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Abstract: In this article, we proposed a fractional-order mathematical model of Child mortality. We analyzed
the existence of a unique solution for our model using the fixed point theory and Picard–Lindelöf technique.
We propose a Caputo operator for modeling child mortality in a given population of 1000 susceptible under
five children. Our stability analysis was based on the fixed point theory, which was used to prove that our
Picard iteration was stable. Using the Julia software and some real world values for our parameters, we
numerically simulated the system through graphs. Our findings were that, reducing child mortality rates
alone is insufficient to significantly improve survival rates for children under five. To make a real impact, a
holistic approach is necessary, including access to healthcare, proper nutrition, vaccination programs, hygiene
practices, clean water sources and comprehensive public health campaigns can greatly enhance the survival
rates of children under five.
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1. Introduction

T he death of children under five years is known as child mortality. Child mortality rate is defined as
the number of deaths of children under the age of five per one thousand (1,000) live births in a given

population [1,2]. It is an important indicator of society’s well-being and overall health, reflecting issues like
nutrition, access to healthcare, sanitation, and socioeconomic conditions. There has been significant progress
in reducing child mortality rates worldwide, over the past few decades [2]. However, despite these positive
trends, child mortality rates still vary greatly between different regions and countries, highlighting the ongoing
need for targeted interventions and investments in healthcare systems [2]. For example, Sub-Saharan Africa
and some Asian countries have the highest child mortality rate in the world, with over half of all child deaths
occurring in this region. In contrast, countries in Western Europe have achieved some of the lowest child
mortality rates globally. These disparities emphasize the importance of addressing the underlying factors that
contribute to child mortality and implementing targeted interventions to ensure that progress is equitable
across all regions. Numerous studies have been conducted on child mortality to understand its causes and
develop strategies for prevention [1,3,4]. These studies have highlighted factors such as poverty, lack of access
to healthcare, malnutrition, and infectious diseases as major contributors to high child mortality rates.

The use of mathematical modelling has proven to be an invaluable tool for understanding complex
phenomena. It can provide insights into a range of real-world problems, from climate change to economic
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forecasting as well as to evaluate the effectiveness of proposed solutions. Using the Lives Saved Tool
mathematical model [4] examined the impact of the service utilization interruptions on maternal and child
mortality. In their study, [5] utilized an integrated model to assess outcomes of tuberculosis treatment in
children under 5. Yerramsetti et al. [6] conducted a study using data sources to develop their mathematical
model of paediatric tuberculosis where they incorporated risk factors like HIV, BCG non-vaccination and
malnutrition. Abioye et al. [7] proposed a deterministic malaria transmission model by using the Adomian
decomposition method to approximate the solution for the model. Also, James Peter [8] provided valuable
insights into the transmission dynamics of measles and highlighted the effectiveness of combined control
strategies by using a deterministic mathematical model that sheds light on the impact of vaccination rates
and hospitalization on the spread of the disease.

Studies have shown that, the modelling of problems using caputo fractional derivatives has a lot of
advantages over conventional methods [9]. For example, it can accurately capture the effects of non-linearity,
provide better predictions of the behavior of complex systems, and allow for more efficient numerical solution.
Caputo fractional derivatives has been used in numerous applications include finance, engineering, science,
and medicine [10–12]. For instance, Rahul, & Prakash [13] examined the applicability of a fractional Susceptible
Infected Recovered (SIR) model to understand childhood diseases through the use of Caputo, Caputo-Fabrizio,
and Atangana-Baleanu, to analyze the proposed model. The proposed Constant Proportional-Caputo (CPC)
operator by [14] offered a comprehensive approach to modeling childhood disease epidemics. Additionally,
the incorporation of reproductive and strength numbers allows for a thorough assessment of the dynamics
of the biological system. Based on these studies we propose the Child-Sick-Recovery model using Caputo
fractional derivative. In contrast to other existing models in the field, our model takes into account the global
and African parameters in our stimulation which provides a real and practical view of the current state of child
mortality. This allows for a more accurate representation of the dynamics involved and can lead to improved
predictions and treatment strategies. The rest of the paper is structured as follows: the next section deals with
materials and methods followed by the numerical stimulations and the last section is the conclusion.

