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1. Introduction

T he Laplace transform has emerged as a central tool in the study of stochastic processes, with particular
importance in the analysis of renewal processes. By transforming differential equations into the “s”

domain, it simplifies complex calculations and facilitates the computation of transfer functions and system
characteristics. This transformation allows researchers to move from the time domain to the Laplace domain,
perform structured analyses, and subsequently return to the time domain to obtain concrete and applicable
solutions.

In the context of stochastic processes, the Laplace transform enables deeper insights and provides
solutions to equations describing the evolution of complex random systems. As demonstrated by Ahmed
[1], this approach often offers alternative, and sometimes simplified, perspectives on process behavior.
Specifically, in renewal processes, it proves effective for analyzing the intervals between events, offering a
robust framework for systems where event occurrences are irregular.

Sub-Gaussian random variables, widely applied across diverse fields, are closely related to Laplace
transforms. Introduced by Kahane [2] in the study of Fourier random series convergence (see also Buldygin
et al. [3]), a variable is considered sub-Gaussian if its Laplace transform is dominated by that of a centered
Gaussian variable. Consequently, every sub-Gaussian variable is centered, and its variance is bounded by the
standard deviation of the corresponding Gaussian variable.

Reliability assessment has become an essential aspect of quality management in industrial production.
Evaluating the reliability of complex systems requires accurate estimation of component operating times and a
detailed analysis of system failure sequences. Such analyses enable the development of models for quantitative
reliability evaluation [4]. Among mathematical tools used in this field, the Laplace transform is particularly
significant for system reliability and availability analysis [5]. This article aims to present a concrete application
of the Laplace transform in reliability assessment.

Nevertheless, determining the Laplace transform for certain probability distributions can be challenging
or, in some cases, impossible. This article explores the main properties of the Laplace transform while
providing numerous examples illustrating its application to simple and complex distributions. The structure
of the space of Laplace transforms is also examined due to its relevance in reliability studies. Results
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are expressed in explicit formulas or using well-established special functions. Finally, an application to a
renewal process is presented, demonstrating the crucial role of the Laplace transform in simplifying complex
calculations.

2. Preliminaries

2.1. Laplace transform: definition and properties

Definition 1. The Laplace transform of a function f (x) (possibly generalized, such as the "Dirac function") of
a real variable t, with positive support, is the function L f of the strictly positive real variable s, defined by (see
Rainville [6] or Widder [7]):

L f (s) =
∫ +∞

0
f (x)e−sxdx. (1)

We could also be interested in the Laplace-Stieltjes transform.

Definition 2. The Laplace-Stieltjes transform of a funcfion f (x), denoted L⋆
f , is defined by (see Apostol [8] or

Ross [9])

L⋆
f (s) =

∫ +∞

0
e−sxdF(x), (2)

where F′(x) = f (x).

The Laplace-Stieltjes transform is used to transform functions which possess both discrete and continuous
parts and is reduced to the standard Laplace transform (1) in the fully continuous case.

We will investigate the Laplace transform on probability density distributions with positive support and
also study its convergence.

Proposition 1. If f (x) is probability density distribution with positive support, then the improper integral of f (x) given
by (see Widder [7]) ∫ +∞

0
f (x)e−sxdx, (3)

converges uniformly for all positive s.

This result shows that the Laplace transform of probability density distribution function with positive
support, exists for al1 positive s. Further, it is the case that, 0 ⩽ L f (s) ⩽ 1, ∀s ⩾ 0.

2.2. Random variables and link with the Laplace transform

Let X and Y be two independent absolutely continuous random variables, with positive support, with
joint distribution h(x, y) and respective probability density functions f (x) and g(y). Then we have:

P(Y > X) =
∫ +∞

0

∫ +∞

x
h(x, y)dydx =

∫ +∞

0
P(Y > x) f (x)dydx.

The Laplace transform of a probability density can be interpreted as the probability that a random variable
Y, following an exponential distribution, "dominates" another random variable X whose density is given by
f (x). For example, in statistics, if we consider that Y represents the lifetime of a device while X corresponds
to its first failure, the Laplace transform of f (x), in this context, represents the probability that the device
continues to work after this first failure. On this basis, we propose analogous interpretations of certain
properties of the Laplace transform, which will prove to be very useful for the further development of our
study.

