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Abstract: In this paper, we focus on calculating the Mellin transform of three types of trigonometric functions,
n n n
namely, ) ¢ sin(agx), Y cxcos(agx) and Y (1 — cos(ayx)), where 1 is an integer, ¢, € R* and 0 < ag <

k=0 k=0 k=1
- < ay. Our approach is based on the application of techniques from linear algebra, calculus, Laplace

Ly}
sin™ x
o dx, n € N¥,

(o)
transform, and special functions. In particular, we give an evaluation of the integral /
0
O<a<n+1
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1. Introduction

T he Mellin transform is a powerful integral transform that serves as the multiplicative analogue of
the Laplace transform. It finds extensive applications in pure and applied mathematics, including

number theory [1], complex analysis [2], applied mathematics [3], and engineering [4]. Its utility extends
to diverse domains such as electromagnetics, signal processing, quantum calculus, medical imaging, and
mathematical physics [5-8]. A key strength of the Mellin transform is its scale invariance, which makes it
particularly effective for solving partial differential equations and analyzing the local behavior of functions
near singularities, especially when such functions admit series expansions.

Beyond its practical utility, the Mellin transform is valued for its algorithmic structure, enabling the
systematic evaluation of complex integrals and the derivation of asymptotic expansions. It also plays a central
role in the study of special functions, due to its close connection with the Gamma and Beta functions. Recent
advances have introduced generalized versions of the Mellin transform, further enhancing its theoretical and
computational scope [8].

Moreover, the Mellin transform facilitates the simplification of functions by mapping them into a more
tractable domain, from which the original function can often be recovered via inversion.

In this paper, we are interested in the calculus of the Mellin transform for real variables of the following
three types of trigonometric functions.

n
1. Su(x) = Z crsin(agx), wheren € N, ¢y € R*,0<k<m,and0 < ag < --- < ay.

k=0
n
2. Tu(x) = ) cxcos(axx), wheren € N, ¢ € R*, 0 <k <m,and 0 < ag < --- < ay.
k=0
n
3. Ju(x) = ) k(1 — cos(axx)), wheren € N*, ¢ e R*, 1 <k <m,and 0 < ay < --- < ay.
k=1

Our results, stated below in Theorems 1, 2, 3, allow us to evaluate improper integrals of the following
forms:

dx, forne Nand0 < a <2n+2,

/oo Sin2n+l (x)
0

x%

dx, forne Nand0 <o <1,

/00 C082n+1 (x)
0

x7
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and

dx, forne N*and1 <a <2n-+1.

/°° sin?" (x)
0

xDC
As shown in Corollaries 1, 2, 3, our results extend and generalize those established in the literature.
Namely, the authors in [9] considered only the special case of the first type of improper integrals:

© gin" x
/ dx, for n € N*.
0

xh

In [10], the author examined improper integrals of the forms:

0 qin/?
/ Sl:;m xdx, for integers n, m such that n > m, @
0
® sin” x i
/ de, forn € N, p € Rsuch that (0 <p <n+1)or (4 <landnisodd), @)
J0
and o ot
/ Coiy(X)dx’ forn € N, u € Rsuch that0 < < 1and nis odd. ®3)
0

In order to address the calculus of these integrals, Trainin [10] used various techniques, including Taylor
series, trigonometric transformations, and special substitutions. A significant part of the article was dedicated
to demonstrating the validity of these techniques through concrete examples and specific cases. Indeed, the
author furnished in the appendix a synopsis of the evaluation of integrals in (1) depending on the parities
of integers n and m, without a proof. For the evaluation of the integrals of forms (2) and (3), the author
provided examples without giving general formulae. The principal novelty of our work is that we provide
explicit closed-form expressions for every type of integral studied in [9,10]. In particular, we derive unified
formulas for the Mellin transform of any linear combination of sines and cosines at distinct frequencies, valid
throughout their maximal domains of convergence.

The outline of this article is as follows. In §2, we recall essential definitions and present preliminary results
that will be crucial in the following analysis. §3, §4 and §5 are dedicated to evaluating the Mellin transform of
Sn, T, and J,, respectively.

2. Preliminaries

We begin this section by introducing key definitions related to the Mellin transform, as well as the Gamma
and Beta functions.

Definition 1. Let f be a piecewise continuous function on (0, o). The Mellin transform of f is defined by
(o)
M(F)(s) = [ # 7 flx)dx,

0
where s is a real number for which the integral converges.
Definition 2. For x > 0, the Gamma function is defined by

o

I(x) = / Lo tar,
0

Definition 3. For x > 0, y > 0, the Beta function is defined by

1
B(x,y) = /0 P11 — YL,

We recall below some fundamental identities that will be used throughout the paper. For further details
on the properties of the Gamma and Beta functions, we refer the interested reader to [11].
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Proposition1. 1. For x > 0, we have
I(x+1)=aT(x).