2. Materials and methods

We used fractional calculus in this section to model child mortality and study the dynamics associated
with it. We begin with the model formulation, followed by stability and equilibrium point as well as the
existence and uniqueness of the solution.

2.1. Preliminary results and definitions

We will recall some essential definitions of fractional calculus and explore some of its’ features in this
section. As a first step, we define Caputo derivative as express by [15] and then introduce the fractional
derivative with nonsingular exponential kernel [16].

Definition 1. Given a differentiable function f , it’s Caputo derivative of ordera ∈ (0, 1)is define as

CDa f (t) =
1

Ω (n − a)

∫ t

0
f
′
(s)

1
(t − s)

ds. (1)

Definition 2. given that T > 0, f ∈ Z1(0, T) with the ordera ∈ (0, 1), then the ath order Caputo derivative of
the differentiable function f is

CFDa f (t) =
1
2

Ω(a)(2 − a)
1 − a

f
′
(s) e−n(t−s)ds. (2)

where n = a
1−a and Ω(a)been a normalizing function which depends on a in that Ω(0) = Ω(1) = 1.

Using the formula provided by [17] for Ω(a)as Ω(a) = 2
2−a . The Caputo–Fabrizio derivative can be

reduced to
CFDa f (t) =

1
1 − a

∫ t

0
f
′
(s) e−n(t−s)ds. (3)
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Table 1. State variable description

Compartments
and parameters

Description Value Reference

C(t) Population of children under 5 at time t 1000 [2]
S(t) Population of sick children at time t 0 Assumed
R(t) Population of children under 5 who are able to

recover from their sickness at time t
0 Assumed

α Rate at which under five children become sick and
move to the sick children compartment

0.8 Assumed

β
Rate at which sick children recover and
move to the recovery compartment

0.75 [18]
0.58 [19]

γ Rate at which children who recover from one
sickness move to the children compartment again
(as they are still susceptible to other childhood
diseases)

0.1 Assumed

µ Natural death rate 0.042 [3]

κ
Rate of death due to childhood
diseases

0.037(Global) [2]
0.07(Africa) [2]

Definition 3. Given a Caputo–Fabrizio derivative, it’s Laplace transform is given by [17]:

L
[

CFDa f (t)
]
=

1
2

Ω(a) (2 − a)
1 − a

sL[ f (t)]− f (0)
s + a

1−a
. (4)

After the concept of fractional derivative, fractional integral becomes a necessity. As such, using order a
of the Riemann–Liouville integral we obtained:

Da f (t) =
1

Ω (a)

∫ t

0
f (s)

1

(t − s)1−a ds, (5)

where the integral exists. Then following [17], the ath-order Caputo–Fabrizio integral can be written as:

CFDa f (t) =
2(1 − a)

n(a)(2 − a)
f (t) +

2a
n(a)(2 − a)

∫ t

0
f (s)ds. (6)

2.2. Model formulation

We model the proposed fractional child mortality model in this section.
Let the population of children at time t, the population of sick children at time t and the population of

recovered children at time t be represented by C(t), S(t), and R(t)respectively. As such, the model could be
described as 

dC(t)
dt = γR(t)− (µ + α)C(t),

dS(t)
dt = αC(t)− (κ + µ + β)S(t),

dR(t)
dt = βS(t)− (µ + γ)R(t),

(7)

where the initial condition are(C(0), S(0), R(0)) = (I, 0) and (I > 0).
Modifying Eq. (7) in fractional-order Caputo–Fabrizio sense we obtain

CFDaC(t) = γR(t)− (µ + α)C(t),
CFDaS(t) = αC(t)− (κ + µ + β)S(t),
CFDaR(t) = βS(t)− (µ + γ)R(t).

