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Abstract: The aim of this work is to present an efficient modification of the Adomian Decomposition Method
(ADM) for solving third-order ordinary differential equations with constant coefficients. The proposed
approach is applicable to both linear and nonlinear problems. To demonstrate the effectiveness of the method,
several examples are provided, showcasing its capability to handle both linear and nonlinear ordinary
differential equations.
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1. Introduction

T he laws of physics are often expressed in the form of differential equations, which makes them
fundamental to virtually all branches of science and engineering. Mathematics serves as the universal

language of science, and within this language, differential equations play a central role in modeling and solving
real-world problems [1]. Ordinary differential equations (ODEs) are a class of differential equations where the
unknowns are functions of a single variable. These equations are widely used, particularly in the study of
dynamical systems and electrical networks.

In many fluid mechanics problems, differential equations are nonlinear and complex, compounded by
naturally varying flow geometries. Despite these challenges, solving such equations provides significant
insight and opens pathways to technological innovation and modernization [2].

Third-order differential equations arise in various fields of applied mathematics and physics, such as
modeling deflections in beams, three-layer structures, electromagnetic waves, and gravity-driven flows [3].
Recently, there has been growing interest in third-order boundary value problems (BVPs). For instance, [4,5]
explored several cases of third-order BVPs, while [6–9] focused on three-point third-order problems. In 2020,
J.O. Kuboye and collaborators developed hybrid numerical models to solve third-order ordinary differential
equations directly [10]. Similarly, [11] investigated solutions to third-order ODEs using Riccati equations, and
[12] proposed a novel Falkner-type method for solving third-order ODEs. This method utilizes configuration
and interpolation techniques and is implemented in block mode while approximating values at grid points.

More recently, M.K. Duromla and others introduced a linear hybrid multistep block method for
numerically integrating third-order ODEs, particularly initial value problems (IVPs) [13]. Nonlinear
phenomena, significant in various branches of science and technology, present additional challenges for both
theoretical and numerical approaches. The pursuit of efficient and accurate methods for solving such nonlinear
models has gained considerable attention.

One prominent technique in this domain is the Adomian Decomposition Method (ADM), a
semi-analytical approach used for both linear and nonlinear equations [14]. ADM has been applied to various
problems, including boundary value problems, algebraic equations, and partial differential equations [15].
This method enables the accurate computation of series solutions with fast convergence and has become a
valuable tool in applied sciences. ADM has also been employed for solving third-order differential equations,
including singular initial value problems [16].
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Y.Q. Hsan studied the application of ADM to second-order ODEs with constant coefficients [17]. Building
on this foundation, the focus here will be on solving third-order ODEs with constant coefficients using the
Adomian Decomposition Method.

2. Adomian Decompostion Method

We study the third-order ordinary differential equation of the form:

y′′′ + (3n + 2m + k)y′′ + (3n2 + m2 + 4mn + 2nk + mk)y′ + (nm2 + 2mn2 + n3 + n2k + mnk)y = f (x, y), (1)

where m, k ̸= 0, and the initial conditions are given as y(0) = A, y′(0) = B, and y′′(0) = C. Here, f (x, y) is a
nonlinear function, g(x) is a given function, and A, B, C, n, k, m are constants.

The purpose of this study is to introduce a new differential operator to analyze Eq. (1). The operator is
defined as:

L(.) = e−nx d
dx

e−mx d
dx

e−kx d
dx

e(n+m+k)x(.), (2)

allowing us to rewrite Eq. (1) as:
Ly = g(x) + f (x, y), (3)

where the inverse operator is defined as:

L−1(.) = e−(n+m+k)x
∫ x

0
ekx

∫ x

0
emx

∫ x

0
enx(.). (4)

By applying the inverse operator to both sides of Eq. (3), we have:

L−1Ly = L−1g(x)− L−1 f (x, y). (5)

This yields:
y(x) = ϕ(x) + L−1g(x) + L−1 f (x, y), (6)

where:
ϕ(x) = y(0) + xy′(0). (7)

The constants y(0) and y′(0) are determined from the initial conditions.
The Adomian decomposition method (ADM) is employed to express the solution y(x) and the nonlinear

function f (x, y) as infinite series:

y(x) =
∞

∑
n=0

yn(x), (8)

f (x, y) =
∞

∑
n=0

An(x), (9)

where the components yn(x) are determined iteratively. See [18–20] for specific algorithms to compute
Adomian polynomials. The algorithm is outlined as follows:

A0 = F(y0),

A1 = y1F′(y0),
...

