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Abstract: The Euler-Sombor index EU is a vertex-degree-based graph invariant, defined as the sum over all
pairs of adjacent vertices u, v of the underlying graph, of the terms

√
d2

u + d2
v + du dv, where du and dv are the

degrees of the vertices u and v, respectively. For a real number λ, a variable version of EU is constructed,
denoted by EU(λ), defined via

√
d2

u + d2
v + λ du dv. Its special cases for λ = 2, −2, 0, and 1 are, respectively,

the first Zagreb, Albertson, Sombor, and the ordinary Euler-Sombor indices. The basic properties of EU(λ)

are determined, including a method for its approximate calculation and bounds in terms of minimum degree,
maximum degree, order and size for several graph products. It is shown how to find values of λ for which
EU(λ) is optimal with regard to predicting molecular properties.
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1. Introduction

T he Sombor index SO is a recently discovered vertex-degree-based graph invariant [1,2], defined as

SO = SO(G) = ∑
uv∈E(G)

√
d2

u + d2
v . (1)

Initially, it was aimed at solving chemical problems [3] but in the meantime it found peculiar applications
is various other fields of science and technology, see e.g. [4–7]. The mathematical properties of SO(G) are
nowadays studied in due detail [8]. In [9] an elliptic geometric model for Sombor-type indices was proposed.
Within this model, the perimeter of the considered ellipse could be (approximately) calculated by means of
Euler’s formula [10] π

√
2(r1 + r2), where r1 and r2 are the semi-major and semi-minor axes of the ellipse. In

[9] it was shown that

r1 =
√

d2
u + d2

v and r2 =
1√
2
(du + dv),

which implies that the perimeter is
√

3π
√

d2
u + d2

v +
2
3 du dv. This was the motivation to introduce a new

Sombor-type graph invariant [11], defined as

EU = EU(G) = ∑
uv∈E(G)

√
d2

u + d2
v + du dv, (2)

and named Euler-Sombor index, see also [12–14].
In the present paper we examine a variable version of the Euler-Sombor index, defined as

EU(λ) = EU(λ, G) = ∑
uv∈E(G)

√
d2

u + d2
v + λ du dv, (3)
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where λ is a real number.
In the above formulas, G stands for a simple graph with vertex set V(G) and edge set E(G). If the vertices

u, v ∈ V(G) are adjacent, then the edge connecting them is denoted by uv. The degree of a vertex u ∈ V(G)

is denoted by du. The summations in the above formulas go over all edges uv of the underlying graph G. For
other graph-theoretical notation and terminology, we refer to [15,16]. For details of chemical graph theory,
especially for applications of topological indices see [17,18].

Today, in the mathematical and chemical literature there is a legion of vertex-degree-based graph
invariants [19–22]. Of these, for the present considerations we need the following two.

The oldest vertex-degree-based molecular structure descriptor is the first Zagreb index, [23], defined as

M1 = M1(G) = ∑
uv∈E(G)

[
du + dv

]
. (4)

The oldest graph-theoretical irregularity measure is the Albertson index [24]

Alb = Alb(G) = ∑
uv∈E(G)

∣∣du − dv
∣∣ . (5)

For details on the first Zagreb and Albertson irregularity indices see [25,26] and [27,28], respectively.
At the first glance, formulas (1)–(5) appear to have quite different algebraic forms. Yet, they may be related

using the following results that are obtained by direct calculation, taking into account Eqs. (1)–(5).

Proposition 1. Let λ be a real number and let EU(λ, G) be the corresponding variable Euler-Sombor index. Then

EU(2, G) = M1(G), (6)

EU(−2, G) = Alb(G), (7)

EU(0, G) = SO(G), (8)

EU(1, G) = EU(G). (9)

Equalities (6)–(9) hold for any (simple) graph G.

The relations stated in Proposition 1 may be considered as the basic mathematical property of the variable
Euler-Sombor index.

Proposition 2. In the general case, EU(λ) is well-defined (i.e., real-valued) only for λ ≥ −2.

Proof. In formula (3), the term d2
u + d2

v + λ du dv must always be positive-valued or zero. Noting that d2
u + d2

v +

λ du dv = (du − dv)2 + (λ + 2)du dv, and that in some graphs the case du = dv may happen, we see that it must
be λ + 2 ≥ 0.

2. An approximation for variable Euler-Sombor index

Although for some chosen value of the variable λ, the actual value of the function EU(λ) can be directly
calculated by means of Eq. (3), a much easier way to do this would be by using the relations (6)–(9). Because the
properties of the first Zagreb, Albertson irregularity, and Sombor indices are best understood and most detailed
investigated, see [25,26], [27,28], and [8], respectively, we use the formulas (6)–(8) to obtain a second-degree
polynomial approximation. By setting

EU(λ) ≈ a λ2 + b λ + c,

and adjusting that for λ = −2, 0, and +2, a λ2 + b λ + c be equal to Alb, SO, and M1, respectively, we obtain

a =
1
8
(M1 + Alb − 2 SO),

b =
1
4
(M1 − Alb),
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c = SO,

i.e.,

EU(λ) ≈ λ2

8
(M1 + Alb − 2 SO) +

λ

4
(M1 − Alb) + SO. (10)

The approximation (10) is best applicable for λ ∈ [−2,+2]. Its quality is seen from Figure 1.