Proposition 2. Let X and Y be two independent continuous random variables such that Y ⇝ E(s), exponential
distribution and X has probability density function f (x). Then, we have (see Foran [10])

L f (s) = P(Y > X). (4)
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As a consequence of the proposition stated previously, we present the relation which establishes a link
between the Laplace transform of a probability function f (x) and that of its distribution function F(x).

Corollary 1. Under the same assumptions as Proposition 2, if F(x) is the cumulative distribution function of X and
f (x) its probability density, then we get:

L f (s) = sLF(s), (5)

where LF is the Laplace transform of F(x).

Definition 3. Consider a random variable X. The distribution of X is said to be memoryless if for all n, m > 0,
we have

P(X ⩾ s + t|X ⩾ s) = P(X ⩾ t).

The memory loss property is characteristic of certain probability distributions, such as the exponential
distribution and the geometric distribution. These are referred to as memoryless distributions.

Proposition 3. Let X, Y and Z be three independent continuous random variables such that Y ⇝ E(λ), X and Z have
respectively probability density functions f (x) and g(z). Then, we get:

P(Y > X + Z|Y > X) = P(Y > Z). (6)

Another way to interpret the memory loss property is to state that the distribution of survival time until
the next occurrence of an event in a memoryless process remains the same, regardless of how long one has
already waited before that event. In other words, the probability of the event occurring in a given time interval
does not vary depending on how long one has already waited, which underlines the independence of future
events from the history of past events.

Corollary 2. Let X1 · · · Xn be a sequence of random variables independent of respective probability density functions
( fi(xi))

n
i=1, and let Y be a random variable with exponential distribution, independent of (Xi)

n
i=1. We set Σn = X1 +

· · ·+ Xn =
n

∑
i=1

Xi and we denote by fΣn(x) its probability density function. Then we have (Hogg and Craig [11]):

fΣn(s) =
n

∏
i=1

fi(s). (7)

Proposition 4. The following integral representations of gamma functions (or Euler’s integral) are equivalent for s > 0:

◦ Γ(s) =
∫ +∞

0
ts−1e−tdt,

◦ Γ(s) = xs
∫ +∞

0
ts−1e−xtdt ∀x > 0,

◦ Γ(s) =
∫ +∞

−∞
exp(st − e−t)dt.

Proof. The proof of this proposition can be found in Gradshteyn and Ryzhik [12].

Notation 1. The upper incomplete gamma function is defined as: γ(a, x) =
∫ x

0
ta−1e−tdt, whereas the lower

incomplete gamma function is defined as: Γ(a, x) =
∫ +∞

x
ta−1e−tdt.

Based on all the concepts previously presented, we will calculate the Laplace transforms of the most
significant probability density functions as well as the most commonly encountered distributions. In the
following development, we assume that the random variable Y, which follows an exponential distribution
denoted by E(s), is independent of the random variable X whose density is designated by f (x). The
calculations of the Laplace transforms will be carried out either directly using the formula (1), or by resorting
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to the formula (4), or by means of the formula for moment generating functions, the definition of which we
will provide in a later section of this document.

3. Main results

3.1. Laplace transform of certain probability density functions

Theorem 1. If X is an exponential distribution i.e. X⇝ E(λ) with density f (x) = λe−λxl{x⩾0}, then we have:

L f (s) =
λ

λ + s
. (8)

Proof. L f (s) =
∫ +∞

0
λe−λxe−sxdx =

∫ +∞

0
λe−(λ+s)xdx =

λ

λ + s
.

For λ = 1, L f (s) = 1/(1 + s). Figure 1 shows L f (s).
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Figure 1. Laplace transform of Exponential distribution

Corollary 3. If X is a hyperexponential distribution, i.e. X⇝ Hn(pi; λi), with density

f (x) =
n

∑
i=1

piλie−λixl{x⩾0},

where
n

∑
i=1

pi = 1 and λi, pi > 0, then we have:

L f (s) =
n

∑
i=1

pi
λi

λi + s
. (9)

Proof. It suffices to notice that f (x) =
n

∑
i=1

pi fi(x) where fi(x) is the density of the exponential distribution

with parameter λi. Using the linearity of the Laplace transform and Theorem 1, we obtain

L f (s) =
n

∑
i=1

piL fi
(s) =

n

∑
i=1

pi
λi

λi + s
.
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Corollary 4. If X is a hypoexponential distribution, i.e. X⇝ Hn(λi), with density

f (x) =
n

∑
i=1

∏
i ̸=j

λj

λj − λi
λie−λixl{x⩾0},

where λi > 0, then we have:

L f (s) =
n

∑
i=1

∏
i ̸=j

λiλj

(λj − λi)(λi + s)
. (10)

Proof. The proof of this corollary is similar to that of Corollary 3 by replacing pi by the constant

pij = ∏
i ̸=j

λj

λj − λi
.

