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1. Introduction

T he binomial coefficients are defined, for non-negative integers n and m, by

(
n
m

)
=


n!

m!(n − m)!
, if n ≥ m;

0, if n < m.

More generally, for complex numbers r and s, they are defined by(
r
s

)
=

Γ(r + 1)
Γ(s + 1)Γ(r − s + 1)

,

where the Gamma function, Γ(z), is defined for ℜ(z) > 0 by the integral [1]

Γ(z) =
∫ ∞

0
e−ttz−1 dt.

The Gamma function can be extended to the entire complex plane through analytic continuation. It possesses
simple poles at each of the points z = . . . ,−3,−2,−1, 0. The Gamma function extends the classical factorial
function to the complex plane via the relation (z − 1)! = Γ(z), thereby facilitating the computation of binomial
coefficients for non-integer and non-real values.

Closely related to the Gamma function is the psi or digamma function, defined by ψ(z) = Γ′(z)/Γ(z). It
has the infinite series representation [1, p. 14]

ψ(z) = −γ +
∞

∑
k=0

(
1

k + 1
− 1

k + z

)
, (1)

where γ is the Euler-Mascheroni constant.
Harmonic numbers, denoted by Hx for x ∈ C \Z−, are defined by the recurrence relation

Hx = Hx−1 +
1
x

, H0 = 0. (2)

They are related to the digamma function through the fundamental relation

Hx = ψ(x + 1) + γ. (3)
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When x is a positive integer, say n, the harmonic numbers form the sequence (Hn)n∈Z+ , and the recurrence
relation (2) yields

Hn =
n

∑
k=1

1
k

, H0 = 0. (4)

The following combinatorial identity is attributed to Frisch [2]:

n

∑
k=0

(−1)k (n
k)

(b+k
c )

=
c

n + c
· 1

(n+b
b−c)

, for n ∈ Z+ and b, c, b − c ∈ C \Z−. (5)

This identity is listed in Gould’s compendium [3] as Identity 4.2 and was recently utilized by Gould and
Quaintance [4] to establish a new binomial transform identity. Abel [5] provided a concise proof of Frisch’s
identity and investigated its infinite variant.

In this note, we demonstrate how Frisch’s identity (5) can be applied to prove and generalize several
well-known identities involving harmonic numbers Hn. Additionally, we present some combinatorial
identities involving odd harmonic numbers On, which can be readily derived from our results. Our approach
primarily involves leveraging the fact that derivatives of generalized binomial coefficients yield harmonic
numbers. This method is well-established and has been employed in significant earlier research by other
mathematicians [6–9].

2. Results

Theorem 1. For n ∈ Z+ and b, c, b − c ∈ C \Z−, we have

n

∑
k=0

(−1)k (n
k)

(b+k
c )

(Hk+b − Hk+b−c) =
c

n + c
Hn+b − Hb−c

(n+b
n+c)

(6)

and
n

∑
k=0

(−1)k
(

n
k

)
c

k + c
Hk+b − Hb−c

(k+b
k+c)

=
Hn+b − Hn+b−c

(b+n
c )

. (7)

In particular, for n ∈ Z+ and b ∈ C \Z− we have

n

∑
k=0

(−1)k (n
k)

(b+k
k )

(Hk+b − Hk) =
b

n + b
Hn+b (8)

and
n

∑
k=0

(−1)k
(

n
k

)
Hk+b
k + b

=
Hn+b − Hn

b(b+n
b )

. (9)

Proof. In Frisch’s identity (5) treat b and c as complex numbers and differentiate w.r.t. b, using

d
db

(
b + k

c

)−1
=

(
b + k

c

)−1

(ψ(b + k + 1 − c)− ψ(b + k + 1)) (10)

and
d
db

(
n + b
n + c

)−1
=

(
n + b
n + c

)−1

(ψ(b + 1 − c)− ψ(b + n + 1)) , (11)

simplify, making use of the fundamental relation (3). This gives (6). Identity (7) is the binomial transform
of (6).