Figure 1. The Euler-Sombor index (EU(λ) for λ = 1) calculated by means of formula (10), for the set of isomeric
octanes; R is the correlation coefficient

3. Variable Euler-Sombor index of graph products

In this section, we assume that the graphs considered are simple, finite, undirected and connected. For
details on graph products see [29].

3.1. Corona product

The corona product of graphs G and H is the graph denoted by G
⊙

H, obtained by taking one copy of G
and nG copies of H, and joining the vertex u that is on i-th position in G to every vertex in i-th copy of H. The
order and size of G

⊙
H are nG(1 + nH) and mG + nGmH + nGnH , respectively.

The degree of a vertex u ∈ V(G
⊙

H) is given by

dG
⊙

H(u) =

{
dG(u) + nH , i f u ∈ V(G),

dH(u) + 1, i f u ∈ V(H).
(11)

Theorem 1. Let G and H be graphs with maximum degrees ∆G ∆H and minimum degrees δG, δH , respectively. Then,
µ1 ≤ EU(λ, G

⊙
H) ≤ µ2, where

µ1 = mG
√

λ + 2(δG + nH) + mH
√

λ + 2(δH + 1) + nG nH

√
λ(δG + nH)(δH + 1),

and

µ2 = mG
√

λ + 2(∆G + nH) + mH
√

λ + 2(∆H + 1) + nG nH

√
λ(∆G + nH)(∆H + 1) .

Equality holds if and only if G and H are regular graphs.

Proof. By using the definitions of variable Euler-Sombor index and (11), we obtain

EU(λ, G
⊙

H) = ∑
uv∈E(G)

√
(dG(u) + nH)2 + (dG(v) + nH)2 + λ(dG(u) + nH)(dG(v) + nH)
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+nG ∑
uv∈E(H)

√
(dH(u) + 1)2 + (dH(v) + 1)2 + λ(dH(u) + 1)(dH(v) + 1)

+ ∑
u∈V(G)

∑
u∈V(H)

√
(dG(u)+nH)2+(dG(v)+1)2+λ(dG(u)+nH)(dG(v) + 1)

≤ mG
√

λ+2 (∆G+nH)+mH
√

λ+2 (∆H+1)+nG nH

√
λ(∆G+nH)(∆H+1) .

The lower bound is obtained in an analogous manner.

3.2. Cartesian product

The Cartesian product of G and H is the graph denoted by G × H, with vertex set V(G)× V(H) and two
vertices u = (u1, v1) and v = (u2, v2) being adjacent in G × H whenever u1 = u2 and v1 and v2 are adjacent
in H or v1 = v2 and u1 and u2 are adjacent in G. The size of the Cartesian product of the graphs G and H is
mGnH + nGmH .

The degree of a vertex (u, v) ∈ V(G × H) is

dG×H(u, v) = dG(u) + dH(v) . (12)

Theorem 2. Let G and H be graphs with maximum degrees ∆G,∆H and minimum degrees δG,δH , respectively. Then,

√
λ + 2(δG + δH)mG×H ≤ EU(λ, G × H) ≤

√
λ + 2(∆G + ∆H)mG×H .

Equality on both sides holds if and only if G and H are regular graphs.

Proof. By using the definitions of variable Sombor-Euler index and (12), and setting

X1 = (dG(u1) + dH(v1))
2 + (dG(u1) + dH(v2))

2 + λ(dG(u1) + dH(v1))(dG(u1) + dH(v2)),

and

X2 = (dG(u1) + dH(v1))
2 + (dG(u2) + dH(v1))

2 + λ(dG(u1) + dH(v1))(dG(u2) + dH(v1)),

we obtain

EU(λ, G × H) = ∑
u1∈V(G)

∑
v1v2∈E(H)

√
X1 + ∑

v1∈V(G)
∑

u1u2∈E(G)

√
X2

≤
√

λ + 2(∆G + ∆H)(mG nH + nG mH)

=
√

λ + 2(∆G + ∆H)mG×H .

The lower bound is obtained in an analogous manner.

3.3. Lexicographic product

The lexicographic product of G and H is the graph denoted by G[H], whose vertex set is V(G)× V(H),
and two vertices u = (u1, u2) and v = (v1, v2) are adjacent in G[H] whenever u1v1 ∈ E(G) or u1 = v1 and
u2v2 ∈ E(H). The size of G[H] is mG n2

H + nG mH .
The degree of a vertex (u, v) ∈ V(G[H]) is

dG[H](u, v) = nHdG(u) + dH(v) . (13)

Theorem 3. Let G and H be graphs with maximum degrees ∆G, ∆H and minimum degrees δG, δH , respectively. Then,

√
λ + 2(nHδG + δH)mG[H] ≤ EU(λ, G[H]) ≤

√
λ + 2(nH∆G + ∆H)mG[H] .

