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Abstract: Necessary and sufficient conditions for the existence of the solutions of a class of scalar and
mainly for operator-valued moment problems are reviewed. This was the first motivation for proving
our constrained extension results for linear operators. Polynomial approximations on bounded and on
unbounded closed subsets are very useful in proving the uniqueness of the solution. We also reviewed
earlier results on the extension of positive linear functional and operators. Such results are applied to ensure
the extension of our linear solution from the subspace of polynomials to a larger function space. In most of
the cases from below, this is made using polynomial approximation in one and several variables. Besides
positivity, our solution is bounded from above by a dominating linear, sublinear or only convex continuous
operator, on the entire domain space or only on its positive cone. This allows estimating the norm of the
linear solution.
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1. Introduction and preliminaries

'B eing given a sequence s = (s;) jena Of real numbers, a closed subset 5 R?, the moment problem
consists of finding necessary and sufficient conditions on the sequence s for the existence and

uniqueness of a linear positive functional T defined on a function space X containing polynomials ¢;(t) =
t,tes, j€ N4, such that the following conditions are satisfied:

T(¢;) =sj, jeN. @

Here we have denoted N := {0,1,2,...}. These conditions are usually expressed in terms of the given
numbers Sjs that are called the moments of order j for the linear form T. Next, we recall the motivation of
this terminology. Usually, the function space X is topologically complete and contains the subspace Cc(S)
of all real valued compactly supported functions which are continuous on S, having their support contained
in S. Obviously, the function space might contain some other function subspaces. Such usual spaces are
topologically complete (Banach spaces, Fréchet spaces or other locally convex complete spaces obtained by
those mentioned above). In all these cases, the linear positive functional T is represented by a positive regular
Borel measure v on S. Thus, returning to the above notations, Eq. (1) is written as

/Stfdv:sj, je N @)

This is the full (the entire) scalar moment problem, when the numerical moments of all orders are required
to satisfy the moment conditions (2). When d = 1 and (2) must be satisfied with all indices j € {0,1,...,n},
the corresponding moment problem is called reduced (or truncated). Since a polynomial function g € R[t] is
nonnegative on the entire real axes if and only if g is a sum of squares of some other polynomials with real
coefficients, the one-dimensional moment problem for S = R, called the one-dimensional Hamburger moment
problem, is the simplest one to be studied in terms of quadratic forms.
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Indeed, to ensure the positivity of the linear form T on C.(RR), we first need to know that T(g) > 0 for
all g € RJt], with g(t) > 0 for all + € R. Since any such polynomial g can be written as a sum of squares of
polynomials 72, for some r,; € R[t], m =1,..., Ny,

2

r%’l(t> = Z “j,mtj 7 m :0/1/'-'/N1’I1/
f€]0,m

the positivity T(q) > 0is expressed by Y a;majmT(@iyj) >0, m =1,..., Ny, thatis

ir]EIO,m

Z & m%j,mSi+j >0, m=0,1,...,Ny. (3)

irj S I 0,m

The conditions (3) say that all the symmetric Hankel matrices H;, := (siﬂ)f\;’io are positive semidefinite.

In other words, the sequence s is positive semidefinite. Since for each multi-index j, [, tidv is, by definition,
the moment defined by j € N? with respect to a positive regular Borel measure v, the sequence (2) is called a
moment sequence. Inequalities (3) say that any moment sequence is positive semidefinite. As we can see from
[1-9], there is a strong relationship between positive polynomial and approximating positive functions from
important function spaces by positive polynomials on R and on R,. One of the aims of this review paper is
to extend such type results from the one-dimensional case d = 1 to the multidimensional case 4 > 2. Since
the explicit form of nonnegative polynomials on R and on R := [0, +00) in terms of sums of squares is quite
simple, these cases were the first moment problems under attention. In several dimensions, the relationship
between positive polynomials on R? or ]Ri, d > 2 and sums of squares is studied. Namely, there exist positive
polynomials that are not sums of squares and there exist positive definite sequences which are not moment
sequences. In [10], a criterion for the representation of a linear functional by a positive Borel measure, in terms
of its positivity on the subspace of polynomials, is provided (Haviland theorem). The next problem consists of
studying the case when S = [0, +-0). This is the one-dimensional Stieltjes moment problem. As is well known,
a polynomial g € R[t] is nonnegative on the entire semiaxes [0, +00) if and only if g is a sum of polynomials of
the form 72 (t) + tw?(t) Vt € [0, +0), for some r,w € R[t]. Consequently, the positivity condition T(g) > 0 for
all g € R[t] with q(t) > 0Vt € [0, 4-c0) must be written as follows:

