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1. Introduction

L et A denote the class of functions analytic in the unit disk U = {z ∈ C : |z| < 1}. Let Tp be the subclass
of A consisting of analytic p-valent functions f (z) of the form

f (z) = zp +
∞

∑
k=p+1

bkzk, p ∈ N. (1)

The class Tp is referred to as the class of p-valent functions. A function f (z) is called p-valent if it does not
assume any value more than p times within U.

Definition 1. Let p ∈ N, δ ∈ N \ {0}, and consider the function

f (z) = zp +
∞

∑
k=p+1

bkzk, p ∈ N.

We denote by Dδ
∗ f (z) the differential operator defined by

Dδ
∗ f (z) = D

(
Dδ−1 f (z)

)
= zp +

∞

∑
k=p+1

(
k
p

)δ

bkzk, p ∈ N, δ ∈ N \ {0}. (2)

Definition 2. For two functions s1 and s2, analytic in U, we say that the function s1(z) is subordinate to s2(z)
in U, denoted by s1(z) ≺ s2(z), if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and
|w(z)| < 1 for all z ∈ U, such that

s1(z) = s2(w(z)), z ∈ U.

Furthermore, if s2 is univalent in U, then the subordination s1(z) ≺ s2(z) is equivalent to

s1(0) = s2(0) and s1(U) ⊆ s2(U).
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Definition 3. Ajab et al. [1] introduced the class Sp(A, B, b, λ), utilizing the differential operator Dλ+p f (z).
This class consists of functions f (z) ∈ Sp satisfying

1 +
1
b

(
z
(

Dλ+p f (z)
)′

Dλ+p f (z)
− p

)
≺ 1 + Az

1 + Bz
, (3)

where ≺ denotes subordination, b is a nonzero complex number, and the parameters satisfy −1 ≤ B < A ≤ 1.
We note that:

1. S1(1,−1, b, 0) = C(b, 1), which was studied by Wiatrowski [2].
2. S1(A, B, b, 0) = C(A, B, b), which was studied by Ravichandran [3].

Motivated by the work of Ajab et al. [1], we define the following class Tp(A, B, b, n, α, δ).

Definition 4. Let Tp(A, B, b, n, α, δ) denote the class of functions f (z) that satisfy the condition

1 +
1
n

(
z
(

Dδ
∗ f (z)

)′
Dδ∗ f (z)

− p

)
≺ (1 − α)

1 + Az
1 + Bz

+ α, (4)

where ≺ denotes subordination, n is a positive real number, A and B are fixed real numbers with −1 ≤ B <

A ≤ 1, 0 ≤ α < 1, and z ∈ U.
The condition in Eq. (3) is equivalent to∣∣∣∣∣∣∣∣

z(Dδ
∗ f (z))

′

Dδ∗ f (z)
− p

n(A − B)(1 − α)− B
(

z(Dδ∗ f (z))
′

Dδ∗ f (z)
− p

)
∣∣∣∣∣∣∣∣ < 1. (5)

Remark 1. When δ = λ, n = b, and α = 0, the class Tp(A, B, b, n, α, δ) reduces to Sp(A, B, b, λ) as studied by
Ajab et al. [1]. Additionally, by varying the parameters A, B, n, δ, and α, we obtain the subclasses C(b, 1) and
C(A, B, b), which were studied by Ravichandran [3] and Wiatrowski [2], respectively. In this work, we discuss
coefficient estimates, distortion and growth properties, the radius of starlikeness of the class Tp(A, B, b, n, α, δ),
and derive the integral transforms of the class.

