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1. Introduction

The g-theory, called also in some literature quantum calculus began to arise. Interest in this theory is
grown at an explosive note by both physicists and mathematicians due to a large number of its application
domains, for more information about quantum calculus one can see [1].

Recently, many reasercher have been investigated the behavior of the g-theory to several already studied
for the Fourier analysis, for example sampling theorem [2], Paley-Wiener theorem [3], uncertainty principles
[4], wavelet transform [5], wavelet packet [6], Ramanujan master theorem [7], Sobolev type spaces [8] and wave
equation [9]. In their seminal papers, Hormander’s and Mikhlin’s [10,11] initiated the study of boundedness
of the translation invariant operators on R?. The translation invariant operators on R? characterized using
the classical Euclidean Fourier transform F(f) therefore they also known as Fourier multipliers. Given a
measurable function

m:RYT —s C,

its Fourier multiplier is the linear map 7T;, given for all A € RY by the relation:

F(Tu(f)(A) = m(A)F(f)(A). 1)

The Hormander-Mikhlin fundamental condition gives a criterion for LP-boundedness forall 1 < p < oo
of Fourier multiplier 7;, in terms of derivatives of the symbol m, more precisely if

@Ym(A)] SIAITIT for 0<|y| < mﬂ. @)

Then, 7, can be extended to a bounded linear operator from LV(]R”’) into itself .

The condition (2) imposes m to be a bounded function, smooth over R?\{0} satisfying certain local
and asymptotic behavior. Locally, m admits a singularity at 0 with a mild control of derivatives around
it up to order {%] + 1. This singularity links to deep concepts in harmonic analysis and justifies the key
role of Hérmander-Mikhlin theorem in Fourier multiplier L,-theory, this condition defines a large class of
Fourier multipliers including Riesz transforms and Littelwood-Paley partitions of unity which are crucial in
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Fourier summability or Pseudo-differential operator.The boundedness of Fourier multipliers is useful to solve
problems in the area of mathematical analysis as Probability theory see [12], Stochastic processus see [13],
and the study of nonlinear partial differential equations see [14]. For its importance many researcher extend
the theory of Fourier multiplier to different setting for example in the Dunkl-Weinstein setting [15], in the
Laguerre-Bessel setting [16], in the g-Fourier setting [4,17,18] and the g-cosine Fourier setting [19].

The general theory of reproducing kernels is stared with Aronszajn’s in [20] in 1950, next the authors
in [21,22] applied this theory to study Tikhonov regularization problem and they obtained approximate
solutions for bounded linear operator equations on Hilbert spaces with the viewpoint of numerical solutions
by computers. This theory has gained considerable interest in various field of mathematical sciences especially
in Engineering and numerical experiments by using computers see [22].

This paper focuses on the generalized Fourier transform associated with the generalized g-Bessel
operator called the generalized g-Bessel transform introduced in [23], more precisely we define the following
g-differential operator for 0 < g < 1 by

F a7 %) = (0 + %) f(x) + 2 f(gx)

x2

Vx #£ 0, 3)

Dy f(x) =

which can be factorized as follows

Agay) = a;;,aam,

where

g %) =7 f(x)

Iy f(x) = p ,
a;,af(x) _ f(X) — qj:hqf(qx) )

When y = 0, the operator (3) reduced to the classical g-Bessel operator

f g x) = (1+¢*) f(x) + 4% f(qx)

x2

Agaf(x) = , Vx#0, see[24-26].
The eigenfunctions of the operator (3) are related to the Hahn-Exton q-Bessel function j, (x; 4%) defined in
[5] and given by the following relation

Bu(x;0%) = x 2V jao (477 x; 7).