Theorem 2. If X is a generalized Erlang distribution denoted by Γ(n, λi), 1 ⩽ i ⩽ n, i.e. X =
n

∑
i=1

Xi and (Xi)
n
i=1 is a

sequence of independent random variables with exponential distributions such that Xi ⇝ E(λi)with respective densities
fi, then we have:

L f (s) = ∏
i=1

λi
λi + s

. (11)

Proof. The proof of this theorem is based on the combination of Corollary 2 and Theorem 1. Indeed, we have:

L f (s) = P(Y > X) = P
(

Y >
n

∑
i=1

Xi

)
=

n

∏
i=1

L fi
(s) =

n

∏
i=1

λi
λi + s

.

Corollary 5. If X is a Erlang distribution, i.e. X⇝ Γ(n, λ), with density

f (x) =
λn

Γ(n)
xn−1e−λxl{x⩾0},

then we obtain

L f (s) =
(

λ

λ + s

)n
. (12)

Proof. The proof of this corollary is deduced from Theorem 2 by noticing that the Erlang distribution is a
particular case of the generalized Erlang distribution with the constants λi, 1 ⩽ i ⩽ n, identical and all equal

to λ i.e., we get L f (s) = ∏
i=1

λ

λ + s
.

Corollary 6. If X is a Gamma distribution, i.e. X⇝ G(β, λ), with density

f (x) =
λβ

Γ(β)
xβ−1e−λxl{x⩾0},

then

L f (s) =
(

λ

λ + s

)β

. (13)

Proof. The proof of this corollary follows from Corollary 5 by noticing that the Gamma distribution is a
generalized case of the Erlang distribution with n = β > 0.

Let β = 2, λ = 1, then L f (s) = (1/(1 + s))2. Figure 2 shows the transform.
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Figure 2. Laplace transform of Gamma distribution

Corollary 7. If X is a chi-squared distribution, i.e. X⇝ χ2(n), with density

f (x) =
λ

n
2

Γ
(n

2

) x
n
2 −1e−λxl{x⩾0},

then
L f (s) =

1

(1 + 2s)
n
2

. (14)

Proof. It is sufficient to notice that the chi-squared distribution is special case of the gamma distribution with

λ =
1
2

and β =
n
2

. The conclusion follows from Corollary 6.

Theorem 3. If X is a Weibull distribution, i.e. X⇝W(α, β), with density

f (x) = αβxα−1 exp (−βxα) l{x⩾0}, ∀α, β > 0,

then we have

L f (s) = ∑
n⩾0

(−1)n Γ
(
1 + n

α

)
β

n
α

. (15)

Proof. Note that the moment-generating function MX for a positive random variable X is defined by the
relation

MX(s) = E
[
esX
]
=
∫ +∞

0
f (x)esxdx.

Moreover we have E(Xn) = M(n)
X (0) where M(n)

X (t) =
dn

dtn MX(t). So, we can write

MX(s) =
∫ +∞

0
esxαβxα−1 exp (βxα) dx

=
∫ +∞

0
αβxα−1 exp (−βxα + sx) dx.

By the Leibniz integral rule, we get

M(n)
X (s) = αβ

∫ +∞

0

∂n

∂sn

(
xα−1 exp (−βxα + sx)

)
dx = αβ

∫ +∞

0
xα+n−1 exp (−βxα + sx) ,
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so

M(n)
X (0) = αβ

∫ +∞

0
xα+n−1 exp (−βxα) .

Using the change of variable u = βxα, we have

M(n)
X (0) =

1
β

n
α

∫ +∞

0
u

n
α e−udu =

Γ
(
1 + n

α

)
β

n
α

.

Moreover, with the Taylor series of the exponential map, we have

MX(s) = E
[
esX
]
= E

[
∑
n⩾0

Xn sn

n!