2. Coefficient Estimates

Theorem 1. A function defined by Eq. (1) belongs to the class Tp(A, B, n, δ, α) if and only if

∞
∑

k=p+1
[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ
bk

n(A − B)(1 − α)
≤ 1. (6)

Proof. Assume that f (z) ∈ Tp(A, B, n, δ, α). By the definition of subordination, Eq. (4) can be expressed as

1 +
1
n

(
z(Dδ

∗ f (z))′

Dδ∗ f (z)
− p

)
= (1 − α)

1 + Aw(z)
1 + Bw(z)

+ α, (7)

where |w(z)| < 1 and w(0) = 0.
From Eq. (7), we derive

z(Dδ
∗ f (z))′

Dδ∗ f (z)
− p =

n(A − B)(1 − α)w(z)
1 + Bw(z)

. (8)

Expanding and rearranging Eq. (8), we obtain

z(Dδ
∗ f (z))′

Dδ∗ f (z)
− p =

[
n(A − B)(1 − α)− B

(
z(Dδ

∗ f (z))′

Dδ∗ f (z)
− p

)]
w(z). (9)
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Substituting the differential operator Dδ f (z) defined by Eq. (2) into Eq. (9), we have

pzp +
∞
∑

k=p+1
k
(

k
p

)δ
bkzk

zp +
∞
∑

k=p+1

(
k
p

)δ
bkzk

− p =

n(A − B)(1 − α)− B


pzp +

∞
∑

k=p+1
k
(

k
p

)δ
bkzk

zp +
∞
∑

k=p+1

(
k
p

)δ
bkzk

− p


w(z).

This simplifies to

∞

∑
k=p+1

(k − p)
(

k
p

)δ

bkzk−p =

[
n(A − B)(1 − α)−

∞

∑
k=p+1

(B(k − p)− n(A − B)(1 − α))

(
k
p

)δ

bkzk−p

]
w(z).

(10)
Given that |w(z)| < 1, from Eq. (10) it follows that

|w(z)| =

∣∣∣∣∣∣∣∣∣
∞
∑

k=p+1
(k − p)

(
k
p

)δ
bkzk−p

n(A − B)(1 − α)−
∞
∑

k=p+1
(B(k − p)− n(A − B)(1 − α))

(
k
p

)δ
bkzk−p

∣∣∣∣∣∣∣∣∣ < 1.

Since ℜ(z) ≤ |z| for all z, it follows that

ℜ


∞
∑

k=p+1
(k − p)

(
k
p

)δ
bkzk−p

n(A − B)(1 − α)−
∞
∑

k=p+1
(B(k − p)− n(A − B)(1 − α))

(
k
p

)δ
bkzk−p

 ≤ 1.

Taking the limit as z → 1− along the real axis and clearing the denominator, we obtain

∞

∑
k=p+1

[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ

bk ≤ n(A − B)(1 − α).

Therefore, the inequality (6) holds:

∞
∑

k=p+1
[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ
bk

n(A − B)(1 − α)
≤ 1.

Conversely, assume that inequality (6) is satisfied. Then, from Eq. (4), we have∣∣∣∣z (Dδ
∗ f (z)

)′
− pDδ

∗ f (z)
∣∣∣∣− ∣∣∣∣Dδ

∗ f (z) [n(A − B)(1 − α)]− B
[

z
(

Dδ
∗ f (z)

)′
− pDδ

∗ f (z)
]∣∣∣∣ < 0, (11)

provided that∣∣∣∣∣ ∞

∑
k=p+1

(k − p)
(

k
p

)δ

bkzk−p

∣∣∣∣∣−
∣∣∣∣∣n(A − B)(1 − α)−

∞

∑
k=p+1

(B(k − p)− n(A − B)(1 − α))

(
k
p

)δ

bkzk−p

∣∣∣∣∣ < 0.

(12)
For |z| = r < 1, the left-hand side of inequality (12) is bounded above by

∞

∑
k=p+1

(k − p)
(

k
p

)δ

bkrk−p − n(A − B)(1 − α)−
∞

∑
k=p+1

[B(k − p)− n(A − B)(1 − α)]

(
k
p

)δ

bkrk−p.

This expression is less than

∞

∑
k=p+1

[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ

bk − n(A − B)(1 − α) ≤ 0.
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Hence, f (z) ∈ Tp(A, B, n, δ, α). This completes the proof of Theorem 1.

3. Growth and Distortion Theorems

We now establish the growth theorem for functions belonging to the class Tp(A, B, b, n, δ, α).

Theorem 2. Let f (z) be defined by (1) and belong to the class Tp(A, B, b, n, δ, α). Then, for |z| = r, the following
inequality holds:

rp − rp+1

 n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 ≤ | f (z)|

≤rp + rp+1

 n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 .