Thus, we have:
∞

∑
n=0

yn(x) = ϕ(x) + L−1
∞

∑
n=0

An(x), (10)

and the components yn can be obtained as:

y0 = ϕ(x) + L−1 f (x, y),

yn+1 = L−1 An, n ≥ 0.
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For example:

y0 = ϕ(x) + L−1 f (x, y),

y1 = L−1 A0,

y2 = L−1 A1,

y3 = L−1 A2.

3. Numerical Illustrations

This section demonstrates the numerical application of ADM to solve the differential equation under
study. The validity of the solutions is verified through comparison with exact solutions.

Example 1. Consider the differential equation:

y′′′ + 7y′′ + 14y′ + 8y = 30ex − x + ln(y), (11)

with initial conditions y(0) = y′(0) = y′′(0) = 1. Comparing Eq. (9) with Eq. (1), we identify n = m = 1 and
k = 2. The differential operator is then:

L(.) = e−x d
dx

e−x d
dx

e−2x d
dx

e4x(.). (12)

The inverse operator is given as:

L−1(.) = e−4x
∫ x

0
e2x

∫ x

0
ex

∫ x

0
ex(.). (13)

The solution becomes:
y = ϕ(x) + L−1(30ex − x) + L−1(ln(y)), (14)

where:
ϕ(x) = 5e−x + e−4x − 5e−2x. (15)

The first approximation is:
y0(x) = ϕ(x) + L−1(30ex − x), (16)

yielding:

y0 = 1 + x +
x2

2
+

x3

6
+

5x4

2
− 43x5

30
+

583x6

360
− 317x7

420
. (17)

The nonlinear terms are:

y1 =
x4

24
− 7x5

120
+

7x6

144
− 2x7

105
,

y2 =
x7

5040
− 19x8

40320
+

211x9

362880
− 871x10

1814400
.

The solution is:
y = y0 + y1 + y2, (18)

resulting in:

y = 1 + x +
x2

2
+

x3

6
+

61x4

24
− 179x5

120
+

1201x6

720
− 557x7

720
− 19x8

40320
+

211x9

362880
− 871x10

1814400
. (19)

Example 2. Consider the equation

y′′′ + 6y′′ + 11y′ + 6y = 6x2 + 22x + 12 − x4 + y2 (20)

y(0) = y′(0) = 0, y′′(0) = 2.
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Table 1. The comparison between exact solution y(x) = ex and ADM

x Exact ADM Absolut error
0.0 1 1 0
0.1 1.10517 1.10541 0.00036
0.2 1.2214 1.22502 0.00362
0.3 1.34986 1.36751 0.01765
0.4 1.49182 1.54602 0.0542
0.5 1.64872 1.77809 0.12937

——– Exact ——– ADM

Figure 1. The exact solution y = ex and the ADM solution y = ∑2
n=0 yn(x).

By comparing between Eq. (1) and Eq. (14), we get n = m = k = 1 and we get the operator as,

L(y) = 6x2 + 22x + 12 − x4 + y2,

where the operator is as in Figure 1

L(.) = e−x d
dx

e−x d
dx

e−x d
dx

e3x(.)

we use L−1 for it and get,
y = ϕ(x) + L−1(6x2 + 22x + 12 − x4 + y2),

where the inverse operator is as follows,

L−1(.) = e−3x
∫ x

0
ex

∫ x

0
ex

∫ x

0
ex(.)

and
ϕ(x) = e−x + e−3x − 2e−2x.