(8)
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2.3. Equilibrium and stability

At the origin, E∗ = (0, 0, 0), Eq. (8) has a unique equilibrium since it is a system of homogeneous fractional
differential equations. Therefore, the matrix coefficient for Eq. (8) is

J =

 −(µ + α) 0 γ

α −(κ + µ + β) 0
0 β −(µ + γ)

 . (9)

Having the characteristic polynomial

λ3 + (α + β + k + γ + 3µ)λ2+(αβ + ακ + αγ + 2αµ + βγ + 2βµ + κγ + 2κµ + 2γµ + 3µ2)λ

+αβµ + ακγ + ακµ + αγµ + αµ2 + βγµ + βµ2 + κγµ + κµ2 + γµ2 + µ3 = 0.
(10)

Since (α + β + k + γ + 3µ) > 0, (αβ + ακ + αγ + 2αµ + βγ + 2βµ + κγ + 2κµ + 2γµ + 3µ2) > 0 and
αβµ + ακγ + ακµ + αγµ + αµ2 + βγµ + βµ2 + κγµ + κµ2 + γµ2 + µ3 > 0 it implies that J is having eigenvalues
with negative real parts. Hence, Eq. (8) is asymptotically stable.

2.4. Existence and uniqueness

We now analyse the existence of a unique solution for the system (8) using the fixed point theory and
Picard–Lindelöf technique. With the initial conditions(C(0), S(0), R(0)) = (I, 0) we convert the system (8) into
an integral equation by using the ath-order Caputo–Fabrizio integral define in (6). We now obtain

C(t)− I = 2(1−a)
Ω(a) {γR(t)− (µ + α)C(t)}+ 2a

Ω(a)(2−a)

∫ t
0 {γR(t)− (µ + α)C(t)} ds,

S(t)− 0 = 2(1−a)
Ω(a) {αC(t)− (κ + µ + β)S(t)}+ 2a

Ω(a)(2−a)

∫ t
0 {αC(t)− (κ + µ + β)S(t)} ds,

R(t)− 0 = 2(1−a)
Ω(a) {βS(t)− (µ + γ)R(t)}+ 2a

Ω(a)(2−a)

∫ t
0 {βS(t)− (µ + γ)R(t)} ds.

(11)

Let C0(t) = 1, S0(t) = 0 and R0(t) = 0 then the Picard iteration is defined as
Ci+1(t) =

2(1−a)
Ω(a) {γRi(t)− (µ + α)Ci(t)}+ 2a

Ω(a)(2−a)

∫ t
0 {γRi(t)− (µ + α)Ci(t)} ds,

Si+1(t) =
2(1−a)

Ω(a) {αCi(t)− (κ + µ + β)Si(t)}+ 2a
Ω(a)(2−a)

∫ t
0 {αCi(t)− (κ + µ + β)Si(t)} ds,

Ri+1(t) =
2(1−a)

Ω(a) {βSi(t)− (µ + γ)Ri(t)}+ 2a
Ω(a)(2−a)

∫ t
0 {βSi(t)− (µ + γ)Ri(t)} ds.

(12)

To show the existence of a unique solution we define
f1(t, C, S, R) = γR − (µ + α)C,

f2(t, C, S, R) = αC − (κ + µ + β)S,

f3(t, C, S, R) = βS − (µ + γ)R,

(13)

where f1(t, C, S, R), f2(t, C, S, R) and f3(t, C, S, R) are contraction.
As such we define the Picard operator as

P(ζ(t)) = ζ0 +
2(1 − a)

Ω(a)(2 − a)
∆(t, ζ(t)) +

2a
Ω(a)(2 − a)

∫ t

0
∆(s, ζ(t))ds, (14)

where ζ(t) = (C(t), S(t), R(t)), ζ0 = (I, 0) and

∆(t, ζ(t)) = ( f1(t, C(t), S(t), R(t)), f2(t, C(t), S(t), R(t)), f3(t, C(t), S(t), R(t))).

Hence the solution of the system (8) is bounded. Also, since f1, f2and f3are contraction, we write

∥∆(t, ζ1(t))− ∆(t, ζ2(t))− ∆(t, ζ3(t))∥ ≤ δ ∥ζ1(t)− ζ2(t)− ζ3(t)∥ , (15)

where δ < 1. Again using Eq. (11) we obtain
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∥ζ(t)− ζ0∥ =

∥∥∥∥ 2 (1 − a)
Ω(a)(2 − a)

∆(t, ζ(t)) +
2a

Ω(a)(2 − a)

∫ t

0
∆(s, ζ(t))ds

∥∥∥∥
≤ 2 (1 − a)

Ω(a)(2 − a)
∥∆(t, ζ(t))∥+ 2a

Ω(a)(2 − a)

∫ t

0
∥∆(s, ζ(t))∥ ds

≤
(

2 (1 − a)
Ω(a)(2 − a)