The generalized q-Bessel tranform H,,  is defined on L} (R;) by

Hyal ) = [ BaAxig?) f(x)dpgal),  for A € RY,

where dj,, is the measure on R; given later. Let ¢ be a function in Lﬁ(R;) and B € R;, the generalized
g-Bessel L2-multiplier operators are defined for smooth function f on R; as

Maop(f)(x) i= Han (9Haa(f) (), )
where the function oy is given by

op(A) == o (AB). )

These operators are a generalization of all classical multiplier operators introduced in [4,17-19,27]. The
remainder of this paper is arranged as follows, in §2 we recall the main results concerning the harmonic
analysis associated with the generalized g-Bessel transform, in §3, we introduce the generalized g-Bessel
L2-multiplier operators M q0,p and we give for them a Plancherel’s, point- wise reproducing formulas and
Heisenberg’s, Donoho-Stark’s uncertainty principles. The last section of this paper is devoted to give an
application of the general theory of reproducing kernels to generalized g-Bessel multiplier theory and to give
best estimates and an integral representation of the extremal functions related to the generalized q-Bessel
L2-multiplier operators M q,0,p On weighted Sobolev spaces.
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2. Harmonic analysis associated with the generalized q-Bessel transform

In this section we set some notations and we recall some results in harmonic analysis related to the g-Bessel
operator (3), all these results can be founded in [23].

2.1. Notations and preliminaries

In this subsection, we give some notations, definitions and properties of the g-shifted factorial, the
Jackson’s g-derivatives and the Jackson’s g-integrals introduced in [28].
Let a € C, the g-shifted factorial are defined by:

(a;9)0 =1, (@q)n = E (1 - mf‘) , (59)e = ]ﬁ (1 - aqk> .

The Jackson’s g-derivative of a function f is given by

Dyf(x) = Wifx # 0.

The g-Jackson’s integrals from 0 to a and from 0 to co are defined by
a e
Afumﬂ=uquszww%
[ rwd=a-a) ¥ s
n=—o0

Provided the sums converge absolutely.
The normalized form of the g-Bessel kernel is defined in [29-31] by

n(n+1)

julxig?) =) (—1)”7—,nx2"- (6)

It satisfies the following estimate [23]

Vx € R;,

)| <1 )

2.2. The generalized q-Bessel transform

In this section, we define and give some basic properties of the generalized g-Bessel transform introduced
in [23]. We first introduced the following spaces and norms
. CO,q(R;) denotes the set of all functions defined on R; continuous at zero and vanishing at infinity,
equiped with the induced topology of uniforme convergence.
o LZ(]R;), 1 < p < oo, denotes the space of measurable functions on R;, satisfying
| f(x)|Pd vr 1<
e = 4 Uo P aga(0) 7 <o, 1< p <o
P8 supyep [f(x)] < oo, p= oo,
where

1 q2a+2’ q2 -
( ) sz-&-ldq( )

1—=q (4%0)s
In particular, for p = 2, L2 (R;) is a Hilbert space with inner product given by

dpga(x) =

F8) = [ FEREga ().

Definition 1. ([23]) The generalized g-Bessel transform #, , defined on Ll (R;) by

HoalF)N) = [ B0 P)f (Wi ), for A € Ry,
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Some basic properties of this transform are as follows, for the proofs, we refer the reader to [23].

Proposition 1. (1) For every f € Ly(R;") we have Hyo(f) € Coq(R;}) and we have

q
||Hq'a (f)Hoo,q,lx S Aq,ﬂl”le,q,:x: (8)
where 20+42. ;2 2.2
Aga = (P00 (050 o
T 1-g (4% 4%)co
(2) (g-Inversion formula) For f € (Ly N L7) (R} such that Hae(f) € Ly (RS) we have
Flx) = /0 BuA%; ) Hya(F)(Mdpga(A), ae x€RS. (10)
(3) (g-Parseval formula) Forall f,g € Lﬁ(R;) we have
(f.8)q = <%q,a<f)r7'lq,a(8)>qr (11)
in particular we have
Ifll2ge = [Haa(H)l0- (12)

(4) (g-Plancherel theorem) The generalized g-Bessel transform Hgq can be extended to an isometric isomorphism
from Ly (R) into L (RF).