2. FrneN,T(n+1) =nl
3. For 0 < x < 1, we have the Euler’s reflection formula

T
sin(7tx)

I(x)T(1—x)=

4. For a > 0, we have

l _ 1 « —tx a—1
t“il"(zx)/o e " x"dx. 4)

5. For x,y > 0, we have

6. For 0 < x < 1, we have the classical identity

7T

Blx1—-x) = sin(7tx)

®)
In what follows, we give some examples of the Mellin transform.

Example1. 1. Leta, B, A be positive real numbers and define the function f on (0, c0) by

1
flx) = m~

Then, M(f)(s) is defined for 0 < s < AB and is given by

aip

M(f)(s) = "5-B (5.6~ 3)-

2. Let f(x) = e"%l' Then, M(f)(s) is defined for s > 1 and is given by

where  is the Zeta function defined by {(s) = kz %, fors > 1.
=1
3. Leta # 0, B > 0 and define the function f on (0, o) by

fx) =e > xP.

Then, M(f)(s) is defined for > ; P > 0 and is given by

M) =t (F5F).

al” \ &

4. Let f(x) = In(1 + x). Then, M(f)(s) is defined for —1 < s < 0 and is given by

M(f)(s) = ——

~ ssin(7ms)’
The following lemmas are essential to obtain our main results.

Lemma 1. We consider a > 0.

1. Let —1 < 6 < 1. Then, we have

= = (6)

/oo 10 g — af—1 af—1 raf—1
o P+a> 2cos(%)  2sin(ZY)  2gin(ZLH))
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2. Let 0 < o < 2. Then, we have

/°° sin(at)dt B ma®!
0 g 2T (w) sin (%)
3. Let 0 < « < 1. Then, we have
/°° cos(aif)dtL B ma*~ 1
0 to 2T (a) cos()

Proof. 1. By making the change of variables u = Z—i, we get that

o 0 af1 >
/0 2 + 2= 3 / 1+u du
Then by using the transformation z = 1, we obtain that
o 0 af-1 0
Sl = / 27 (1-z)" "t
./o t2 + a2 2 z

146 1-6
2B< 2 2)'

This gives by (5) that
0 0 af—1
/ 212 dt = — (1+6)y
0 2sin(=%—)
Noting that
n A0 _ cos 6
2 N 2 )7
and
in 1=6)) _ U
s 7 =cos | — |,
we deduce (6).

2. By integration by parts, we have

/°° sin(at) At — {HOS(‘”)] ” L2 /oo 1 - cos(at) dt.
0 0 0

o atx a o+l

Using (4), this yields

®sin(at) , a Y R & ,—tx
/0 o dt_aF(aJrl)/o /0 (1 —cos(at)) x“e " dtdx.

—tx

Since the integrand (1 — cos(at)) x“e
applies, allowing us to interchange the order of integration, and we obtain

® sin(at) B « © /°° “tx(q
/0 T dt = 7@(“4_1)/0 x (.0 e (1 — cos(at)dt | dx

B 1 © (1 x
N al"(zx)/o * (x x2+a2)dx

a 00 i 1
= d
['(«) /0 2+a2

This gives, using (6) for § = « — 1, the intended result.
3. By an integration by parts, we get that

/°° cos(at)dt _ {sin(at)} * L /°° sin(at) it
0 0 0

te at® a pat+l

@)

®)

is nonnegative on (0,00) x (0,00), the Fubini-Tonelli theorem
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0 g1 t
_ g/ sin(a )dt.
a Jo t(X+1

Since 1 < & 4+ 1 < 2, we achieve, using (7) and (8), the desired result.
O

Lemma?2. Leta > 0,t > 0, and m € N. Then we have

m—1 . . . am
Yo (—nmTlgm Y 4 ()" ——, if mEeNF,
tm ]:O t+ﬂ
t+a
1 )
ra if m=0.

Remark 1 (Parity-Endpoint Mechanism). The Mellin transforms of the trigonometric functions S, (x), Tx(x),
and J,(x) exhibit a unified behavior with respect to the exponent in the denominator of the integrand.
Specifically, for each function, there exists an integer (denoted p, g, or r, as defined in Lemmas 3, 5 and 7
below) that determines the convergence interval of the Mellin transform. The evaluation of the integrals

/Oo SL(X)dx, /00 L(x)dx, /oo de
0 0 0

X« x7 X«
depends critically on whether the exponent a or ¢ lies in a specific discrete set:

- For S, (x), the integral simplifies to a closed form involving trigonometric and Gamma functions when
« ¢ 2N, but yields logarithmic terms when & € 2N* (Theorem 1).