]
= ∑

n⩾0
E [Xn]

sn

n!
= ∑

n⩾0
M(n)

X (0)
sn

n!
= ∑

n⩾0

Γ
(
1 + n

α

)
β

n
α

sn

n!
. (16)

Formula (16) completes this proof just by noticing that L f (s) = MX(−s).

For α = 2, β = 1 (Rayleigh), numerical integration can be used. Figure 3 shows the shape.
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Figure 3. Approximate Laplace transform of Weibull(α = 2, β = 1)

Theorem 4. If X is a Pareto distribution, i.e. X ⇝ P(α, β), with density f (x) =
αβα

xα+1 l{x⩾β}, ∀α, β > 0, then we
have

L f (s) = α(αβ)αγ(−α, βs), where γ(a, b) =
∫ +∞

b
ua−1e−udu. (17)

Proof.

L f (s) =
∫ +∞

β

αβα

xα+1 e−sxdx,

=α(αβ)α
∫ +∞

βs
u−α−1e−udu, after using the change of variable u = sx.

Theorem 5. If X is a Logistic distribution, i.e. X ⇝ L(m, σ), with density f (x) =
1
σ

exp
(
− x−m

σ

)[
1 + exp

(
− x−m

σ

)]2 , where

m ∈ R, σ > 0, then we have

L f (s) =
1

ems ∑
n⩾0

(−1)nEn(0)Γ(n + 1,−sm)

n!(sσ)n , (18)

where En(x) =
n

∑
k=0

Ck
n

Ek

2k

(
x − 1

2

)n−k
and (Ek)

n
k=0 are the Euler numbers such that

1
cosh t

=
2

et + e−t =
∞

∑
k=0

Ek
k!

tk.
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Proof. Note that the cumulative distribution function is F(x) =
1

1 + exp
(
− x−m

σ

) , and the generating function

for the Euler polynomials is (see Tsuneo and al. [13]):

2ext

et + 1
= ∑

n⩾0
En(x)

tn

n!
. (19)

From Formula (19), we deduce that F(x) = ∑
n⩾0

(−1)nEn(0)
n!2σn (x − m)n, and we can write

LF(s) = ∑
n⩾0

(−1)nEn(0)
n!2σn

∫ +∞

0
(x − m)ne−sxdx

= ∑
n⩾0

(−1)nEn(0)Γ(n + 1,−sm)

n!2σnsn+1esm , after making the change of variable v = s(x − m),

and (5) completes the proof.

Theorem 6. If X is a Beta distribution, i.e. X ⇝ B(α, β), with density f (x) =
1

B(α, β)
xα−1(1 − x)β−1l{0⩽x⩽1},

where α, β > 0 and B is the Beta function, defined by B(p, q) =
∫ 1

0
tp−1(1 − t)q−1dt p, q > 0, then we obtain

L f (s) = 1 + ∑
n⩾1

(−1)n sn

n!

n−1

∏
k=0

α + k
α + β + k

. (20)

Proof. By using the Maclaurin series of the exponential function e−sx, we can write,

L f (s) =
∫ 1

0

1
B(α, β)

xα−1(1 − x)β−1e−sxdx

=
1

B(α, β) ∑
n⩾0

(−1)n sn

n!

∫ 1

0
xα+n−1(1 − x)β−1dx

=1 + ∑
n⩾1

(−1)n sn

n!
B(α + n, β)

B(α, β)
,

and it must also be noted that

B(α + n, β)

B(α, β)
=

Γ(α + n)Γ(β)Γ(α + β)

Γ(α + β)Γ(α)Γ(β)

=

Γ(α)
n−1

∏
k=0

(α + k)Γ(α + β)

Γ(α)Γ(α + β)
n−1

∏
k=0

(α + β + k)

=
n−1

∏
k=0

α + k
α + β + k

. (21)

Therefore, Formula (21) completes the proof.

Theorem 7. If X is a Burr distribution, i.e. X⇝ Br(c, κ), with density f (x) = cκ
xc−1

(1 + xc)κ+1 l{x>0}, ∀c, κ > 0, then

we have
L f (s) = κ ∑

n⩾0
(−1)n sn

n!
B
(

1 +
n
c

, κ − n
c

)
, (22)

where B is the Beta function.
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Proof. Using the Taylor series representation of the exponential function e−sx, we have

L f (s) =cκ
∫ +∞

0

xc−1

(1 + xc)κ+1 e−sxdx

=cκ ∑
n⩾0

(−1)n sn

n!