2.3. The translation operator Associated with the generalized g-Bessel transform

Definition 2. ([26]) Let x,y € Ry and f is a measurable function on R/ the translation operator is defined by

) = [ BaOi02) B2 Ha ) D)ditga (1),

The following proposition summarizes some properties of the generalized q-Bessel translation operator see
[26].

}’lr)oposition 2. Forall x,y € R;,we have:

Tuf (v) = Gaf (%). (13)
(2) - -
| et Wdiga) = [ F0duga(). (14
(3) For f € LZ(R;) withp € [1;4+00] T),f € LZ(R;) and we have
x < . 15
|G|, < 1l (1)
(4) For f € L}C(Rq*), Touf € L}((R;) and we have
Haa (Thaf ) (V) = BaAx ) Hya(H)(V), YA € RS (16)

The relation (16) shows that the translation operator 77, is a particular case of the generalized g-Bessel
multiplier operator (4).
By using the g-Bessel translation operator, we define the generalized convolution product of f, g by

(F08) () = [ N 0R0)dnga(y)

0

This convolution is commutative, associative and its satisfies the following properties see [23,26].
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Proposition 3. (1) (g-Young's inequality) For all p,q,r € [1;+o0] such that: 1+ 1 = 1+ 1 and for all f €

Lk (R7), 8 € Ly (RF) the function f x g belongs to the space Li,(R.") and we have

1
p

| *a g”r,q,o( < fllpqellgllsga- (17)

(2) For f,g € LE(R}}) the function f x4 g belongs to L3 (R}) if and only if the function Hg,(f)Hga(g) belongs
to Li(R,‘{) and in this case we have
Haa (f#48) = Haa(FHoa(8)- (18)

(3) Forall f,g € L%(R;) then we have

L 1F 08GO ditga(x) = [ [Haa DO [Hga() ()P ditga), (19)

where both integrals are simultaneously finite or infinite.

3. The generalized g-Bessel L2-multiplier operators

The main purpose of this section is to introduce the g-Bessel L2-multiplier operators on R; and to
establish for them some uncertainty principles and Calderon’s reproducing formulas.
3.1. Calderon’s Reproducing Formulas for the generalized g-Bessel L2-multiplier operators

Definition 3. Let ¢ ¢ Lﬁ(R;) and B € R;, the generalized g-Bessel L2-multiplier operators are defined for
smooth function f on Rq* as

Moo p(f)(x) = Hoa (05Haa(f)) (x), (20)

where the function ¢ is given by the relation (5) and by a simple change of variable we find that for all
BeERS, 05 € Lﬁ(R;) and

1
||O.‘B||2,q,a = WHUHZ,QJX (21)
Remark 1. According to the relation (18) we find that
Moo p(F)(x) = (Hyd (08) % f) (), (22)
where .
- _ x
Hou (0p) (x) = Wﬂq,}c (o) (ﬁ) . (23)

We give some properties of the generalized -Bessel L2-multiplier operators.

Proposition 4. (i) For every o € Li(]R[;), and f € L} (Ry), the function M s 6(f) belongs to Li(R;), and we have

1
HMq,tr,/S(f)Hz,q,a < W”C"HZ,q,ochHl,q,a-
(ii) For every o € LY (R}}), and for every f € LE(R."), the function M,y (f) belongs to L (R"), and we have

| Mg (Pl < 1ol Fll2ga 24)

(iii) For every o € Li(R"), and for every f € L3 (RT), Mo p(f) € LY (R}), and we have

(e)

Myog(F)) = [ o(BOBA% ) Hya(f) (Wdpga(h), ae xRy 25)

and

1
||Mq,0,[3(f)’|m,q/“ < WHUHZ,q,aHf”Z,q,w
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Proof. (i) By using the relations (17),(21) we find that

Hod @),

[ Macp DI, = M 05) o] < IFIR
q9.0.8 2,9, que \“B) *q 2 1g.a

Plancherel’s formula (12) and the relation (20) gives the desired result.