+
2at0

Ω(a)(2 − a)

)
δ ≤ cδ, (16)

where we need cδ < 1, as such by using the definition of (14), we obtain

∥P(ζ1(t))− P(ζ2(t))− P(t, ζ3(t))∥ =

∥∥∥∥ 2 (1 − a)
Ω(a)(2 − a)

{∆(t, ζ1(t))− ∆(t, ζ2(t))− ∆(t, ζ3(t))}

+
2a

Ω(a)(2 − a)

∫ t

0
{∆(s, ζ1(s))− ∆(s, ζ2(s))− ∆(s, ζ3(s))} ds

∥∥∥∥
≤ 2 (1 − a)

Ω(a)(2 − a)
∥∆(t, ζ1(t))− ∆(t, ζ2(t))− ∆(t, ζ3(t))∥

+
2a

Ω(a)(2 − a)

∫ t

0
∥∆(s, ζ1(s))− ∆(s, ζ2(s))− ∆(s, ζ3(s))∥ ds

≤ 2 (1 − a)
Ω(a)(2 − a)

δ ∥ζ1(t)− ζ2(t)− ζ3(t)∥

+
2aδ

Ω(a)(2 − a)

∫ t

0
∥ζ1(s)− ζ2(s)− ζ3(s)∥ ds

≤
{

2 (1 − a)
Ω(a)(2 − a)

+
2at0

Ω(a)(2 − a)

}
δ ∥ζ1(t)− ζ2(t)− ζ3(t)∥

≤ cδ ∥ζ1(t)− ζ2(t)− ζ3(t)∥ , (17)

where cδ < 1 from Eq. (16). As a result, the system (8) has a unique solution since the operator Pis contraction.

2.5. Stability analysis

At this point to prove the stability of the Picard iteration established in the previous section, we will use
the fixed point theory.

Theorem 1. [20] If Qis self-map ofΦ such that it’s Banach space is (Φ, ∥.∥). Then for allu, v ∈ Φ, Qis
PicardQ−Stableif the inequality below holds

∥Qu − Qv∥ ≤ K ∥v − Qv∥+ k ∥u − v∥ , (18)

where K ≥ 0 and 0 ≤ k ≤ 1.

We now consider the iterative formula for system (8) as:
Ci+1(t) = Ci(t) + L−1 [λ (m, a) L [γRi(t)− (µ + α)Ci(t)]] ,

Si+1(t) = Si(t) + L−1 [λ (m, a) L [αCi(t)− (κ + µ + β)Si(t)]] ,

Ri+1(t) = Ri(t) + L−1 [λ (m, a) L [βSi(t)− (µ + γ)Ri(t)]] ,

(19)

where the Lagrange multiplier is represented byλ (m, a) = m+a(1−m)
m .

Theorem 2. let Q be a self-map then,
Q (Ci(t)) = Ci+1(t) = Ci(t) + L−1 [λ (m, a) L [γRi(t)− (µ + α)Ci(t)]] ,

Q (Si(t)) = Si+1(t) = Si(t) + L−1 [λ (m, a) L [αCi(t)− (κ + µ + β)Si(t)]] ,

Q (Ri(t)) = Ri+1(t) = Ri(t) + L−1 [λ (m, a) L [βSi(t)− (µ + γ)Ri(t)]] .

(20)
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Thus Eq. (19) is conditionally Q−Stable in B2 (0, T).

Proof. First we show that Q having a fixed point. Thus, Q (Ci(t))− Q
(
Cj(t)

)
∀ (i, j) ∈ N × N

Q (Ci(t))− Q
(
Cj(t)

)
=Ci(t)− Cj(t) + L−1 [λ (m, a) L [γRi(t)− (µ + α)Ci(t)]]

− L−1 [λ (m, a) L
[
γRj(t)− (µ + α)Cj(t)

]]
=Ci(t)− Cj(t) + L−1 [λ (m, a) L

[
γ
(

Ri(t)− Rj(t)
)
− (µ + α)

(
Ci(t)− Cj(t)

)]]
. (21)

Taking the supreme norm of Eq. (21), gives us∥∥Q (Ci(t))− Q
(
Cj(t)

)∥∥ ≤
∥∥Ci(t)− Cj(t)