- For Ty (x), the closed form holds for o ¢ 2N + 1, while logarithmic terms appear for o € 2N + 1 (Theorem
2).

- For J,(x), the closed form applies for a ¢ 2N + 3, and logarithmic terms arise for « € 2N + 3 (Theorem
3).

This dichotomy stems from the pole structure of the Mellin transform and is a direct consequence of the
identities established in Lemmas 1 and 2. The minimal indices p, g, 7 govern the convergence domains and the
appearance of logarithmic singularities at certain values of the exponent.

3. Mellin transform of S,,, n € N

n
In this section, we consider #n € N and define S, (x) = Z i sin(agx), where for 0 < k < n, ¢, € R*, and
k=0
0<ag < - <ay.

n
Lemma3. Letp =min{/ € N: } ckaiprl # 0}. Then, we have 0 < p < n.
k=0

n
Proof. Suppose that p > n + 1. This implies that for all 0 < | < n, we have ) ckai““l = 0. Specifically, this
k=0
system can be written as:

apgco+ - +aycy, =0
Ao+ +ade, =0

u%”“co 44 a e, =0.
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S) is a system of n + 1 linear equations with n + 1 unknowns ¢, - - - , ¢;;. Its determinant is given b
y q g y

agp e an
3 3
O B
dets = . .. . Hak aO, ., a ),
2n+1 2n+1
aj R

where V(a%,. ..,a2) is a Vandermonde determinant. This implies that

detS—Hak I (a; 2 a?) > 0.

k=0 0<i<j<n

Thus, the system (S) is a Cramer system, which implies that its unique solution is the (n + 1)—tuple

(0,---,0). This contradicts the assumption that for 0 < k < n, ¢, € R*. Therefore p < n.
Lemma 4. There exists C > 0 such that for all x > 0, we have

1S4 (x)] < C min(x?P"1,1).

Proof. From the Taylor expansion of the sine function at 0 and the definition of p, we obtain, for x > 0,

Su(x) = (2(p+1 (Zcf’j“) P 4 o(x12),

n
so that x — S, (x)/x?P"1 is continuous on [0, 1]. Moreover, since [S,(x)| < ) _ |ex| for x > 0, it follows that

k=0
there exists C > 0 such that

S, (x)] < Cmin{x?*1,1}, x> 0.

O

Remark 2. By the definition of the Mellin transform

we have

/0°o Snlx) o — /0°o KRS, () dx = M(S,)(1— ).
In particular, this integral converges if and only if
0<a<2p+2,

so that the strip of definition for M(S,)(s) is

—(2p+1)<s< 1

Besides, we have that the Mellin transform M(S,)(s) is analytic on the vertical strip

—2p+1)<s<1l.

Moreover, singularities occur at the points
s=1-—2m, m € N¥,

which correspond to even values of the parameter «.



Open J. Math. Sci. 2025, 9, 245-264 251

Theorem 1. Assume 0 < a < 2p + 2. Then

-1 .
™ Su(x) T L Ckap L fa 2N,

/ n - dx = M(Sn)(l — (x) = . n k=0

C CUZ Y cat T Ing,  ifa e 2N,

Proof. Let 0 < & < 2p + 2. We distinguish two cases.
Case 1. If 0 < & < 2, then by applying Lemma 1, we obtain that

[eS) n 0 g
/ Sn(x)dx _ Eck/ sm(akx)dx
o x* k=0 70 Xt

Case 2. If 2 < a < 2p + 2, then we have from (4),

I Sl e - r(la) /0°°<./0°°e_txta_1dt>sn(x) "

Using Lemma 4, we have on (0, 00) x (0, c0),
le" 1715, (x)| < Ce ™ t* I min(x?P 11, 1).

Since the function (x,t) — e ™t* 1min(x??*1,1) is integrable over (0,00) x (0,00), then Fubini-Tonelli
theorem applies and we obtain that

_ r(la) /0 ” tal( /0 et kzo cksin(akx)dx)dt
_ ﬁ /O ® kg cktw—l( /0 ” e—fxsin(akx)dx)dt

1o 1
= — Crag———=dt.
T'(a) ./0 k_go L) + az

Due to the parity-endpoint mechanism (Remark 1), the interval [2,2p + 2) decomposes as:

-1
2,2p+2) = ( ij (2m,2m+2)> u (pU {2m+2}) .
m=1 m=0

We therefore distinguish two subcases:

Subcase 1. If o ¢ 2N, then there exist m € {1,---,p} and —1 < € < 1such thatw = 2m + 1+ €. This is
equivalent to 2m < « < 2m + 2.