(ii) Is a consequence of Plancherel’s formula (12).

(iii) Is a consequence of the relations (12), (17), (20) and (21), on the other hand the relation (24) follows
from inversion formula (10). O

In the following result, we give Plancherel’s and pointwise reproducing inversion formula for the
generalized g-Bessel L2-multiplier operators.

Theorem 1. Let o € L2 (R;) satisfying the admissibility condition:

Am\aﬁ(A)|2W:1, AER. (26)

p

(i) (Plancherel formula) For all f in Li(R;), we have

o0 S d
[ 1@ aga ) = [ [ MyopF)IE,, qéf). @)

(ii) (First calderon’s formula) Let f € L}C(R;) such that Haa(f) € L}((R;) then we have

*© __ d
flx) = /0 (Mq,a,ﬁ(f) g ’H,ﬁ (O'ﬁ)) (x),Bﬁ' ae x €R.

Proof. (i) By using the relations (19) and (21) we get

o0 d oo [ s d
L Mg 2 = [ [ 10010 P (0] 222

B
- /000 _/ooo ’H‘;}‘ (8) *¢ f(x)‘zdliq,,x(x)] d”l(f)

[ an ) ditga 0] o) 222,

the admissibility condition (25) and Plancherel’s formula (12) gives the desired result.
(i) Let f € L} (R) such that Hg.e(f) € Ll (Ry), by using the relations (11),(16) we find that

dq(B)
B
)

[ Magt) sty @) 0F = [ |7 Mo (0075 (o ) ()t

~~

B

=0 U !UMFme<A>Ba<Ax,-q2>d,4q,a(A)} Ay

/o p
[ Han (D)5 g (1) s 2) P 22

the admissibility condition (25),inversion formula (10) gives the desired result. [

To establish the second Calderon’s reproducing formula for the generalized g-Bessel L2-multiplier
operators, we need the following technical result.

Proposition 5. Let 0 € Lﬁ(]R;) N LY (RY) satisfy the admissibility condition (25) then the function defined by

dq(ﬁ)/

)
D, 5(A) = A 70" =5

belongs to Lz (R7) N LY (RF) forall 0 < v < 6 < co.



Open J. Math. Sci. 2025, 9, 1-13 7

Proof. Using Holder’s inequality for the measure %f) and the relation (3.2) we find that

9 dg(B)

2
1955]15,00 < Tog(8/Mllel3 gallol2ga gz <%

So®, ;s € Li(R;), furthermore by using the relation (3.7) we get ||<DW; ||oo g < therefore @, ; belongs
to Ly (RS) NLY(RS). O

Theorem 2. (Second Calderon’s formula). Let f € Li(RS) and o € LE(RF) N LY (RY) satisfy the admissibility
condition (3.7) and 0 < 7y < 6 < oco. Then the function

¢ d
Fus@) = [ (Myop5) o Mol @) 0, w ey

belongs to Lﬁ(Rq*) and satisfies
lim - =0. 28
(15)5(0) 15 =l (28)

Proof. By a simple computation we find that

fra(x) = /0 @, 5(A)Ba(Ax; qz)%q,zxg)()\)dﬂq,a(/\) = qu (¢7,5Hq,a(f)) (x),
by using proposition 3.2 we find that ®, 5 € LY’ (R;") then we have f, 5 € L2 (Ry) and

My, (f%&) (A) = q’y,&()‘/m)Hq,tx(f)(/\)/

on the other hand by using Plancherel’s formula (12) we find that

li I P /m (AMPE (1= s (A 2 din (M),
('y,&)gr(lo,oo)Hf%é f||2,q,uc (%5)5?0’00) 0 !qu (f)( )’ ( ’Y,é( )) “l/lq/ ( )

by using the admissibility condition (25), the relation (27) follows from the dominated convergence
theorem. [