∥∥+ ∥∥∥L−1 [λ (m, a) L
[
γ
(

Ri(t)− Rj(t)
)
− (µ + α)

(
Ci(t)− Cj(t)

)]]∥∥∥ .
(22)

Similarly, we have∥∥Q (Si(t))− Q
(
Sj(t)

)∥∥ ≤
∥∥Si(t)− Sj(t)

∥∥
+

∥∥∥L−1 [λ (m, a) L
[
α
(
Ci(t)− Cj(t)

)
− (κ + µ + β)

(
Si(t)− Sj(t)

)]]∥∥∥ ,∥∥Q (Ri(t))− Q
(

Rj(t)
)∥∥ ≤

∥∥Ri(t)− Rj(t)
∥∥

+
∥∥∥L−1 [λ (m, a) L

[
β
(
Si(t)− Sj(t)

)
− (µ + γ)

(
Ri(t)− Rj(t)

)]]∥∥∥ . (23)

Assuming the solutions perform the same roles:∥∥Q (Ci(t))− Q
(
Cj(t)

)∥∥ ∼=
∥∥Q (Si(t))− Q

(
Sj(t)

)∥∥ ∼=
∥∥Q (Ri(t))− Q

(
Rj(t)

)∥∥ . (24)

By considering the assumption (24), from Eqs. (22) and (23) we get
∥∥Q (Ci(t))− Q

(
Cj(t)

)∥∥ ≤ (1 + γn̄1(t)− (µ + α)n̄2(t))
∥∥Ci(t)− Cj(t)

∥∥ ,∥∥Q (Si(t))− Q
(
Sj(t)

)∥∥ ≤ (1 + αn̄3(t)− (κ + µ + β)n̄4(t))
∥∥Si(t)− Sj(t)

∥∥ ,∥∥Q (Ri(t))− Q
(

Rj(t)
)∥∥ ≤ (1 + βn̄5(t)− (µ + γ)n̄6(t))

∥∥Ri(t)− Rj(t)
∥∥ ,

(25)

where n̄1, n̄2, n̄3, n̄4, n̄5 and n̄6are functions gotten through the use of L−1 [λ (m, a) L [.]].
By using the condition 

1 + γn̄1(t)− (µ + α)n̄2(t) < 1
1 + αn̄3(t)− (κ + µ + β)n̄4(t) < 1
1 + βn̄5(t)− (µ + γ)n̄6(t) < 1

(26)

It implies the self-map Qis contraction, as such it is having a fixed point. Hence we show that Qsatisfies
conditions of Theorem 1. we assume that

K = (0, 0, 0) , k =


1 + γn̄1(t)− (µ + α)n̄2(t)
1 + αn̄3(t)− (κ + µ + β)n̄4(t)
1 + βn̄5(t)− (µ + γ)n̄6(t)

(27)

Hence, Q is Picard Q−Stable since all conditions of Theorem 1 holds.

2.6. Numerical stimulation

We used JULIA [21] as well as real world parameters to perform numerical stimulations of our model.
The simulations were used to identify potential areas of improvement. It allowed us to test the model’s
assumptions and predictions which helped us to evaluate the performance of child mortality and make
necessary improvements. We first perform stimulations with the global parameter followed by the Africa
parameters.

From Figure 1 we could see that at the end of 5 years, every surviving child would have pass through at
least one illness and has recovered. This is an indication of the effectiveness of the healthcare system and its
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success in treating diseases. It is also a sign that children are resilient and can fight off illnesses. One of the key
factors contributing to the effectiveness of the healthcare system in treating diseases and preventing illnesses
in children is the implementation of vaccinations. By ensuring that children are immunized against various
diseases, vaccinations play a crucial role in boosting their immune systems and reducing the likelihood of
illness. Again, Figure 1 confirms the global trends of child mortality where surviving rates are increasing [2]
which is a very positive sign that child mortality has decreased globally. This decrease in child mortality is
largely due to the implementation of effective health policies, improved access to healthcare, and increased
investments in public health [22].

