89) satisfy. For each v < x < 1 and let B,(T,w) C Bi(T,w)
and By = {Bx(T,w) }weq € D(Ex). Then there exist Ty (T, w, Bx) and tempered variable My (w) > 0 such that, the
solution P(t, w, Pr(w)) of (91) satisfies for P-a.e w € QO, ¥Vt > 0,

[$(t, T,0-1w, Bx(0—tw))|lg, < My(w) ,t > Tx. (139)
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Lemma 10. Under conditions f,g, f1, (6)-(12) and (88)-(89)satisfy. For any x € [v,1 — v, if initial condition set
B (t,w) € Byi(t,w) and{Byx = {Bx (T, w) }weq € D(Ex), such that for P-a.ew € Q, V't >0,

[(t, 7,010, Bx(0-1w))[|ex = [|p(t, T, 010, B (0-1w)) || prsv + (|92 (E, T, 010, B (0—1))[| presva
S ]K(T/ (U)

whereas the positive random variable depends only on the E,-bound of By.
Proof. From, Lemma 7 and using (116)-(124), to conclude directly the above result. The proof is completed. [

6. Random Attractors

In this section, to prove the existence of a D-random attractor for the random dynamical system ®
associated with the stochastic wave equations (14)-(15) on R". It follows from Lemma 2, that ® has a closed
random absorbing set in D, then apply Lemmas in section4, it is proved the existence of a random attractor by
using tail estimates and the decompose technique of solutions. which along with the D-pullback asymptotic
compactness (see[3,15,19,25,28] ). Let that for every T € R,w € ),t > 0, then to get that

w(t, T,0_ 1w, 0_tw)) —w(t—s,T,0_ 115w, 0_tisw)), s <t,
lt, 7,01, 0 (0-0),9) = { X0 T OOl s (@) (140)
w(t, T,0_1w, po(0_1w)), t <s;

we(t—5,7T,0-t4sw, po(0—t+sw)), 0 <s < t,

t,T,0_tw, 6_ = 141
2,s(t, T, 0w, o (0—tw)) {0, <. (141)

Lemma 11. Let E, = Hp,,1 X Hp, X Li(R*, Hyyy1) < L%(R*, Hp,y1) is projection operator, setting Y =
Y(t, By(t,w)) is a random bounded absorbing set from Lemma 8, (t) is the solution operators of (95)-(96) and under
the assumption of and Lemma 7, there is a positive random

1 Y is bounded in Li(R+/Hl+2v) N H; (RT, Hy,),

2 sup ln(s)|%y < Mu(w).
neY,seR+

(142)

Denote by B, the closed ball of Hy 5, X Hp, of random variable radius M, (tw), since to apply on a finite
domain. By is compact subset of Hy 2, X Hp,. Then to since that a set B, (T, w)

By(t,w) = Uzpo(e,,w)eBl((Ltw)Utzorlz(t’ T,0_1w, go(0_1w),s) s e RT T e R, w e Q, (143)
whereas v is as in (113). Thus, using (3) and (142), to get that

00 “+oc0
2= [T IS < My w) [ s < M),
T

T

[[7(s) (144)

To obtain our main result about the existence of a random attractor for Random Dynamical System ® as
following Lemma

Lemma 12. Let ¢(t, T, w) be solution of system (95)-(96) and the assumption of Lemma 8 hold, then forany T € R, w €
Q,t > 0, There exists a random set B, (t,w) € D(E,) with

1By(t,w)lle, = sup [1pllg < Ms(t,w)
PeB, (tw)

is relatively compact in E. Now to show the following attraction property of A(t,w), for every B(t,0_w) € D(E), if
there exist a Positive number o and a tempered random variable Q(w) > 0, such that for any T € R,w € Q, it holds
that

dy(®(t, 7,0 1w, B1(T,0_1w)), By(T,w)) < Q(w)e™ ™ — 0, as t — +oo (145)