3.2. Uncerainty principles for the generalized g-Bessel L2-multiplier operators

The main purpose of this subsection is to establish Heisenberg’s and Donoho-Stark’s uncertainty
principles for the generalized g-Bessel L2-multiplier operators M 3,0,
3.2.1. Heisenberg's uncertainty principle for M, g

Heisenberg’s uncertainty principle for the g-Bessel Fourier transform H, , has been established in [23,25]
as follows, for all f € Lg(R;) we have

1l £l 1A (Al = Kgollf1B g (29)

where k; , is given in [23] .
The inequality (3.10) says that if f is highly localized, then H,(f) cannot be concentrated near a single
point. We will generalize this inequality for M, ; s, we have the following result.

Theorem 3. Forall f € L3 (R}) we have

IAPHga ()| g0 g}
e T e S
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dq(B)

Proof. Let us suppose that H|A|2Hq,a(f)’|2,q/“ + UOOO H|x\2/\/lq,g,lg(f)”§/q,“
(3.10) we find that

} < oo, by using the relation

(e9)

Ky [ 1My (F) (0 Pdipa () < 161 Ma(F) |50 1116 H0 ()]

11 (B)

integrating over |0, +oo[ with respect to measure and using Plancherel’s formula (3.8) and Schwartz’s

inequality we get

e = [ [ 1M1 ][ [ 1000 a0 20 0] 2]

the admissibility condition (25) gives the desired result. O

3.2.2. Donoho-Stark’s uncertainty principle for M, 4

Building on the ideas of Donoho and Stark In [19], the main purpose of this subsection is to give an
uncertainty inequality of concentration type in L3 (R,‘{) where L3 (R[;’) the space of measurables functions on
RS x R such that

. dy(B)]*
Ifla0. = | [ 1F(B ) B

We denote by 6, the measure defined on R} x R/} by

dq(ﬁ)‘

A6y (B, x) = dpgu(x) ® B

Definition 4. [32]
(i) Let E be a measurable subset of R, we say that the function f € L2 (R;) is e-concentrated on E if

If *J%EfHZ,q,ac < €||fH2,q,1x1 (30)

where W is the indicator function of the set E.
(ii) Let F be a measurable subset of R; X R;, we say that the function 75 4(f) is p-concentrated on F if

||Mq,0,ﬁ(f) _“AFMq,(f,ﬂ(f)HZGa < P”Mq,(f,ﬁ(f)”Z,Ha' (31)

We have the following result

Theorem 4. Let f € L3(R}) and 0 € o € LE(R;)) N LY (R)) satisfying the admissibility condition (25), if f is
e-concentrated on E and M g(f) is p-concentrated on F then we have

lolagana(EN? | [ FE2]" 2 1 e+

Proof. Let f € L2 2(RJ) and ¢ € L2(R) N L (R;) satisfying (25) and assume that py(E) < oo and

[ e d;‘;,ﬁ; } < 0. According to the relations (29),(30) we have

[ Mgop(f) =KMo pWEN20, < IMyop(f) —HEMyop(Fll2e, + IKFMgop(f —KEf)20,

< olIMyop(F )26, + IMgop(f —HE) 206,
by using Plancherel’s relation (26) we get

[Maop(f)(f) =HEMaop(fIFES) 20, < (€ +0)lIfll2g0/

so we get

Mgop(F)ll26. < IMgop(f) =HEMyogWFES) 26, + IIKFEM0pFES) 26,
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< (e +0)Ifll2ga + HEMyepCKEES) 20,/ (32)

on the other hand by using the relation (24) and Holder’s inequality we find that

1 do, (B, 2
e ManpePllaa, < I lzanllantuEn? | [ Tobed)”, )

by the relations (32),(33) we deduce that

HMq,(r,ﬁ(f)Hz,Ga < fll2ga |(€+p)+ H‘THl,q,a(Ha(E))% { [ dzip(é[j,zx} 2] .