(13)

Furthermore, the bounds in (13) are attained for the functions f (z) given by

f (z) = zp +

 n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 zp+1, |z| = r.

Proof. Let f (z) ∈ Tp(A, B, b, n, δ, α). From Theorem 1, we have

∞

∑
k=p+1

[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ

bk ≤ n(A − B)(1 − α).

Since
∞

∑
k=p+1

[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ

bk

is an increasing function of k, it follows that

[(k − p)(1 − B) + n(A − B)(1 − α)]

(
p + 1

p

)δ ∞

∑
k=p+1

bk ≤ n(A − B)(1 − α).

Hence,
∞

∑
k=p+1

bk ≤
n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ
. (14)

Moreover, from Eqs. (1) and (14), and for |z| = r, it follows that

| f (z)| ≤ rp +
∞

∑
k=p+1

rkbk

= rp + rp+1
∞

∑
k=p+1

bk

≤ rp + rp+1

 n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 .

Similarly,

| f (z)| ≥ rp − rp+1
∞

∑
k=p+1

bk

≥ rp − rp+1

 n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 .
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Thus, the proof of Theorem 2 is complete.

By setting A = p = n = 1 and B = −1 in Theorem 2, we obtain the following corollary:

Corollary 3. If f (z) ∈ T(α, δ), then for |z| = r, the inequality

r − 1 − α

(2 − α)2δ
r2 ≤ | f (z)| ≤ r +

1 − α

(2 − α)2δ
r2

holds.

This result was also obtained by Kadioglu [4].
By setting A = p = n = 1, B = −1, and δ = 0 in Theorem 2, we obtain:

Corollary 4. If f (z) ∈ T(α), then for |z| = r, the inequality

r − 1 − α

2 − α
r2 ≤ | f (z)| ≤ r +

1 − α

2 − α
r2

holds.

This result was also obtained by Silverman [5].

Theorem 5. Let f (z) be defined by (1) and belong to the class Ap(A, B, n, δ, α). Then, for |z| = r, the following
inequality holds:

prp−1 − rp

 (p + 1)n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 ≤ | f ′(z)|

≤ prp−1 + rp

 (p + 1)n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 .

(15)

Proof. From (14), we have

∞

∑
k=p+1

kbk ≤
(p + 1)n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ
. (16)

Combining Eqs. (1) and (16), and for |z| = r, we obtain

| f ′(z)| ≤ prp−1 +
∞

∑
k=p+1

kbkrk−1

= prp−1 + rp
∞

∑
k=p+1

kbk

≤ prp−1 + rp

 (p + 1)n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 .

Similarly,

| f ′(z)| ≥ prp−1 −
∞

∑
k=p+1

kbkrk−1

= prp−1 − rp
∞

∑
k=p+1

kbk

≥ prp−1 − rp

 (p + 1)n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ

 .
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Thus, the proof of Theorem 5 is complete.

By setting A = p = n = 1 and B = −1 in Theorem 5, we obtain:

Corollary 6. If f (z) ∈ T(δ, α), then for |z| = r, the inequality

1 − 2(1 − α)

(2 − α)2δ
r ≤ | f ′(z)| ≤ 1 +

2(1 − α)

(2 − α)2δ
r

holds.

This result was also obtained by Kadioglu [4].
By setting A = p = n = 1, B = −1, and δ = 0 in Theorem 5, we obtain:

Corollary 7. If f (z) ∈ T(α), then for |z| = r, the inequality

1 − 2(1 − α)

2 − α
r ≤ | f ′(z)| ≤ 1 +

2(1 − α)

2 − α
r

holds.

This result was also obtained by Silverman [5].

4. Radius of Starlikeness of the class Tp(A, B, n, δ, α, β)

Theorem 8. Let the function defined by Eq. (1) belong to the class Tp(A, B, n, δ, α, β). Then f (z) is p-valent and starlike
of order β (where 0 ≤ β < 1) within the disk |z| < r2, where

r2 = inf
k

 (p − β) [(k − p)(1 − B) + n(A − B)(1 − α)]
(

k
p

)δ

(k − β)n(A − B)(1 − α)


1

k−p

. (17)

Proof. We aim to demonstrate that ∣∣∣∣ z f ′(z)
f (z)

− p
∣∣∣∣ < p − β for |z| < r2.