Proof. consider ¢y(6_tw) € By(T,0_tw) and using (140)-(142) and Lemma 8 it shows that B, (T, w) is relatively
compact in Lfl(]R*, H;) and consequently in Li(R*, Hy), let B, (t,w) C E, C E be closed ball of E, of radius
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M, (7, w) defined by (67), where v is as in (108). Finally making compact set A(r,w) = B, x B, C E, then by
Lemma 2 and ¢ (6_;w) € By(T,0_tw), there exist a random set M(t,w) € By C B(t,w) € D(E), to conclude
the following

dp (®(t,7,0-1w, B(T,0-1w)), Bo(T,w)) < M(T,w)e™ " — 0, ast — +oo. (146)

in addition, it follows from Lemma 5 to ¢o(6_;w) € B1(T,0_;w) there exists a random set M;(7,w) > 0 such
that My € B1(7,w) € D(E), to get that

dy(®(t,7,0_sw,B(T,0_1w)),Bi(T,w)) < Ms(T,w)e " — 0, ast — +oo, (147)

Next, by using Lemma 8 and (108) to ¢o(6—tw) € By(T,0_tw), there exists T, (7, w, By) and a random set
M, (w) such that M, (w) € B,(7,w) C Bi(t,w) € D(E,), so we get that

dy(®(t,7,0_w, B (T,w)), By(T,0_1w)) < My(w)(T,w)e” " =0, ast — +oo. (148)

Since x > 0 is fixed, by Lemma 9, there exists Ty (T, w, Bx) and a random set My (7, w) such that My (7,w) €
B(t,w) € D(E,) and

dy(®(t,T,0_w, B1(T,0-1w)), Be(T,w)) < My(T,w)e %" — 0, ast — +oo. (149)
by Lemma 10 and Lemma 11 and (140)-(142), M, (w) such that M, (w) € Bi(t,w) € D(E), to get that
dy(®(t,T,0_sw, By (T,0_1w)), Bx(T,w)) < My(w)e %" — 0, as t — +oo. (150)
Then by using (146)-(150) and Lemma 11, to assume that.
A(t,w) = By(t,w) x Be(T,w), (151)
from Lemma 3 there exists T = T(t,w, B) > 0, then to dedicate the following attraction property
¢(t,7,0_tw,B(t,0_1w)) C By(T,w),Vt > T.

Supposet > Tand T =t—T > T(t,w, By) > 0 using cocycle property (iii) of ®, to show that

o(t,7,0_1w,B(T,0-1w)) = @(T,T—t,0_rw, B(T — t,0_7w))
qo(tT—T T,0_tw,B(t—f— TG w))

go(T T-T,(0-w),(t—T ~T,0_rw,B(t—T-T,0_:w))
(T, w)

T —
—T,0_+w,By(0_+w)) CB (T,G,Tw).

(152)

c

Take any ¢(t, T, (0—tw), po(6—tw)) € @(t,T,0_4w, B(T,0_1w)), for t > T + T(t,w, By), whereas ¢o(0_;w) €
B(t — t,0_4w). Due to Lemmas2,5,8 and (152) it is decided that

Pt T, (0-10), 9o(6—1w) = (9(t, T, (6-1w), po(0—1w)) — §(£, T, (6-1w), Yo (0-1w))) € A(T, w). (153)

Then, by using Lemma 5, to conclude that

_inf |g(t, 7,610, 9o (6-1w)) — (£, T, -1, po(6-1w)) |1}
PpeA(tw) (154)

< ||¢(t, T, 0—tw, Po(0—tw)) |2 < M3 (w)e %!, Vt > F+ T(T,w, By).
Thus there holds
dy(®(t, T,0-4w, B(T,0-1w)), A(T,w)) < Ms(w)e %" — 0ast — +oo. (155)
Then, the proof is completed. [

Theorem 2. Let that(6)-(12)and h; € H?(R™) hold. There is a continuous cocycle ® associated with problem (24), has
a unique D-pullback attractor A(t,w) C A(t,w) N By(w), A(T,w) € Din R",
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Proof. To follow from Lemma 1, Lemma 2, Lemma 3, (108), (137), Lemma 11 and Lemma 12, the random
dynamical system @ associated with (24) possesses a D-pullback random attractor A(t, w) C A(t,w) N By(w).
The proof is completed. O
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