∫ +∞

0

xn+c−1

(1 + xc)κ+1 dx

=κ ∑
n⩾0

(−1)n sn

n!

∫ +∞

0

u
n
c

(1 + u)κ+1 dt where u = xc,

=κ ∑
n⩾0

(−1)n sn

n!
B
(

1 +
n
c

, κ − n
c

)
where B(p, q) =

∫ +∞

0

tp−1

(1 + t)p+q dt.

Remark 1. The Burr distribution generalizes two other distributions:
◦ for c = 1 we have the Generalized Pareto (GP(κ)) distribution Laplace transform,
◦ for κ = 1 we have the Log-logistic distribution (LL(c)) Laplace transform.

Theorem 8. If X is a Gompertz distribution, i.e. X ⇝ Gz(b, ν), with density f (x) = bν exp(ν + bx −
νebx)l{x>0}, b, ν > 0, then we have

L f (s) = ν

s
b eνΓ

(
1 − s

b
, log(ν)

)
∀ b ⩾ s. (23)

Proof.

L f (s) =
∫ +∞

0
bν exp(ν + bx − νebx)e−sxdx,

=bνeν
∫ +∞

0
exp

(
(b − s)x − νebx

)
,

=νeν
∫ +∞

log(ν)
exp

((
1 − s

b

)
(t − log(ν))− et

)
dt where t = bx + log(ν),

=ν

s
b eν

∫ +∞

log(ν)
exp

((
1 − s

b

)
t − et

)
dt.

The last formula of Proposition 4 completes this proof.

Let ν = 1, b = 0.5. Figure 4 shows L f (s) computed via numerical integration.
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Figure 4. Laplace transform of Gompertz(ν = 1, b = 0.5)
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Theorem 9. If X is a Inverse Gamma distribution, i.e. X⇝ IG(α, β), with density

f (x) =
βα

Γ(α)
x−α−1 exp

(
− β

x

)
l{x>0}, α, β > 0, then we have

L f (s) = 2
(βs)

α
2 Kα

(
2(βs)

1
2

)
Γ(α)

, (24)

where Kν is modified Bessel function of the second kind (see Gradshteyn and Ryzhik [12]).

Proof.

L f (s) =
βα

Γ(α)

∫ +∞

0

1
xα+1 exp

(
−sx − β

x

)
dx,

=
(sβ)α

Γ(α)

∫ +∞

0

1
uα+1 exp

(
−u − βs

u

)
du where u = sx,

=
2(βs)

α
2

Γ(α)
× 1

2
(βs)

α
2

∫ +∞

0

1
uα+1 exp

(
−u − βs

u

)
du

=
2(βs)

α
2

Γ(α)
Kα(2

√
βs) where Kν(z) =

1
2

( z
2

)ν ∫ +∞

0

et− z2
t

tν+1 dt where z ∈ R∗
+.

Let α = 3, β = 2. Figure 5 shows L f (s) numerically.
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Figure 5. Laplace transform of Inverse Gamma(α = 3, β = 2)

Theorem 10. If X is a Normal distribution or Gaussian distribution, i.e. X ⇝ N (µ, σ2), with density f (x) =

1
σ
√

2π
exp

(
−1

2

(
x − µ

σ

)2
)

, µ, σ > 0, then we obtain

L f (s) = [1 − Φ(sσ)] exp
(
−sµ +

σ2s2

2

)
, (25)

where Φ is the cumulative distribution function of the standard normal distribution.
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Proof. If Z is a standard normal deviate, then X = σZ + µ and ϕ(x) =
1√
2π

exp
(
− x2

2

)
is the probability

density function of the random variable Z. We get

Lϕ(s) =
1√
2π

∫ +∞

0
exp

(
− x2

2

)
e−sxdx,

=
e

s2
2

√
2π

∫ +∞

0
exp

(
− (x + s)2

2

)
dx,

=e
s2
2

1√
2π

∫ +∞

s
exp

(
−u2

2

)
dx,

=e
s2
2 [1 − Φ(s)] .

Moreover, we have

L f (s) =E
[
e−sX

]
= E

[
e−s(σZ+µ)

]
= e−sµE

[
e−(sσ)Z

]
= Lϕ(sσ),

=e−sµ exp
(
(sσ)2

2

)
[1 − Φ(sσ)] .