Then, we get by using Lemma 2, that

i ta—l n t2m

a5y = Y cap5—s
2 2 2.2
= e = Pt
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< (S -1 2(m—j-1) 2 ag"
= ) ckak< Yo (1) g T 4 (—1)’”152 2)
k=0 =0 +ai
m—1 . n e ) c a2m+1
_ te|: Z (_1)111]1( Z Ckﬂiw ] 1)+1>t2] + (_1)m Z k2 k 5 }
=0 k=0 K=o £+ ai

Sincefor0 <j<m-—1wehave0 <m—j—1<m—1<p—1,itfollows that for 0 <j <m —1, we

n .
have Z ckai(m_]_l)+1 = 0. Hence we reach that
k=0

oosn(x) _ 1 /00 _1\m4€ . Ckaim-‘rl
/O x“dx_l"(uc)o(l)t; azdt

Using (6), we obtain that

) -1
/ Sn(ax) dx = (=p" i c aim+1 nai -
0o X I(a) = 2sin(@)

T a%m+e

0 2 sin(iﬂ(“gzm )

- 2T () sin( cha

L
2

Subcase 2. If « € 2N*, then there exists m € {0,--- ,p — 1} such that « = 2m + 2. So, we have

E a—1 i th
Cklk g =) Cklk 5 7
k=0 i =0 t-+a

As in subcase 1, we obtain that

* Sn(x) (—1 2m+41 s
/0 y;“ dx = hm Z "t /

ds
2—0—11%

This implies that
t

e Gl B [ )]

t—00 =0 0

n
Using the fact that for 0 < m < p — 1, we have Z ckai"”rl = 0, we get that

0
/000 s;;(“x)dx - ( = {hmzcbﬂm—#lln anZmH )}
= (1)m+1f a2+ n(ay)
(-1)2 &

= Fa) kgockaz‘_lln(ak).

This ends the proof. O

As an application of Theorem 1, we give the following examples.
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© 5sinx —4sin2 in3
Example 2. 1. Consider the improper integral / s 5;1: X tsin *dx. Here, we have n = 2,
0
co =50¢c = —4c=1a = 1,a; = 2, and ap = 3. It can be easily verified that p = 2. Therefore,
© 5gin 1 — 4gin? .
Ssinx — 4sin2x + sin 3x dx converges if and only if 0 < & < 6. By Theorem 1, we have
0 x*
T (5-2%*143%1)  if a¢2N
: : . 20 (w) sin(73") ' '
/°° 5sinx —4sin2x 4 sm3xdx B
0 x% o I
(—1)2

(—2*"1n(2) +3*1In(3)), if a € 2N*.

To illustrate this result further, we consider the following specific cases.

a. Fora = g, we have

dx

/°°5sinx—4sin2x+sin3x _ 2\/3271(8\[2—5—3\/5)-
0

X2

b. For « = 4, we have

/ 551nx—4sm2x+sm3xdx _ 9ln(3) _ Eln(Z).
0 x4 3

® cos(ax) sin(bx)
xlX

2. Fora > 0, b > 0, we consider the improper integral / dx. We have

cos(ax) sin(bx) = %sign(b —a)sin(|b —alx) + E sin((b + a)x),

2
where
-1, if a>b,
sign(b—a)=4 0, if a=b,
1, if a<b.
So,

nzl,coz%sign(b—a),clz%,aoz|b—a\,a1:b+a, if a#b,
nzO,CO:%,a():Za, if a=0b0.

® cos(ax) sin(bx)

It is easy to see that p = 0. Therefore, / dx converges if and only if 0 < a < 2. Hence by
J0

xﬂ(
applying Theorem 1, we obtain that
® cos(ax)sin(bx) , T B a1 a1
/0 — dx = AT (@) sin (%) (sign(b—a)lb—al* "+ (b+a)* ).

Corollary 1. Let n € Nand 0 < « < 2n + 2. Then, we have

n
Y (—1fChE (2k+ 1), if a ¢ 2N,
k=0

22”+1F ) sin( %)

00 ain2n+1
/ ST g
0 x4 %
22nr Z DFCEE (2k+1)* T In(2k +1), if a € 2N*.

Proof. Let n € N. Through linearization, which relies on Euler’s formula and the binomial theorem, we have

that for x € R,
-1 kcn—k
% sin((2k + 1)x). )

n
sin2n+1 (x) — Z

k=0
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To apply Theorem 1, we observe that for 0 < k <,

kn—k
G
k — 2211 7
and
aj = 2k +1.
On the other hand, we have
Sin2n+1(x) — x2n+l _+_0(x2n+2).