Corollary 2. For n ∈ Z+ and b ∈ C \Z−, b ̸= 0 we have

n

∑
k=0

(−1)k (n
k)

(b + k)2 =
1

n + 1
Hn+b − Hb−1

(n+b
n+1)

. (12)



Open J. Math. Sci. 2024, 8, 216-226 218

Identity (12) generalizes the well-known identity

n

∑
k=0

(−1)k (n
k)

(k + 1)2 =
Hn+1

n + 1
, (13)

which can be proved directly via

(n + 1)
n

∑
k=0

(
n
k

)
(−1)k

(k + 1)2 =
n

∑
k=0

n + 1
k + 1

(
n
k

)
(−1)k

k + 1

=
n

∑
k=0

(
n + 1
k + 1

)
(−1)k

k + 1

=
n+1

∑
k=1

(
n + 1

k

)
(−1)k−1

k

= Hn+1.

Theorem 3. For n ∈ Z+ and b, c, b − c ∈ C \Z− we have

n

∑
k=0

(−1)k+1 (n
k)

(b+k
c )

(Hk+b−c − Hc) =
1

(n + c)(n+b
n+c)

(
n

n + c
+ c(Hn+c − Hb−c)

)
. (14)

In particular, for n ∈ Z+ and b ∈ C \Z− we have

n

∑
k=0

(−1)k+1
(

n
k

)
Hk+b =

1

n(n+b
n )

. (15)

Proof. Differentiate Frisch’s identity (5) w.r.t. c using

d
dc

(
b + k

c

)−1
=

(
b + k

c

)−1

(ψ(c + 1)− ψ(b + k + 1 − c)) ,

and the proof is completed.

Identity (15) generalizes the well-known identity

n

∑
k=0

(−1)k
(

n
k

)
Hk = − 1

n
, (16)

which is the binomial transform of the sequence Hn (see [10, p. 34]).

Corollary 4. For n ∈ N0 and b ∈ C \Z− we have

n

∑
k=1

(−1)k+1 (n
k)

k(k+b
k )

= Hn+b − Hb. (17)

In particular,
n

∑
k=1

(−1)k+1 (n
k)

k(k+n
k )

= H2n − Hn. (18)

Corollary 5. For n ∈ Z+ and b ∈ C \Z− we have

n

∑
k=0

(−1)k (n
k)

(k+b
k )

Hk+b =
b

n + b
Hb −

n
(n + b)2 . (19)

Proof. Set c = b in (14) to get

n

∑
k=0

(−1)k+1 (n
k)

(b+k
b )

(Hk − Hb) =
1

n + b

(
n

n + b
+ bHn+b

)
.
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Use the fact that
n

∑
k=0

(−1)k (n
k)

(b+k
k )

=
b

n + b
(20)

and combine with (8).

Corollary 6. For n ∈ N0 and b ∈ C \Z− we have

n

∑
k=1

(
n
k

)
(−1)k+1 k

(k + b)2 =
Hn+b − Hb

(n+b
n )

. (21)

In particular,
n

∑
k=1

(
n
k

)
(−1)k+1 k

(k + n)2 =
H2n − Hn

(2n
n )

. (22)

Proof. Using the fact that the right hand-side of (19) is the binomial transform of Hn+b/(n+b
n ) we get

n

∑
k=0

(
n
k

)
(−1)k

(
b

k + b
Hb −

k
(k + b)2

)
=

Hn+b

(n+b
n )

.

Combine this with
n

∑
k=0

(
n
k

)
(−1)k 1

k + b
=

1

b(n+b
b )

(23)

and the proof is completed.

Remark 1. Comparing (21) with (12) we see that

n

∑
k=0

(
n
k

)
(−1)k b

(b + k)2 =
Hn+b − Hb−1

(n+b
n )

and
n

∑
k=0

(
n
k

)
(−1)k k

(b + k)2 =
−Hn+b + Hb

(n+b
n )

,

which upon addition again yield (23).