Figure 1. Global recovery rate of 75% and mortality rate of 37 per 1000 births

Figure 2. Africa recovery rate of 58% and mortality rate of 70 per 1000 births

From Figure 2 we can see that the diagram really depicts the African situation on child mortality. There
are several factors contributing to high child mortality in Africa, including limited access to healthcare and
immunization, poor nutrition and sanitation, inadequate prenatal and postnatal care, and the prevalence of
infectious diseases such as malaria, pneumonia, and HIV/AIDS [5]. These challenges highlight the urgent
need for targeted interventions and investment in healthcare infrastructure in order to improve child survival
rates in the region. Although there has been much improvement in subsequent years, still much needs to be
done so as to achieve the sustainable development goals.

From Figure 3 we can see that reducing the natural death rate and the rate at which recovered children
return to the susceptible compartment does not have any influence on reducing child mortality. This indicates
that reducing child mortality requires interventions that prevent children from contracting the disease in the
first place. Such interventions might include providing access to vaccines, improving sanitation and nutrition,
and providing better health care [23].

It can be seen from Figure 4 that reducing child mortality rate and the rate at which recovered children
return to the susceptible compartment alone do not have much impact on reducing child mortality. However,
it is much better than Figure 3.
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Figure 3. Reduced natural death rate and reduced Gamma rate

Figure 4. Reduced gamma and mortality rates

Figure 5. reduced natural death rate, reduced Gamma rate and reduced mortality rates

It can be seen from Figure 5 that reducing child mortality rates, natural death rates and the rate at
which recovered children return to the susceptible compartment have much impact on the reduction of
child mortality. This is because child mortality is reduced by preventing deaths due to infectious diseases,
malnutrition, and vaccine-preventable illnesses. In addition, a decrease in natural death rates and the rate
at which recovered children return to the susceptible compartment allows more resources to be directed
towards improving the health of children. This, in turn, leads to improved health outcomes and better
outcomes for the overall population. Additionally, improved health outcomes for children lead to greater
economic productivity, as healthier children have better educational outcomes and are more likely to enter
the workforce. It confirms other studies that reducing child mortality does not depend solely on lowering
mortality rates [24,25]. Consequently, we must also try to reduce natural death rates as well as reduce



Open J. Math. Sci. 2025, 9, 203-212 211

the likelihood that recovered children will become susceptible to other diseases. To reduce natural death
rates in children, it is essential to focus on improving access to quality healthcare services, implementing
effective nutrition programs, and promoting hygiene and sanitation practices. Additionally, investing in
early childhood development programs and providing comprehensive immunization coverage can also play
a significant role in reducing natural death rates among children.

3. Conclusion

The fractional model in the sense of Caputo derivative was used to model Child mortality. the equilibrium
points, existence and uniqueness of a solution and its stability were obtained. The numerical results indicate
that reducing just child mortality rates will not result in drastic survival rates for children under five. In
addition to reducing natural death rates, it is also necessary to reduce the rate at which recovered children
become susceptible to other diseases. One strategy for reducing the rate of susceptibility in recovered children
is to improve their overall immune system through proper nutrition and access to healthcare. Vaccination
programs can also play a crucial role in preventing the spread of infectious diseases and reducing the chances
of recovered children falling ill again. Additionally, implementing hygiene practices and providing clean
water sources can further protect children from contracting new infections. Regular health check-ups are also
important to ensure that recovered children remain healthy and do not relapse. To further improve the survival
rates of children under five, it is recommended to implement comprehensive public health campaigns that
educate communities about the importance of proper nutrition, hygiene practices, and access to healthcare.
Additionally, providing ongoing support for vaccination programs and ensuring regular health check-ups for
recovered children can significantly reduce the risks of relapse and susceptibility to other diseases. These
findings have important implications for future studies on child health and mortality. It highlights the need to
take a holistic approach to improving the survival rates of children under five, focusing not only on reducing
mortality but also on strengthening their immune systems and addressing factors such as nutrition, healthcare
access, vaccination, and hygiene practices. By incorporating these elements into public health interventions,
we can create a more comprehensive and effective strategy for reducing susceptibility and improving overall
child health outcomes. However, it is important to acknowledge the limitations of this study. The study
focused on a limited number of factors and did not consider other potential variables that could impact child
health and mortality. Further research is needed to explore the complex interactions between various factors
and develop targeted interventions that address the specific needs of different populations. Other studies can
also include recruitment rates which may provide different results.
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