This implies thatp = nand for0 <m <n—-1,n>1,

n
Y o2k + 1) = 0.
k=0

 sin?"*1(x)
06

Hence, applying Remark 2, we deduce that the integral / dx converges if and only if 0 < a <

2n + 2. Moreover, Theorem 1 gives that

T - k~n—k .
22n+11‘((x) Sin(%) kZ( 1) anJr] (2k+1)* 1, if o ¢&?2N,
=0

0o wi2n+1
/ udx = and
0 1)

n
22nr kz DECE K (2k+1)* TIn(2k+1), if a€2N%

In the following example, we present specific cases of Corollary 1.

Example3. 1. Bytakingn =1anda = %, we obtain that

o sinB(x)dx _ V2m 5 ﬁ
0 VX -8 3
2. For n € N*, we have:
0 Sin2n+l( ) _ (_1)71 ! n—k k 271711 k
/0 2 = Py 1) vkzo )G (24 1) In(2k + 1),

3. Forn € N, we have:

o0 27[-‘1—1 n n
sin™"" (x) (-1)"m kn—k
/O I 5 LY ik 2k + 1)

4. Mellin transform of T,,, n € N

In this section, we consider n € N and define T, (x Z ¢ cos(agx), where for 0 < k < n, ¢, € R*, and
k=0
0<ay <+ <ay.

Using similar arguments as in the proofs of Lemmas 3 and 4, we obtain the following results.

n
Lemma5. Let g =min{l e N: ) cxa # 0}. Then, we have 0 < q < n.
k=0

Lemma 6. There exists C > 0 such that for x > 0, we have

| T, (x)] < Cmin(x%,1).
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Remark 3. By the definition of the Mellin transform

M(T,)(s) = /0°° 1T, (x) dx,

we have

* Ty(x) © (—ot1)-1
/0 G dx:/o x(COHDEIT (x) dx = M(T,)(1 - o).
Hence this integral converges precisely when

0<o<2g+1,
so that the Mellin transform M(T;)(s) is defined on the vertical strip

—2g <s <L

Furthermore, the Mellin transform M(T,,)(s) is analytic on the strip —2g < s < 1. Its poles are located at
s = —2m, with m € N*¥, and correspond to odd values of the parameter ¢.

Theorem 2. Assume 0 < o < 2q+ 1. Then

1 .
Tn( ) I'(0) ?os% chaa ’ lf(T%ZN—i—l,
/0 dx - (Tn)(l _0-) = +’7

U)

n
chak_ Inay, ifc€2N+1.
k=0

Proof. Let 0 < o < 2q + 1. We distinguish two cases.
Case 1. If 0 < ¢ < 1, then by applying Lemma 1, we obtain that

®© T, (x) 't cos(agx)
/0 v dx = Z / 7dx

B 2T(0) cos” chu

2

Case 2. If 1 < 0 < 29+ 1, then we have from (4),

./(;°° T,;C(Ux)dx = 1"(10)./000 </0°°e—txta—1dt) Ty (x)dx

Using Lemma 6, we have on (0, 00) x (0, c0),
le™ ™t 1T, (x)| < Ce ™t min(x?,1).

Since the function (x,t) — e **t°~I min(x?7,1) is integrable over (0, 00) x (0, c0), then Fubini-Tonelli theorem
applies and we obtain that

/O°° T,;(Ux)dx = ﬁ/ooo (/Oooe_txfa_ldt>Tn(x)dx
= [ [T

= 1"(1(7) /Ooo o1 ( /Ooo e ¥ i Ck cos(akx)dx) dt

k=0
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o n [
1,(10)/0 k_zocktal(/o e cos(akx)dx)dt

1 oco N ttT
— Cr—=——=dt.
F(U)/() g;o “Pyal

Due to the parity-endpoint mechanism (Remark 1), the interval [1,29 + 1) decomposes as:

We therefore distinguish two subcases:

Subcase 1. If o ¢ 2N + 1, then there exist m € {1, - -

equivalent to2m —1 < o < 2m 4+ 1.
Then, we get by using Lemma 2, that

ttT

chz 2
=0 I tag

n

t62c

k=0
n

€y
k=0

te[ Z(fl

kz
t+ak

j=0

q
L2g+1)= | (@m—1,2m+1)U{2m—1}).
m=1

Ck( Z (_1)7117]71[1;("7*]*1)152] + (_1)771

. n . .
N AR EEACIE Y
k=0

2
i—o t-tag

2m
A

2 2
£+ ap

n

)

cka%

|

,q} and —1 < € < 1such that ¢ = 2m + €. This is

Giventhat0 <j<m—1limplies0 <m—j—1<m—1<g—1,itfollows that for0 <j <m —1, we

n
2(m—j—1
have chak(m =1
k=0

Subcase 2. If & € 2N + 1, then there exists m € {0, - - -

r

arguments as above that

® Tu(x)

x¢

Tu(%) dx

xG’

= 0. Thus, applying (6), we conclude that

dx =

1 tbﬂ+1
- W/ » t2+akdt
1 n 2m
- 1"((7)/ Z;’J t2+
_ o f [

ZF(U)