Theorem 7. If n ∈ Z+ and b ∈ C \Z−, then

n

∑
k=0

(−1)k−1 (n
k)

(b+k
k )

Hk =
b

n + b
(Hn+b − Hb) +

n

(n + b)2 . (24)

Proof. Set c = b in (14) and use (20).

Theorem 8. If n ∈ N0 and b ∈ C \Z−, b ̸= 0, then

n

∑
k=0

(
n
k

)
(−1)k

(k + b)3 =
1

2n + 2

(
n + b
n + 1

)−1 (
(Hn+b − Hb−1)

2 − H(2)
b−1 + H(2)

n+b

)
. (25)

In particular,
n

∑
k=0

(
n
k

)
(−1)k

(k + 1)3 =
1

2n + 2

(
H2

n+1 + H(2)
n+1

)
. (26)

Proof. Write (12) as
n

∑
k=0

(−1)k (n
k)

(b + k)2 =
1

n + 1
ψ(n + b + 1)− ψ(b)

(n+b
n+1)
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and differentiate with respect to b to obtain

n

∑
k=0

(−1)k

(k + b)3

(
n
k

)

=
1

2n + 2

(
n + b
n + 1

)−1

(ψ(n + b + 1)− ψ(b))2

− 1
2n + 2

(
n + b
n + 1

)−1

(ψ1(n + b + 1)− ψ1(b)) ,

where ψ1(x) is the trigamma function defined by

ψ1(x) =
d

dx
ψ(x) =

∞

∑
k=0

1
(k + x)2

and H(2)
r is the r th second order harmonic number,

H(2)
r =

r

∑
j=1

1
j2

.

The result follows upon using the fact that

ψ (x + 1)− ψ (y + 1) = Hx − Hy (27)

and
ψ1 (x + 1)− ψ1 (y + 1) = H(2)

y − H(2)
x , (28)

for x, y ∈ C \Z−.

Theorem 9. If n ∈ N0 and b ∈ C \Z−, then

n

∑
k=0

(−1)k−1
(

n
k

)
H(2)

k+b =
Hn+b − Hb

n(n+b
n )

, n ̸= 0, (29)

n

∑
k=1

(−1)k−1
(

n
k

)
Hk+b − Hb

k(k+b
k )

= H(2)
n+b − H(2)

b , (30)

n

∑
k=1

(−1)k−1
(

n
k

)
Hk+b

k(k+b
k )

= (Hn+b − Hb) Hb + H(2)
n+b − H(2)

b . (31)

Proof. Differentiate (15) with respect to b to get (29). Identity (30) is the inverse of (29). Identity (31) is obtained
by using (17) in (30).

Theorem 10. If n ∈ Z+ and b ∈ C \Z−, then

n

∑
k=0

(−1)k−1 (n
k)

(b+k
b )

Hk Hk+b =
1

n + b

(
bHb −

n
n + b

)
(Hn+b − Hb)

+
b

n + b

(
H(2)

n+b − H(2)
b

)
+

n

(n + b)2

(
2

n + b
+ Hb

)
.

(32)

Proof. Write (24) as

n

∑
k=0

(−1)k−1 (n
k)

(b+k
k )

Hk =
b

n + b
(ψ(n + b + 1)− ψ(b + 1)) +

n

(n + b)2

and differentiate with respect to b, using (10). Use (24) again in simplifying the left hand side of the resulting
expression.
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In particular, for all positive integers n, we have

n

∑
k=0

(−1)k
(

n
k

)
H2

k =
Hn

n
− 2

n2 (33)

and

n

∑
k=0

(−1)k−1 (n
k)

(n+k
k )

Hk Hk+n

=
1
2

(
H(2)

2n − H(2)
n

)
+

1
2

H2n

(
Hn −

1
2n

)
− 1

2
Hn Hn−1 +

1
4n2 . (34)

Corollary 11. If n is a positive integer, then

n

∑
k=1

(−1)k−1
(

n
k

)
Hk
k

= H(2)
n . (35)

Proof. Treat identity (33) as the binomial transform of the sequence H2
n. The inverse relation yields

n

∑
k=1

(−1)k
(

n
k

)
Hk
k

+ 2
n

∑
k=1

(
n
k

)
(−1)k−1

k2 = H2
n.