Corollary 8. If X is a Log-Normal distribution or Log-Gaussian distribution, i.e. X⇝ LN (µ, σ2), with density

f (x) =
1

xσ
√

2π
exp

(
−1

2

(
log(x)− µ

σ

)2
)

, µ, σ > 0, then we obtain

L f (s) = ∑
n⩾0

(−1)nΦ(nσ) exp
(

nµ +
σ2n2

2

)
sn

n!
, (26)

where Φ is the cumulative distribution function of the standard normal distribution.

Proof. Suppose that, Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a
log-normal distribution. Thus, we have M(n)

X (0) = E [Xn] = E
[
enY] = MY(n). Moreover, we get

MX(s) = ∑
n⩾0

M(n)
X (0)

sn

n!
= ∑

n⩾0
MY(n)

sn

n!
= ∑

n⩾0
L f (−n)

sn

n!
.

Theorem 10 helps us write this easily

L f (s) = MX(−s) = ∑
n⩾0

(−1)n [1 − Φ(−nσ)] exp
(

nµ +
σ2n2

2

)
sn

n!
.

It suffices to notice that Φ(−t) = 1 − Φ(t), ∀ t > 0, which leads to the end of this proof.

Let µ = 0, σ = 1. Figure 6 shows L f (s) computed numerically.

Theorem 11. If X is a Inverse Gaussian distribution or Wald distribution, i.e. X⇝ IN (µ, σ2), with density

f (x) =
√

σ

2πx3 exp
[
−σ(x − µ)2

2µ2x

]
l{x>0}, µ, σ > 0, then we have

L f (s) = exp

σ

µ

1 −
(

1 +
2µ2s

σ

)1
2


 . (27)
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Figure 6. Laplace transform of Log-Normal(µ = 0, σ = 1)

Proof.

L f (s) =
∫ +∞

0

√
σ

2πx3 exp
[
−σ(x − µ)2

2µ2x

]
e−sxdx,

=
∫ +∞

0

√
σ

2πx3 exp
[
−sx − σ(x − µ)2

2µ2x

]
dx,

=
∫ +∞

0

√
σ

2πx3 exp
(

σ

µ

)
exp

[
−σ

2µ2x

((
1 +

2µ2s
σ

)
x2 + µ2

)]
dx,

=
∫ +∞

0

√
σ

2πx3 exp
(

σ

µ

)
exp

 −σ

2µ2x

(√1 +
2µ2s

σ
x − µ

)2

+ 2µx

√
1 +

2µ2s
σ

 dx,

= exp

[
σ

µ

(
1 −

√
1 +

2µ2s
σ

)] ∫ +∞

0

√
σ

2πx3 exp

 −σ

2µ2x

(√
1 +

2µ2s
σ

x − µ

)2
 dx,

= exp

[
σ

µ

(
1 −

√
1 +

2µ2s
σ

)] ∫ +∞

0

√
σ

2πx3 exp


−σ

2

 µ√
1 + 2µ2s

σ

2

x

x − µ√
1 + 2µ2s

σ

2


dx,

= exp

[
σ

µ

(
1 −

√
1 +

2µ2s
σ

)]
,

because

∫ +∞

0

√
σ

2πx3 exp


−σ

2

 µ√
1 + 2µ2s

σ

2

x

x − µ√
1 + 2µ2s

σ

2


dx =

∫ +∞

0

√
σ

2πx3 exp
[
−σ(x − µs)2

2µ2
s x

]
dx = 1,

where µs =
µ√

1 + 2µ2s
σ

.
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Theorem 12. If X is a Student distribution, i.e. X⇝ T (ν), with density f (x) =
1

√
νB
(

ν
2 , 1

2

) (1 +
x2

ν

)− ν+1
2

,

ν > 0, then we have

L f (s) =
ν + 1

2 ∑
n⩾0

(−1)n+1 sn−1

n!
ν

n−1
2

B
(

n
2 + 1, ν−n+1

2

)
B
(

ν
2 , 1

2

) , (28)

where B is the Beta function.

Proof. A direct consequence of Corollary 1 is Lψ(s) = sL f (s) where
d

dx
f (x) = ψ(x). We obtain, ψ(x) =

−n + 1
n

1
√

νB
(

ν
2 , 1

2

) x(
1 + x2

ν

) n+3
2

and by the Taylor series representation, we write

Lψ(s) =− n + 1
n

1
√

νB
(

ν
2 , 1

2

) ∫ +∞

0

x(
1 + x2

ν

) n+3
2

e−sxdx,

=− n + 1
n

1
√

νB
(

ν
2 , 1

2

) ∑
n⩾0

(−1)n sn

n!