2+a

,q — 1} such that ¢ = 2m + 1. So, we have by similar
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n
Taking into account that for 0 < m < g — 1, we have Z cka%m = 0, we get that

k=0
= Ty() < e ra)
/0 e dx = hcha t+ak)0
( m+l n
= Z cka " In(ay)
( 2 cal 'In(a
This ends the proof. O
To illustrate Theorem 2, we provide the following examples.
© — 2
Example 4. 1. Consider the improper integral / Dcosx BCOxSU X+ 3cos3x dx. Here, we have n = 2,
co =50 = -8, ¢ =3,a0=1,a = 2, and ay = 3. It can be easily verified that § = 2. Therefore,
/ dcosy -8 coxs(TZx 3 cos3x dx converges if and only if 0 < ¢ < 5. By Theorem 2, we have
0
T (5-20243%),  if oc¢2N+1,
2I' (o) cos( %)
/°° S5cosx — 8c052x+3c053xdx _
: ¥ | e
o) (=2°*2In(2) +3In(3)), if o €2N+1.

To further describe this result, we examine the following specific cases.

a. Foro = %, we have

e — 2 16v2
/ 5cosx — 8 cos x+3cos3xd _ 615n(5 32\f+27\f)
0

NIN

X

b. For 0 = 3, we have

/°° 5cosx — 8cos2x + 3 cos 3x
0 x3

dx = 221 In(3) — 161n(2).

cos(ax) cos(bx)
x(T

2. For 0 < a < b, we consider the improper integral / dx.

Using the trigonometric identity

cos(ax) cos(bx) = %cos((b —a)x) + % cos((b+a)x),

we get that

1
nzl,cozclzi,aozb—a,al:b+a.

® cos(ax) cos(bx)

v dx converges if and only if 0 < o < 1.

It is straightforward to see that § = 0. Therefore, /
0
Hence by applying Theorem 2, we obtain that

® cos(ax)cos(bx) , T o o
[ (b —a)" 4 (b+a) ).

x7 4T (o) cos(ZF)
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® gin(ax) sin(bx)
x(f

3. For 0 < a < b, we consider the improper integral / dx.

Using the trigonometric identity

sin(ax) sin(bx) — %Cos((b —a)x) - % cos((b + a)x),

we get that
1

n=1c==,c1 = —E,aozb—a,al =b+a.

1
2
® sin(ax) sin(bx)

It is easy to see that 4 = 1. Thus, the integral / =
x

dx converges if and only if 0 < ¢ < 3. By
applying Theorem 2, we find

7T

e ((b—a)" = (b+a)"Y), if o€ (0,3)\{1},
/°° sin(ax) sin(bx) 4L(7) cos (%)
—————dx =
0 x7 1
—((b—a)" 'In(b—a)— (b+a) 'In(b+a)), if c=1.
=
Corollary 2. Let n € Nand 0 < ¢ < 1. Then, we have
© cog2htl (x) T Sk
= 2k +1)71
/0 xo dx 22n+11"( )COS(”T) kgoczm-l( k+ )

Proof. Let n € N. Using linearization, we obtain that for x € R,

n—k

n C
os?(x) =Y i"“ cos((2k + 1)x).
k=0

To apply Theorem 2, observe that for 0 < k < n, we have

k
c C121n+1
k= 4n '
and
a, =2k +1.
n_cn-k o cog2ht1
Since Z 2"“ # 0, it follows that g = 0. Therefore, applying Remark 3, we deduce that / wdx
0
converges 1f and only if 0 < ¢ < 1. Furthermore, Theorem 2 gives that
© 2n+1( )
cos x) T nk
/0 o Ax= 22H1T (¢) cos(Z2) kgoc2n+1

O

To illustrate Corollary 2, we provide the following example.

COS

Example 5. / )dx— \/2?? <1+3\f>

5. Mellin transform of J,,, n € N*

n
In this section, we consider #n € N* and define J,(x) = ) (1 — cos(axx)), where for 1 < k < n, ¢, € R¥,
k=1
and 0 < aq < --- < ay.

Proceeding as in the proofs of Lemmas 3 and 4, we obtain the following results.
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n
Lemma?7. Letr = min{l € N*: ) cka%l # 0}. Then, we have 1 < r < n.
k=1

Lemma 8. There exists C > 0 such that for x > 0, we have
]2 (x)] < Cmin(x*,1).

Remark 4. By definition of the Mellin transform

M) = [ () dx,

0

we observe

® Jn(x) 4 /0°° (D=1 oy dxe = M(J) (1 — a).