But (see Boyadzhiev’s book [10, p. 64])

n

∑
k=1

(
n
k

)
(−1)k−1

k2 =
1
2

(
H2

n + H(2)
n

)
and the proof is completed.

Remark 2. Identity (35) can also be obtained by taking the limit of (9) as b approaches zero as well as simply
setting b = 0 in (30) or (31).

3. Some Identities Involving Odd Harmonic Numbers

This section contains some combinatorial identities involving odd harmonic numbers On, which are
defined by

On =
n

∑
k=1

1
2k − 1

, O0 = 0.

Obvious relations between harmonic numbers Hn and odd harmonic numbers On are given by

H2n =
1
2

Hn + On and H2n−1 =
1
2

Hn−1 + On. (36)

Additional relations are contained in the next lemma.

Lemma 1. If n is an integer, then

Hn−1/2 = 2On − 2 ln 2, (37)

Hn−1/2 − H−1/2 = 2On, (38)

Hn−1/2 − H1/2 = 2 (On − 1) , (39)

Hn+1/2 − H−1/2 = 2On+1, (40)

Hn+1/2 − H1/2 = 2 (On+1 − 1) , (41)

Hn+1/2 − Hn−1/2 =
2

2n + 1
, (42)

Hn−1/2 − H−3/2 = 2 (On − 1) , (43)

Hn+1/2 − H−3/2 = 2 (On+1 − 1) . (44)
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Proof. Use (3) as the definition of the harmonic numbers for all complex n (excluding zero and the negative
integers) and use the known result for the digamma function at half-integer arguments [1, Eq. (51)], namely,

ψ(n + 1/2) = −γ − 2 ln 2 + 2
n

∑
k=1

1
2k − 1

.

Lemma 2 (Gould [3, Identities Z.45 and Z.51]). If r and s are integers such that 0 ≤ s ≤ r, then(
r + 1/2

s

)
=

(
2r + 1

2s

)(
r
s

)−1
2−2s

(
2s
s

)
(45)

and (
r − 1/2

s

)
=

(
r
s

)(
2r − 2s

r − s

)−1
2−2s

(
2r
r

)
. (46)

We also have (
r

1/2

)
=

22r+1

π(2r
r )

, [3, Identity Z.48], (47)(
r

−1/2

)
=

22r+1

π(2r + 1)(2r
r )

, (48)

and (
r − 1/2

r + 1

)
= − 1

r + 1

(
2r
r

)
1

22r+1 . (49)

Proof. Identity (48) follows from the fact that(
r

−1/2

)
=

r!
(−1/2)!(r + 1/2)!

,

while (49) is a consequence of (
r − 1/2

r + 1

)
= −1

2
(r − 1/2)!
(r + 1)!

√
π

. (50)

Theorem 12. If n is a non-negative integer, then

n

∑
k=0

(
n
k

)
(−1)k

(2k + 1)2 =
22n+1

n + 1
On+1

(2(n+1)
n+1 )

, (51)

n

∑
k=0

(
n
k

)
(−1)k 22k+1

k + 1
Ok+1

(2(k+1)
k+1 )

=
1

(2n + 1)2 , (52)

n

∑
k=0

(
n
k

)
(−1)k−1

(2k − 1)2 = 22n On − 1

(2n
n )

, (53)

and
n

∑
k=0

(
n
k

)
(−1)k−122k Ok

(2k
k )

=
2n

(2n − 1)2 . (54)

Proof. The first identity is obtained by setting b = 1/2 in (12) and using (40) and (45); while the second is
its inverse transform. Identity (53) is obtained by setting b = −1/2 in (12) and using (43) and (49). To prove
identity (54) use the inverse binomial transform of (53) to get

n

∑
k=0

(
n
k

)
(−1)k−122k Ok

(2k
k )

−
n

∑
k=0

(
n
k

)
(−1)k−1 22k

(2k
k )

=
1

(2n − 1)2 .
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But
n

∑
k=0

(
n
k

)
(−1)k−1 22k

(2k
k )

=
1

2n − 1
(55)

and the proof of (54) is completed.