From Eq. (1), we have

∣∣∣∣ z f ′(z)
f (z)

− p
∣∣∣∣ ≤

∞
∑

k=p+1
(k − p)|bk||z|k−p

1 −
∞
∑

k=p+1
|bk||z|k−p

.

Therefore, the inequality ∣∣∣∣ z f ′(z)
f (z)

− p
∣∣∣∣ < p − β

holds provided that
∞
∑

k=p+1
(k − β)|bk||z|k−p

p − β
< 1. (18)

Since
∞
∑

k=p+1
[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ
|bk|

n(A − B)(1 − α)
≤ 1, (19)

the inequality (18) is satisfied if

∞
∑

k=p+1
(k − β)|bk||z|k−p

p − β
<

∞
∑

k=p+1
[(k − p)(1 − B) + n(A − B)(1 − α)]

(
k
p

)δ
|bk|

n(A − B)(1 − α)
. (20)
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Solving for |z| in inequality (20), we obtain

|z| <

 (p − β) [(k − p)(1 − B) + n(A − B)(1 − α)]
(

k
p

)δ

(k − β)n(A − B)(1 − α)


1

k−p

.

Taking the infimum over all admissible values of k, we establish the radius r2 as defined in equation (17). This
completes the proof of Theorem 8.

5. Integral Operators

In this section, we discuss the integral transforms of functions belonging to the class Tp(A, B, n, δ, α, β).

Theorem 9. Let the function f (z) defined by Eq. (1) belong to the class Tp(A, B, n, δ, α, β). Then the integral transform

F(z) =
c + p

zp

∫ z

0
tc−1 f (t) dt, c > −p,

belongs to the class F∗
p (γ) for 0 ≤ γ < p, where

γ = γ(A, B, p, n, α, β) =
(c + k)(1 − B) + n(A − B)(1 − α)− (c + p)(1 − B)(1 − α)

(c + k)(1 − B) + n(A − B)(1 − α)
.

Moreover, this result is sharp for the function

f (z) = zp +
n(A − B)(1 − α)

[(k − p)(1 − B) + n(A − B)(1 − α)]
(

p+1
p

)δ
zp+1. (21)

Proof. Let

f (z) = zp +
∞

∑
k=p+1

bkzk ∈ Tp(A, B, n, δ, α, β).

Then, the integral transform is given by

F(z) =
c + p

zp

∫ z

0
tc−1 f (t) dt, c > −p,

which simplifies to

F(z) = zp +
∞

∑
k=p+1

(
c + p
c + k

)
bkzk.

In view of Theorem 1, we seek to determine the largest γ for which

∞
∑

k=p+1
[(k − p)(1 − B) + n(A − B)(1 − γ)]

(
k
p

)δ
|bk|

n(A − B)(1 − γ)

(
c + p
c + k

)
≤ 1.

It suffices to find the range of values for γ for each k ∈ N such that

(k − p)(1 − B) + n(A − B)(1 − γ)

n(A − B)(1 − γ)

(
c + p
c + k

)
≤ (k − p)(1 − B) + n(A − B)(1 − α)

n(A − B)(1 − α)
. (22)

Solving inequality (22) for γ, we obtain

γ ≤ (c + k)(1 − B) + n(A − B)(1 − α)− (c + p)(1 − B)(1 − α)

(c + k)(1 − B) + n(A − B)(1 − α)
. (23)

Since the right-hand side of Eq. (23) is an increasing function of k, substituting k = p + 1 yields

γ ≤ (c + p + 1)(1 − B) + n(A − B)(1 − α)− (c + p)(1 − B)(1 − α)

(c + p + 1)(1 − B) + n(A − B)(1 − α)
.
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This establishes the desired bound for γ. Therefore, the integral transform F(z) belongs to the class F∗
p (γ)

with the specified γ, and the result is sharp for the function given in Eq. (21). This completes the proof of
Theorem 9.
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