∫ +∞

0

xn+1(
1 + x2

ν

) n+3
2

dx,

=
n + 1

2
1

B
(

ν
2 , 1

2

) ∑
n⩾0

(−1)n+1ν
n−1

2
sn

n!

∫ +∞

0

u
n
2

(u + 1)
n+3

2
du, where x2 = νu,

=
n + 1

2
1

B
(

ν
2 , 1

2

) ∑
n⩾0

(−1)n+1ν
n−1

2
sn

n!
B
(

n
2
+ 1,

ν − n + 1
2

)
.

Finally, to complete this proof, it suffices to notice that L f (s) =
1
s

Lψ(s).

Theorem 13. If X is a Laplace distribution, i.e. X⇝ Lp(µ, b), with density f (x) = exp
(
−|x − µ|

b

)
,

∀µ, b > 0, then we have

L f (s) =


exp

( µ
b
)

2(1 + bs)
, if µ ⩽ 0,

2 exp(−sµ)− (1 + bs) exp
(
− µ

b
)

1 − b2s2 , if µ > 0 and s <
1
b

.

Proof.

L f (s) =
∫ +∞

0
exp

(
−|x − µ|

b

)
e−sxdx,

=
∫ +∞

0
exp

(
−sx − |x − µ|

b

)
dx,

=
e−sµ

2

∫ +∞

−µ
b

exp(−|t| − sbt)dt,

▷ For µ ⩽ 0, then
−µ

b
⩾ 0 and we have

L f (s) =
e−sµ

2

∫ +∞

−µ
b

exp[−(1 + sb)t]dt,

=
exp

( µ
b
)

2(1 + bs)
.
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▷ For µ > 0, then
−µ

b
< 0 and we have with sb < 1,

L f (s) =
e−sµ

2

[∫ 0

−µ
b

exp[(1 − sb)t]dt +
∫ +∞

−µ
b

exp[−(1 + sb)t]dt

]
,

=
e−sµ

2

[
1 − exp

(
− µ

b + sµ
)

1 − sb
+

1
1 + sb

]
,

=
2 exp(−sµ)− (1 + bs) exp

(
− µ

b
)

1 − b2s2 .

3.2. Application in reliability

3.2.1. Determination of availability of a system

It is important to emphasize that reliability is a key measure of the probability that an element will
satisfactorily perform its designed function over a given time interval and under specific conditions. In the
field of reliability, the concept of system availability, symbolized by D(t), corresponds to the probability that
the system is operational at a given time t (see Barlow et al. [4]).

Consider that at the initial time t = 0, a new device is commissioned and operates for a duration X1,
which marks the time of its first failure. The duration of the first repair is denoted Y1. Therefore, the device
restarts at time X1 + Y1, followed by a new operating period of duration X2. We assume that operating
times obey the same statistical distribution, as do repair times. Thus, we have two sequences of random
variables, denoted respectively (Xn)n⩾0 and (Yn)n⩾0, which are independent and identically distributed, with
respective probability densities f and g, and independent of each other. These sequences successively model
the operating times and the repair times. In this theoretical framework, the nth restart of the system occurs at
time X1 +Y1 + · · ·+ Xn +Yn. Thus, the restart counting process is similar to a renewal process; we even speak
of alternating renewal, because the operating periods alternate with the repair periods.

The following theorem will provide a description of the asymptotic availability of a system, and its
demonstration is based on the use of the Laplace transform of probability distributions.

Theorem 14. In an alternating renewal process, let us denote µX and µY the respective expectations of Xn and Yn and
D(t) the availability at the time t ⩾ 0. The asymptotic availability is given by:

D(t) t→+∞−→ D∞ =
µX

µX + µY
. (29)

Proof. If there are been exactly n restarts before time t, the system works if t is between the time of the nth
restart and that of the (n + 1)−th breakdown. Let T0 = 0 and for n ∈ N∗,

Tn = X1 + Y1 + · · ·+ Xn + Yn and Mn = Tn−1 + Xn.