Then value number one for y is

y0(x) = ϕ(x) + L−1(6x2 + 22x + 12 − x4),

y0 = x2 − x7

210
+

x8

280
− 5x9

3024
+

x10

1680
, (21)

and the nonlinear part is
yn+1 = L−1(An), n ≥ 0,

y1 =
x7

210
− x8

280
+

5x9

3024
− x10

1680
(22)

y2 =
x12

138600
− 3x13

400400
+

x14

360360
− 37x15

50450400
. (23)

then,
y = y0 + y1 + y2

y = x2 +
x12

138600
− 3x13

400400
+

x14

360360
− 37x15

50450400
. (24)
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Table 2. The comparison between exact solution y(x) = x2 and ADM

x Exact ADM Absolute error
0.0 0 0 0
0.1 1.01 1.01 0.00
0.2 0.04 0.04 0.00
0.3 0.09 0.09 0.00
0.4 0.16 0.16 0.00
0.5 0.25 0.25 0.00
0.6 0.36 0.36 0.00
0.7 0.49 0.49 0.00
0.8 0.64 0.64 0.00
0.9 0.81 0.81 0.00
1 1 1.000001764 0.000001764

1.5 2.25 2.24997 0.00003
2 4 3.9896078 0.0103922

2.5 6.25 5.991432 0.33568

——– Exact ——– ADM

Figure 2. The exact solution y = x2 and the ADM solution y = ∑2
n=0 yn(x)

Example 3. Consider the following nonlinear differential equation:

y′′′ + 12y′′ + 44y′ + 48y = 48(x + 1) + 44 − (x + 1)3 + y3, (25)

with initial conditions:
y(0) = 1, y′(0) = 1, y′′(0) = 0.

Using Eqs. (1) and (19), we find n = m = k = 2. Substituting these values, Eq. (19) is re-written as:

L(y) = 48(x + 1) + 44 − (x + 1)3 + y3,

where the operator L(.) is defined as:

L(.) = e−2x d
dx

(
e−2x d

dx

(
e−2x d

dx
e6x(.)

))
.

Using the inverse operator L−1, we express the solution as:

y = ϕ(x) + L−1
(

48(x + 1) + 44 − (x + 1)3 + y3
)

,

where the inverse operator is given by:

L−1(.) = e−6x
∫ x

0
e2x

∫ x

0
e2x

∫ x

0
e2x(.) dx dx dx,

and
ϕ(x) =

17
4

e−2x − 5e−4x +
7
4

e−6x.
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The initial approximation for y is:

y0(x) = ϕ(x) + L−1
(

48(x + 1) + 44 − (x + 1)3
)

,

which simplifies to:

y0 = 1 + x − x3

6
+

3x4

8
− 7x5

12
+

27x6

40
− 199x7

315
. (26)

The nonlinear part is recursively computed as:

yn+1 = L−1(An), n ≥ 0.

For instance:

y1 =
x3

6
− 3x4

8
+

7x5

12
+

163x6

240
+

3223x7

5040
, (27)

y2 =
x6

240
− 13x7

1680
+

x8

120
− 779x9

120960
+

763x10

172800
. (28)

The solution is obtained as:
y = y0 + y1 + y2,

which simplifies to:

y = 1 + x +
x8

120
− 779x9

120960
+

763x10

172800
. (29)

Table 3. Comparison between the exact solution y(x) = 1 + x and the ADM solution, along with the absolute
errors

x Exact Solution ADM Solution Absolute Error
0.0 1.00000 1.00000 0.00000
0.1 1.10000 1.10000 0.00000
0.2 1.20000 1.20000 0.00000
0.3 1.30000 1.30000 0.00000
0.4 1.40000 1.40000 0.00000
0.5 1.50000 1.50002 0.00002
0.6 1.60000 1.60010 0.00010
0.7 1.70000 1.70035 0.00035
0.8 1.80000 1.80101 0.00101
0.9 1.90000 1.90263 0.00263
1.0 2.00000 2.01413 0.01413
1.2 2.20000 2.22994 0.02994
1.3 2.30000 2.36055 0.06055
1.4 2.40000 2.51764 0.11764
1.5 2.50000 2.72061 0.22061

——– Exact Solution ——– ADM Solution

Figure 3. The exact solution y = 1 + x and the ADM solution y = ∑2
n=0 yn(x)
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4. Conclusion

The Adomian Decomposition Method (ADM) is a powerful tool for solving various functional equations,
including ordinary differential equations, partial differential equations, and integral equations. This study
demonstrates the effectiveness of ADM in solving third-order ordinary differential equations with constant
coefficients. The results indicate that ADM provides accurate approximations for nonlinear differential
equations.