Jo x%

Therefore, this integral converges precisely when
1<a<2r+1,

which corresponds to the definition strip

—2r<s <0
for M(Ju)(s). The Mellin transform M(],)(s) is analytic on the strip —2r < s < 0, with singularities at
« € 2N + 3, corresponding to s = 1 — &, that is, odd integers shifted.

Theorem 3. Assumel < « < 2r+ 1. Then

_W chﬂ“ L ifa ¢ 2N+ 3,
=M{Jn}(1-a) =

T(ﬂt)

]”(x)d
x4 —1 .
cha Ina,, ifa €2N43.

Proof. Let1 < a < 2r + 1. In view of (4), we have

oo]n(x) _ e —txa—1
L dx = IX/O ( t dt>]()dx

_ L « ooftxocl
- F(zx/o/e #9411, (x) dtdx.

Using Lemma 8, we have on (0, c0) x (0,00),

(=}

et 1], ()] < Ce ™ L min(x?, 1).

Since the function (x,t) ~— e *#* I min(x?,1) is integrable over (0,00) x (0,00), then Fubini-Tonelli
theorem applies and we obtain that

Ooojnx(:c)dx = I,(llx)/owi‘“l(/oo T (x)dx >dt
= cht“ 1(

- / ZC (1 tzia>t
pn-2

oo n
- a2 dt.
F(oc)/o L kkt2+ a2

k=1

(1- cos(akx))dx> dt
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Due to the parity-endpoint mechanism (Remark 1), the interval (1,2r + 1) decomposes as:

(L,2r+1) = (U (2m—|—1,2m—|—3)> U (rUZ{zm+3}> .
m=0

m=0

We therefore distinguish two cases.
Case 1. If & ¢ 2N + 3, then there exist m € {0,--- ,r — 1} and —1 < € < 1 such that & = 2m + 2 + €. This
isequivalentto2m +1 < o < 2m + 3.

n .
Then, by applying Lemmas 1 and 2, and using the fact that for 0 < j < m — 1, wehave ) | ckai(mf] 1y,

we obtain: !
/Ow ]"x(#dx - F(la) /Ooo(—l)mtelicizij_nj;dt
- (r_(lzx))m éckui(mﬂ)z i:(uE(l:E))
= 10())’" i s (2";1;13))

= - ) af
2T (w )cos% Z K

Case 2. If o € 2N + 3, then there exists m € {0, -+, — 2} such that « = 2m + 3. So,

) ]n(x) 1 oo N ) t2m+l
dx = — ——dt.
0o a7 F(tx)/o IR e

k=1

Using similar arguments as in case 1, we get that

©u®, ()" e 2
/0 o dx = 2()}5{}02C”k ) Tl 5 ds
(—)™ mm[ ]f
= lim ) cpa In(s® +a3)| .
2T () t—o0 Zl k 0
Since for 0 < m < r —2,we have 2 Ck az(mH) = 0, it follows that
k=1
oo] x -1 m+1 n 5 1
”x(a Jix - (r()a)kzlckak(m+ ' n(ar)
a—1
-1z X _
_ )= T(?x) kzlckaz Yin(ay).

This achieves the proof. [J

As an application of Theorem 3, we present the following examples.

® 15(1 — cos(x)) — 6(1 — cos(2x)) + (1 = cos@v) ,  qpo

wehaven = 3,¢1 =15,c0 = —6,c3 = 1,41 = 1, a0 = 2, and a3 = 3. It can be easily verified that r = 3.

Example 6. 1. Consider the improper integral
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® 15(1 — cos(x)) — 6(1 — cos(2x)) + (1 — cos(3x))

Therefore, dx converges if and only if 1 < a < 7. By
0 X
Theorem 3, we have
m(3.20—-3*1-15
( — ), ifa ¢ 2N+3,
/°° 15(1 —cosx) — 6(1 — cos2x) + (1 — cos3x) y — 2T () cos (%)
0 x ] (-1 (=3-2¢In2 439 1In3
D= n2+577I03) i e s
I'(w)
To elaborate on this result, we consider the following specific cases.
a. Fora = 123, we have
/ 15(1 — cos(x)) — 6(1 — c1c3)s(2x)) +(1- cos(3x))dx _32van (243\f+ 15— 192v2).
0 x5 10395

b. For « = 5, we have

® 15(1 — cos(x)) — 6(1 — cos(2x)) + (1 —cos(3x)) , 27
/0 dx = ~41n(2) + 5 In(3).

s
® cos* xsint x
2. Consider the improper integral / xidx We have
cos* xsint x = i(1 — cos(4x)) — L(1 — cos(8x)).
32 128
Here,
n—ZC—ic——ia—éla =38
I e VT M
4. o4

We can easily see that r = 2. Therefore, / €08 ifln ad converges if and only if 1 < & < 5. Hence by applying
0

Theorem 3, we obtain that

4o¢74

T
T T (1-2%%), if e (1,5)\{3},
/°° COS4xsin4xdx_ F(ﬂé)cos(%)( ) (1,5)\{3}
0 X o In(2)
nTr if a=3.
* : : 0 1 — cos? x . o
3. Let n € N* and consider the integral / de. By linearization, we have
0

n
1—cos™ x = Z 1 C’;n k(1 — cos(2kx)).

k=
We note that for1 < k < n,
Ck = 47an k,
and
a, = 2k.
© 1 —cos? x

po dx converges if and only if 1 < & < 3.