Theorem 13. If n is a non-negative integer, then

n

∑
k=0

(−1)k+1
(

n
k

)
2k − 1
22(k−1)

(
2(k − 1)

k − 1

)
Ok =

1
22(n−1)

(
2(n − 1)

n − 1

)(
2n

2n − 1
− On

)
, (56)

n

∑
k=0

(−1)k+1
(

n
k

)
2k + 1

22k

(
2k
k

)
Ok+1 =

1
2n − 1

(2n
n )

22n

(
4n − 1
2n − 1

− On

)
, (57)

n

∑
k=0

(−1)k+1
(

n
k

)
2−2k−2

(
2(k + 1)

k + 1

)
(Ok+1 − 1) =

2−2n−2

2n + 1

(
2(n + 1)

n + 1

)(
On+1 −

1
2n + 1

)
, (58)

n

∑
k=0

(−1)k+1
(

n
k

)
2−2k

(
2k
k

)
(Ok − 1) = 2−2n

(
2n
n

)(
2n

2n + 1
+ On+1

)
. (59)

Proof. These results follow from (14). To obtain (56), set b = −1, c = −1/2 in (14) and use (38) and (48).
Identity (57) comes from setting b = 0, c = −1/2 in (14) and using (40), (47) and (48).

Theorem 14. If n is a positive integer, then

n

∑
k=1

(
n
k

)
(−1)k+1Ok =

22n−1

n(2n
n )

, (60)

n

∑
k=1

(
n
k

)
(−1)k+1 22k−1

k(2k
k )

= On, (61)

n

∑
k=0

(
n
k

)
(−1)k+1Ok+1 =

22n−1

n(2n + 1)(2n
n )

, (62)

n

∑
k=1

(
n
k

)
(−1)k+1 22k−1

k(2k + 1)(2k
k )

= On+1 − 1. (63)

Proof. Write (15) as
n

∑
k=0

(−1)k+1
(

n
k

)
(Hk+b − Hc) =

1

n(n+b
n )

.

Evaluate at (b, c) = (−1/2,−1/2) and at (b, c) = (1/2,−1/2) to obtain (60) and (62). Identity (61) is the
binomial transform of (60) while (63) is the transform of (62).

Theorem 15. If n is a non-negative integer, then

n

∑
k=1

(
n
k

)
(−1)k+1k
(2k + 1)2 =

22n−1(On+1 − 1)
(2n + 1)(2n

n )
, (64)

n

∑
k=1

(
n
k

)
(−1)k+1k
(2k − 1)2 =

22n−1On

(2n
n )

, (65)

n

∑
k=1

(
n
k

)
(−1)k−1 22k−1(Ok+1 − 1)

(2k + 1)(2k
k )

=
n

(2n + 1)2 , (66)

n

∑
k=1

(
n
k

)
(−1)k+1 22k−1Ok

(2k
k )

=
n

(2n − 1)2 . (67)

Proof. The first two results follow from (21). The other two identities are the inverse binomial transforms of
the former.

Remark 3. Identity (67) is a rediscovery of identity (54). Also, combining the proof of (54) with (67) yields (55).
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Theorem 16. If n is a non-negative integer, then

n

∑
k=0

(
n
k

)
(−1)k−1 22k Hk

(2k + 1)(2k
k )

=
2On+1

2n + 1
− 2

(2n + 1)2 , (68)

n

∑
k=0

(
n
k

)
(−1)k 22k Hk

(2k
k )

=
2On

2n − 1
− 4n

(2n − 1)2 , (69)

n

∑
k=0

(
n
k

)
(−1)k Ok+1

2k + 1
=

22n+1

n + 1
On+1

(2n+2
n+1 )

− 22n−1

2n + 1
Hn

(2n
n )

, (70)

n

∑
k=0

(
n
k

)
(−1)k Ok

2k − 1
=

22n−1

(2n
n )

(Hn − 2On) , (71)

n

∑
k=1

(−1)k−1
(

n
k

)
22k

(2k
k )

H2k =
4n

(2n − 1)2 − On

2n − 1
. (72)

Proof. The first two results follow from (24). Identity (70) is a consequence of the inverse binomial relation of
(68) in conjunction with identity (51). Identity (71) is a consequence of the inverse binomial relation of (69) in
conjunction with identity (65). Identity (72) is a consequence of (67) and (69) on account of the first identity
in (36).