Author Contributions: All authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] Saeed, S., & Hassan, Y. Q. (2022). Use of Adomian decomposition method to find solution for Bessel’s equation. The
Scientific Journal University of Saba Region, 2(1), 1–10.

[2] Kundu, P. K., & Cohen, I. M. (2004). Fluid Mechanics (3rd ed.). Elsevier Academic Press.
[3] Somali, S., & Gokmen, G. (n.d.). Adomian decomposition method for nonlinear Sturm-Liouville problems. Surveys in

Mathematics and Its Applications, 2, 11–20.
[4] Anderson, D. R., & Davis, J. M. (2002). Multiple solutions and eigenvalues for third-order right focal boundary value

problems. Journal of Mathematical Analysis and Applications, 267, 135–157.
[5] Anderson, D. R. (2003). Green’s function for a third-order generalized right focal problem. Journal of Mathematical

Analysis and Applications, 288, 1–14.
[6] Feng, Y., & Liu, S. (2005). Solvability of a third-order two-point boundary value problem. Applied Mathematics Letters,

18, 1034–1040.
[7] Du, Z. J., Ge, W. G., & Lin, X. J. (2004). Existence of solutions for a class of third-order nonlinear boundary value

problems. Journal of Mathematical Analysis and Applications, 294, 104–112.
[8] Gregus, M. (1987). Third-order Linear Differential Equations. Reidel, Dordrecht.
[9] Hopkins, B., & Kosmatov, N. (2007). Third-order boundary value problems with sign-changing solutions. Nonlinear

Analysis, 67, 126–137.
[10] Kuboye, J. O., Quadri, O. F., & Elusakin, O. R. (2020). Solving third-order ordinary differential equations directly using

hybrid numerical models. Journal of the Nigerian Society of Physical Sciences, 2(2), 69–76.
[11] Varela, M. P. B., Bhuiyan, M. M., Marian, M. C., Tweneboah, O. K., & Asante, P. K. (2021). Solving third-order ordinary

differential equations by using Ricatti equations. Hawaii University International Conferences on Science.
[12] Nicholas, Y. (2023). Numerical approximation for direct solution of third-order ordinary differential equations using

new class of Falkner-type block method. Journal of Science, Technology, and Engineering, 3(1), 1–16.
[13] Duromola, M. K., Lawal, R. S., & Akinmoladun, O. M. (2024). Numerical integration of linear hybrid multistep block

methods for third-order ordinary differential equations (IVPs). Scientific African, 24, e02129.
[14] Khairiy, W., Ramli, H., Hamdan, N., Ruslan, N., Asri, N., Manaf, Z., Fauzi, F., & Mdnor, N. (2023). The solution of

third-order ordinary differential equations using Adomian decomposition method and variational iteration method.
Journal of Mathematics and Computing Science, 9, 67–75.

[15] Adomian, G. (1994). Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers.
[16] Hassan, Y. Q. (2012). The numerical solution of third-order boundary value problems by the modified decomposition

method. Advances in Intelligent Transportation Systems, 1, 71–74.
[17] Hassan, Y. Q., & Z., L. M. (2009). Solving second-order ordinary differential equations with constant coefficients by

Adomian decomposition method. Journal of Concrete and Applicable Mathematics, 7(4), 370–378.
[18] Qahtan, N. J., & Hassan, Y. Q. (2023). The new technique for solving third-order ordinary differential equations by

Adomian decomposition method. International Journal of Mathematics, Statistics, and Operations Research, 3, 155–163.
[19] Wazwaz, A. M. (1997). A First Course in Integral Equations. World Scientific.
[20] Wazwaz, A. M. (1999). A reliable modification of Adomian decomposition method. Applied Mathematics and

Computation, 102(1), 77–86.

© 2024 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Adomian Decompostion Method
	Numerical Illustrations
	Conclusion