It is obvious that r = 1. Thus, by Remark 4, the integral /
Moreover, Theorem 3 gives that

® 1 — cos? x “k
fy = WEC” (26)°

2
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To further describe this result, we consider two specific cases where n = 2.

a. For « = 2, we have
' | — cos x 377
[ty o
0 X 4

b. Fora = %, we have

0 1 4
/0 1 cgs xdx:2\/3271(1+\/2)‘

X2

01— C032n+1 X
4. Let n € N and consider the integral / de. By linearization, we have
0

k
1 2n+1 _ - an_i,_l
—cos™x = ) 4 (1 —cos((2k+1)x))
k=0

n+1 Cl’l k+1

_ k; zgl (1 —cos((2k —1)x)).

Wenotethatfor1 <k <n-+1,

n—k+1
C2n+1

4n 7

and
aj = 2k —1.

01— COSZnJrl X

It is evident that r = 1. Thus, by Remark 4, the integral / dx converges if and only if 1 < a < 3.
0

xﬂ(
Furthermore, the integral evaluates to
© 1 —cos?"tlyx 1
/0 X« dx =  2.4"T(a) cos % Z Chta 2k +1)°

To further illustrate this result, we provide the two following specific cases.

a. Forn = 1and o« = 2, we have

/°°1—cos3xdx 37
0 x2 4

b. Forn =2and a« = %,we have

0 1 5 /
/ 1o oS X 126”(10+5\/§+\f5).
0

x2
Corollary 3. Let n € N* and 1 < o < 2n + 1. Then, we have

n

# _ kn—k a—1 .
22T (w) cos( %) k:zl( 1)FCy " (2k)* ", if a ¢ 2N+3,

00 @i
/ SINT () 4y —
0 x% (—1) a1y
221 (a) - Z( ey K26 n(k), if a€2N+3,
Proof. Let n € N*. Using linearization, we find that for x € R,

sin?" (x) 22n : 2 1)FCE (1 — cos(2kx)). (10)

To apply Theorem 3, we note that for 1 <k < n,

(DG,
% =" om1
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and
ay = 2k.

On the other hand, we have
sin?(x) = x*" 4 o(x*"11).

It follows thatr = nandfor1<m<n-2,n>2,

Lo

k+1 Cn —k
QU

® sin? (x)

Thus, applying Remark 4, we conclude that the integral / dx convergesifand onlyif 1 < a < 2n41.

Additionally, Theorem 3 gives that

s L B B .
T (&) cos (%2 Y (—DfCp Rk, i a ¢ 2N+3,
/‘°° sin? (x)d 2/ k=1
0 x% w1 L B
— -1 +lcn
( rl(l; Z 2( )4n 2n (Zk)txfl 11’1(2k), if ac2N43.
k=1

Now, for & € 2N + 3, we note that there exists m € {0, -+, — 2} such that « = 2m + 3. This implies by using
(5), that

 sin" (x) (-1 & (=D e
/0 i k; 2 (2K In(2k)
a—1 —1
17T n B 1 T k+1cnnk
_ % (—1)k+1C§nk(2k)2m+21n(k ( Z ) 2 (zk)Z(m-H)ln(z)
(a) {5 k=1
0
(—1)% S k1 ~i—k (242
= mkg(—l) Cy, " (2k)™ = In(k)
(_1)% & k+1,-n—k a—1
= “)kzi(_l) Cy 7 (2k)* ! In(k).

This ends the proof. O

In the following example, we exhibit particular cases of Corollary 3.

Example 7. 1. By takingn =1land a = %, we obtain that

5
x3 3

© qin2 4
/ sin“x \/E
0

2. By taking n = 2 and & = 2, we obtain that

% sin* x T
/ dx = —.
0

3. Forn > 1, we have:

ooSinzn(x) 1\" < k n— k 2n— l
/0 x2n dx_<—4> 271—1'Zl Cz, " (2K)
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4. Forn > 2, we have:

oosmzn(x) (_1)n_1 - k+1,~n—ky.2n—2
/0 de_mk;(—l) Gy, 'k In(k).

* sin*(x)

x3

In particular, for n = 2, we have / dx =1In(2).
0
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