Therefore, we can write

D(t) = ∑
n⩾0

P[Tn ⩽ t < Mn+1]

= ∑
n⩾0

(P[Tn ⩽ t]− P[Mn+1 ⩽ t])

= ∑
n⩾0

[Hn(t)− Qn(t)],
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where Hn and Qn are the respective distribution functions of Tn and Mn+1. Let hn and qn denote their
probability density functions. By applying the Corollary 2 to the probability densities of the sequences of
random variables Tn and Mn+1, we have:

Lhn(s) =
(

L f (s)Lg(s)
)n

and Lqn(s) = L f (s)
(

L f (s)Lg(s)
)n

. (30)

We obtain the Laplace transforms of the distribution functions Hn and Qn thanks to Corollary 1, by
dividing the expressions of (30) by s. Using the linearity of the Laplace transform, we determine the Laplace
transform of D(t) by writing:

LD(s) = ∑
n⩾0

[
1
s

(
L f (s)Lg(s)

)n
− 1

s
L f (s)

(
L f (s)Lg(s)

)n
]

=
1
s
[1 − L f (s)] ∑

n⩾0

(
L f (s)Lg(s)

)n

=
1 − L f (s)

s(1 − L f (s)Lg(s))
.

The Taylor expansion to order 1 of L f (s) and Lg(s) in the neighborhood of s = 0 gives respectively

L f (s) = 1 − µXs + o(s) and Lg(s) = 1 − µYs + o(s). (31)

Furthermore, we know that if the function D(t) admits a limit in +∞, sLD(s) also admits a limit in 0 and
they are equal. Thus, we have

lim
t−→+∞

D(t) = lim
s−→0

sLD(s). (32)

The equalities (31) and (32) complete the proof of this theorem.

The result of Theorem 14 is quite predictable since the operating periods, which last on average µX ,
alternate with the repair periods, which last µY. In the long term, the probabilities of finding the device
working or broken are proportional to µX and µY. So, we have

D(t)
µX

≈ 1 − D(t)
µY

⇐⇒ D∞ =
µX

µX + µY
.

3.2.2. System availability example

Consider a series system with two components, lifetimes X1 ∼ E(1) and X2 ∼ Γ(2, 1). The system
reliability:

Rsys(t) = P(X1 > t) · P(X2 > t).

Laplace transform:

LRsys(s) = LX1(s) · LX2(s) =
1

1 + s
·
(

1
1 + s

)2
=

1
(1 + s)3 .

General case :

◦ Series system: system fails if any component fails.

Rseries(t) =
n

∏
i=1

Ri(t) =
n

∏
i=1

Pr(Xi > t).

◦ Parallel system: system fails if all components fail.

Rparallel(t) = 1 −
n

∏
i=1

(1 − Ri(t)).
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Assume 3 components with Log-Normal, Gompertz, and Pareto lifetimes. Compute Rseries(t) and
Rparallel(t) numerically using the Laplace transforms. Figures 7 shows series vs parallel reliability curves.
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Figure 7. Reliability of series vs parallel systems using Laplace transform

3.2.3. Preventive maintenance scheduling

Expected uptime before scheduled maintenance at T:

U(T) =
∫ T

0
P(X > t)dt, L[U(T)](s) =

1 − e−sT

s
L f (s).
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Figure 8. System reliability example for series system

Remark 2. Note that the Laplace transforms is also used to evaluate expected lifetime of components and to
optimize preventive maintenance intervals based on E[T] = −dL f (s)/ds|s=0.

4. Conclusion

In this article, we have highlighted some fundamental properties of the Laplace transform as it relates to
probability theory, highlighting its distinctive characteristics compared to commonly encountered probability
distributions. We have also established various results concerning the application of the Laplace transform to
well-known probability densities, which have proven to be particularly complex. These results have significant
implications in the field of reliability, particularly with regard to determining system availability using this
tool.
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Indeed, they open the way to promising prospects for the search for analytical solutions to various
problems, such as those associated with partial differential equations, integro-differential equations,
Navier-Stokes equations, and stochastic processes. Furthermore, the Laplace transform has proven to be a
valuable tool for identifying sub-Gaussian random variables, thus facilitating the study of their convergence
within an Orlicz space.

In light of the work carried out in this article, we also plan to direct our future research toward the
z-transform, an essential mathematical tool in the fields of automation and signal processing. This transform,
the discrete equivalent of the Laplace transform, allows the conversion of a real signal in the time domain into
a complex series. This field of study thus promises rich prospects for our future research.
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