Theorem 17. If n is a non-negative integer, then

n

∑
k=0

(
n
k

)
(−1)k−1

(2k − 1)3 =
22n−1

(2n
n )

(
(On − 1)2 + O(2)

n + 1
)

. (73)

Proof. Set b = −1/2 in (25) and use Lemma 1 and identity 46. Use also

H(2)
n−1/2 = −2ζ(2) + 4O(2)

n (74)

which follows from the known value H(2)
−1/2 = −2ζ(2) since

H(2)
n−1/2 − H(2)

−1/2 = 4O(2)
n ,

where O(2)
n is the nth second order odd harmonic number defined by

O(2)
n =

n

∑
k=1

1

(2k − 1)2 .

Theorem 18. If n is a positive integer, then

n

∑
k=1

(−1)k−1
(

n
k

)
O(2)

k =
22n−1

(2n
n )

On

n
, (75)

n

∑
k=1

(−1)k−1
(

n
k

)
22k−1

(2k
k )

Ok
k

= O(2)
n . (76)

Proof. Set b = −1/2 in (29) and use Lemma 1 and also (46) and (74) to obtain (75). Identity (76) is the inverse
of (75).
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Theorem 19. If n is a non-negative integer, then

n

∑
k=0

(−1)k−1
(

n
k

)
22k

(2k
k )

HkOk =
8n

(2n − 1)3 − 4n On

(2n − 1)2 − 2O(2)
n

(2n − 1)
, (77)

n

∑
k=0

(−1)k
(

n
k

)
22k

(2k
k )

Hk =
2On

(2n − 1)
− 4n

(2n − 1)2 . (78)

Proof. Set b = −1/2 in (32). Use Lemma 1, (46) and (74). Equate rational coefficients from both sides.
Identity (78) is a rediscovery of (69).

4. Final Comments

In these notes, we have demonstrated how a combinatorial identity attributed to Frisch can be used to
prove a series of harmonic number and odd harmonic number identities. Some of the results that we derived
are known and here we provide final comments and give further references.
We begin by pointing out that identity (33) can also be found in a recent article by Batir [11, Identity 18]. Next,
identity (23) can be restated as

n

∑
k=0

(
n
k

)
(−1)k b

k + b
=

n

∏
k=1

k
b + k

.

This identity is known and two probabilistic proofs were given recently by Peterson [12] and Nakata [13].
Peterson [12] writes (12) in the form

n

∑
k=0

(
n
k

)
(−1)k

(
b

b + k

)2
=

n

∏
k=1

k
b + k

(
1 +

n

∑
k=1

b
b + k

)
,

and also states an expression for the generalization involving an additional parameter m

n

∑
k=0

(
n
k

)
(−1)k

(
b

b + k

)m
, m ≥ 1. (79)

In 2019, Bai and Luo [14] derived a new expression for Peterson’s identity (79) using a partial fraction
decomposition and involving generalized harmonic numbers. As applications of their main result, they stated
some harmonic number identities. One of their special cases is our identity (26).

It is remarkable that a simple expression for (79) is also hidden in Frisch’s identity (5). Indeed, setting
c = 1 in (5) yields (23), i.e.,

n

∑
k=0

(
n
k

)
(−1)k

b + k
=

1

b(n+b
b )

.

Differentiating both sides m times w.r.t. b gives

n

∑
k=0

(
n
k

)
(−1)k

(b + k)m =
(−1)m−1

(m − 1)!
dm−1

dbm−1
1

b(n+b
b )

, (80)

which shows such a simple expression.
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