Plancherel’s formula (26) for M, g gives the desired result. [

4. Extremal functions associated with the generalized g-Bessel L2-multiplier operators

In the following, we study the extremal functions associated with the generalized g-Bessel L2-multiplier
operators.

Definition 5. Let ¢ be a positive function on ]Rj{ satisfying the following conditions

; € Ly(R)), (34)
and
Pp(A)>1, AeR;. (35)

We define the Sobolev-type space Sy (R;") by

Sp(Rr) = {f € LAR) : VgHaalf) € LER))},
provided with inner product

(f:8)y :/0 (A, m)Hya(f)(A) Hya(g)(A)dpga(A),

and the norm

1flly =/ {f Py

Proposition 6. Let o be a function in L;"(R;). Then the q-Bessel L2-multiplier operators M5 p are bounded and
linear from Sy (R} into Lz (RT) and we have for all f € Sy(R;)

Mo (Fllyyn < lolloogallflly- (36)
Proof. By using the relations (13),(23),(36) we get the result [

Definition 6. Let 7 > 0 and let ¢ be a function in L (R;"). We denote by (f, g)y,, the inner product defined
on the space Sy(R") by

F&r = [ (190 + 050 ) Hya (A Ha (@) Wity (1),

and the norm

1AWl = A/ XFr From

Theorem 5. Let o € L (R) the Sobolev-type space (Slp(R;) o )y) is a reproducing kernel Hilbert space with
kernel

® By (Ax;97)By(Ay;
yna(o) = [ OIEIR g 1,

0 pp(A) + [op(A)[?
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that is
(i) For all y € R, the function x — Kg,yy (x,y) belongs to Sy(R7).
(it) Forall f € Sy (R:{) andy € R;, we have the reproducing property

f( ) <f K:q Y, 77 >1/J n'
Furthermore the kernel KCqy,, is a positive definite function.

Proof. (i) Let y € R}, from the relations (7),(34) we have the function

By (Ay; ‘72)
np(A) + |og(A)

gy)\—> }2/

belongs to L} (]Rj{) N L,,%(R;) Hence the function Ky 4, is well defined and by the inversion formula (10), we
get
Kapn(x,y) = /Hq_u% (8y)(x),

by using Plancherel’s theorem for H,, we find that Ky y,, (-, ) belongs to L2 (R) and we have

Brx(/\y?‘72)
Hya(Kgpy (- y))(A) = , (37)
g0 (K (- y))(A) ’71/1()\)+|‘7,5(/\)’2

by using the relations (7),(34) and (37) we find that

1
| ﬂHq,a(Kq,w,n (y)) ||2,q,zx < j

< 0o,
1,qa

1
¥

this prove that for every y € R the function x — gy, (x,y) belongs to Sy(RJ).
(ii) By using the relation (37) we find that for all f € Hy(R),

K () = [ (190) + 1050 ) Hoa )N ga Koy CoD Wty ()
= /000 Bo(Ay; 4°) Haa (f) (AM)dpiga(A),

inversion formula (10) gives the desired result. On the other hand since 1/, is positive function then for all

z1,...., 2y complex numbers and x4, . ..... , X, In Rq , We obtain
non 4o | B n 1
2 2 zrZiKq 0 (Xr, x1) = / [2 Ezrlea (x,A; qz) B, (xl/\; qz) —(A)dpga(A)
r=11=1 0 r=11=1 l/J

n

- /OJFOO r;z,B,x (x,)\;qz)

;u)duq,m >0,

which proves that the kernel Ky , is positive definite. [

The main result of this section can be stated as follows

Theorem 6. Let 0 € L (R] F)and B € R+ forany h € 12 (R+> and for any n > 0, there exist a unique function
fq B where the infimum

. 2 2
fesln(%ﬂ{nllf\lw Ih = Maos(F)ll3,0 (38)

is attained. Moreover the extremal function f iy B is given by

Fingn®) = | 1)y 5 1)),
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where ©y , g is given by 2 2
®,, 5(x,y) = /°° 0p(A)Bu(Ax;4%) Ba (Ay; 4°)
91,8 'Y 0 771/)(}\) + |Uﬁ()\) |2

dpga(N).