The equality on both sides holds if and only if G and H are regular graphs.
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Proof. By using the definitions of variable Euler-Sombor index and (13), and setting

Y1 = (nH dG(u1) + dH(v1))
2 + (nH dG(u1) + dH(v2))

2 + λ(nH dG(u1) + dH(v1))(nH dG(u1) + dH(v2)),

and

Y2 = (nHdG(u1) + dH(v1))
2 + (nHdG(u2) + dH(v2))

2 + λ(nHdG(u1) + dH(v1))(nHdG(u2) + dH(v2)),

we obtain

EU(λ, G[H]) = ∑
u1∈V(G)

∑
v1v2∈E(H)

√
Y1 + ∑

v1∈V(H)
∑

v2∈V(H)
∑

u1u2∈E(G)

√
Y2

≤
√

λ + 2(nH ∆G + ∆H)(mG n2
H + nG mH)

=
√

λ + 2(nH ∆G + ∆H)mG[H] .

3.4. Strong product

The strong product of G and H is the graph denoted by G ⊠ H, whose vertex set is V(G)× V(H), and
two vertices u = (u1, u2) and v = (v1, v2) are adjacent in G ⊠ H whenever u1 = u2 and v1 and v2 are adjacent
in H or v1 = v2 and or u1 and u2 are adjacent in G or u1 and u2 are adjacent in G and v1 and v2 are adjacent in
H.

The degree of a vertex (u, v) ∈ V(G ⊠ H) is

dG⊠H(u, v) = dG(u) + dH(v) + dG(u) dH(v) . (14)

Theorem 4. Let G and H be graphs with maximum degrees ∆G, ∆H and minimum degrees δG, δH , respectively. Then,

√
λ + 2(δG + δH + (δG δH))mG⊠H ≤ EU(λ, G ⊠ H) ≤

√
λ + 2(∆G + ∆H + (∆G ∆H))mG⊠H .

The equality on both sides holds if and only if G and H are regular graphs.

Proof. By taking

A = (dG(u1) + dH(v1) + dG(u1) dH(v1))
2,

B = (dG(u1) + dH(v2) + dG(u1) dH(v2))
2,

C = (dG(u2) + dH(v1) + dG(u2) dH(v1))
2,

and using Eq. (14), we get

EU(λ, G ⊠ H) = ∑
u1∈V(G)

∑
v1v2∈E(H)

√
A + B + λ(AB) + ∑

v1∈V(H)
∑

u1u2∈E(G)

√
A + C + λ(AC)

+ 2 ∑
u1u2∈E(G)

∑
v1v2∈E(H)

√
A + D + λ(AD)

≤
√

λ + 2(∆G + ∆H + (∆G ∆H))(nG mH + mG nH + 2mG mH)

=
√

λ + 2(∆G + ∆H + (∆G ∆H))mG ⊠ H.

The lower bound is obtained analogously.

4. Towards chemical applications of EU(λ)

Within this section, we consider as an example the standard entropy S0 of the set of 18 isomeric octanes.
What immediately comes to the mind is that by using values of λ, different from -2,0,1,2, we may improve
the correlation between S0 and EU(λ). This would mean that the structure-dependence of S0 is modeled by
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means of some (not necessarily linear) combination of topological indices M1, SO, EU, and Alb. Unfortunately,
as seen from Figure 2, this simple approach is not successful (at least in the case of entropy, at least in the case
of octane isomers).

Figure 2. The λ-dependence of the correlation coefficient R for the correlation between standard entropy of
octane isomers and the variable Euler-Sombor index EU(λ). No maximum is envisaged

Bearing this difficulty in mind, a multilinear correlation between S0 and EU(λ) would be necessary to
consider. Its general form would be EU(λ) + α EU(µ), with variable λ, µ, and α.

Our preliminary testing indicates that the “optimal” values for the parameters λ, µ, and α depend very
much on the physico-chemical quantity considered, and on the data set used. Therefore, in what follows we
only present two characteristic examples.

Example 1. As a first guess, we choose µ = −λ and, to simplify, set α = 1. The results thus obtained are
shown in Figure 3.

Figure 3. The λ-dependence of the correlation coefficient R for the correlation between standard entropy of
octanes and EU(λ) + EU(−λ). The maximum is at λ = 0, implying that for this model the best correlation is
obtained with the Sombor index
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Example 2. The curve depicted in Figure 3 is symmetric with regard to λ = 0 because the underlying model
was chosen to be symmetric. In order to eliminate such symmetry, we now consider the model µ = −λ and
α = 1/2, see Figure 4.

Figure 4. The λ-dependence of the correlation coefficient R for the correlation between standard entropy of
octanes and EU(λ) + (1/2) EU(−λ). The maximum is at λ = 0.7

In view of Eq. (10), the model EU(λ) + (1/2) EU(−λ) yields optimal results at the following peculiar
combinations of topological indices:

S0 ≈ 3 · 0.72

16
(M1 + Alb + 2 SO) +

0.7
8
(M1 − Alb) +

3
2

SO

= 70.179375 M1 − 0.004375 Alb + 1.315250 SO .
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