Proof. The existence and the unicity of the extremal function f iy B satisfying (38) is given in [21,22],
furthermore f ) g, B 18 given by

SanpnW) = I Mao (Ko (5¥)))g

, by using inversion formula (10) and the relation (37) we get

~ 0p(A)Ba (A, ) Bu(Ay; 1)
np(A) + lop(A) 2

MoK (29) () = [ Bhga (1)

=0g(x,y)

and the proof is complete. [

Theorem 7. 0 € LY (R;) andh € L2 (R ( ) then the function f iy B satisfies the following properties

op(A)
np(A) + |op

Haa (f;,q,ﬁ,h)(/\) = M2 My (h)(A), 39)

and

1
1 fgmpnlle < ﬁ”th,q,lx-
Proof. Lety € R;]* then the function

o8(A)ja(Ay; 4%)
1p(A) + [op(A) [

belongs to L,,%(Rq*) N L}C(R;) and by using inversion formula (10) we get

O, 5(x,y) = Hy (ky) (%),

using Plancherel’s theorem and Parseval’s relation (11) we find that ©,, (-, ¥) € Li(R;) and

Frapa®) = [ Ha OB ) = [~ PO ) (W)
Wﬁﬁh 'M ﬂq“ 0 ’74’()‘)"‘“7;9(/\)‘2 q.x Mg, .
On the other hand the function
op(A)Hau(h)(A)

F: A —

27

np(A) + |op(A)

belongs to L} (R;) NL2(R (R ), by using inversion formula (10), Plancherel’s theorem we find that f ¥ Yy belongs
to L (R.) and
Hau(foypn)(A) = F(A).

On the other hand we have

* 2 _ ’Uﬁ)\‘z 2 1
e O = O < 33

by Plancherel’s formula (12) we find that

Hau (M) (M),

1
| fanpnlly < \/T?Hth,q,a-
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Theorem 8. (Third Calderdn’s formula) Let o € L (Ry") and f € Sy(R7") then the extremal function given by

Fins® = | Map(F) (5185 1)),

satisfies

lim
n—0+t

f»mﬁ fH

2,9,
Moreover we have f;’m}g — f uniformly when n — 0.
Proof. f € Sy(R), we puth = M, 5(f) and f Y fq*ﬂ?/ﬁ in the relation (39) we find that

—nP(A)Hga(f)(A )/
mp(A) + [op(A) |

Hq/ (fq,;yﬁ f)( )

therefore

oo 2 )
. _in, :/0 ('7 )(_4;(((\7’)3 5 |Haa(f) (A )‘2dﬂq,a(/\)-

On the other hand we have

7 (1)’
np(A) + |op(A)

2

7

7 [Haa DI <) [Hea(HR)

the result (40) follows from (42) and the dominated convergence theorem. Now, for all f € Sy(
Hou(f) € L,,%(Rq*) N L}‘(R;) and by using the relations (10), (41) we find that

ﬁhﬁw)ifw)::/w—ﬂw()ﬂqdfﬂ )

Bu(Ay; q%)dpuga(A),
Jo () + o) !

and

< [Hau(F)(A)]-

yww>ﬂwqx>](%

mp(A) + op(A) |

By using the relation (43) and the dominated convergence theorem we deduce that

lim
n—0t

fans) = f)] =o0.
which complete the proof of the theorem. O
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(40)

(41)

(42)

R.) we have

(43)
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