Y @im@mSivjrr, >0, m=0,1,...,Nu, 1 €{0,1}. 4)
Lj€]om

Once (3) (respectively (4)) is satisfied, from Haviland theorem, the existence of a representing positive
Borel measure for T on R (respectively on [0, +0)), follows. Since for d > 2 the positive polynomials
on R? are not necessarily sums of squares, characterization for the existence of a positive linear solution T
satisfying (1) in terms of quadratic forms is not so simple as in the one-dimensional case. In [11], results
referring mainly to convex functions are under attention. The book [12] represents a very useful source on
real and complex analysis, including measure theory. References [13-15] contain general and specific results in
functional analysis or respectively in potential theory [16] and approximation theory [17]. Main results on the
multidimensional moment problem have been published in references [18-22]. Namely, in the article [18], the
multidimensional moment problem on a compact with nonempty interior in R? is solved. The form of positive
polynomials on such compact subsets is also determined. In [19], the authors provide an example showing
that there exist moment determinate measures # on R?, d > 2, such that the subspace of polynomials is not
dense in Li (R%). As we shall see in the present study, we recall that for any determinate measure # on a closed
unbounded subset F of R?, the subspace of polynomials is dense in L;,(F ). The articles [20-22] refer to the
moment problem on semi-algebraic compact subsets K N R¥. In this case, the positive polynomials on K can be
expressed as sums of squares multiplied by the polynomials f; defining the compact subset K (for details, see
Theorem 3 below). The article [23] deals with Hamburger as Stieltjes moment problems in several variables.
In [24], an operator valued moment problem is under attention. In the area of the multidimensional moment
problem, other results have been published in [25-27]. The book [28] refers to polynomial and semi-algebraic
optimization. In [29], checkable criterions for determinacy of the one-dimensional Hamburger and Stieltjes
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moment problem have been published. Basic results, some of them involving determinacy, probability theory,
geometric interpretations, approximation and optimization, have been published in [30] and recently in [31]
and [32]. In the articles [33] and [34], results in operator theory are applied to the moment problem. The article
[35] is not directly related to the moment problem. However, it contains proof of the fact that any positive
linear operator acting on ordered Banach spaces is continuous, as well as other results. The articles [36—40] are
devoted to recent results in approximation theory, applied to expansions and to a class of generalized Bernstein
operators. The refences [41-45] concern characterization of the existence and uniqueness of the positive linear
solution of moment problems. The case when the linear operator-solution is dominated by a convex operator
is under attention. In this case, control on the norm of the solution is possible to be made.

The first aim of this work is to review results from [18] and [20] to the moment problem on special compact
subsets in R?. As a consequence, the decomposition of positive polynomials on such compacts as sums of
important positive polynomials is deduced. Generally, constrained extension of linear operators’ results are
applied to infer the existence of a solution. On the other hand, in case of moment problems on unbounded
closed subsets, approximation by positive polynomials of functions from the positive cone of certain function
spaces is reviewed. On the other hand, the relationship between positivity and continuity of classes of linear
operators is reviewed. We proposed a method of solving the multidimensional Hamburger and Stieltjes
moment problems in terms of quadratic forms. If d > 2 and s = (s;) jend is a sequence, the multidimensional
Stieltjes moment problem consists of characterizing those sequences that are moment sequences on [0, +c0)".
The existence and uniqueness of the solution positive Borel representing measure v are under attention. In a
few cases, the construction of the solution is also possible to be made, although this is not an aim of the present
work. §3.1 contains solutions for a few moment problems on compact subsets. In §3.2, similar results on closed
unbounded subsets are under attention. In what follows, all the function spaces containing polynomials are
functions whose elements are real valued functions, or classes of such functions. The rest of the paper is
organized as follows. In §2, the basic methods applied in this review paper are summarized. §3 is devoted to
the results. §4 concludes the paper.

2. Methods

Here are the basic methods applied in the Results section.

1. Applying a result on constrained extension of a positive linear operator, that preserves positivity and
the property of being dominated by a given convex operator, on the positive cone of the domain space.
The codomain is an order complete ordered vector space. The extension is made from the subspace of
polynomials to a larger function space (see [14,15,41,44] and the references there).

2. Using continuity of any positive linear operator acting between ordered Banach spaces [35].

Evaluating the norm of a positive linear operator on Banach lattices with order units [4,5].

4. Recalling and applying results from [18,41] regarding solution of the moment problem on compact

@

subsets with nonempty interior in R?, d > 2.

5. Applying separation theorem to infer the decomposition of positive polynomials on special compact
subsets, in terms of special positive polynomials (see [18-20]). Using Hahn-Banach type theorems in
solving the existence of the vector valued (and operator valued) linear solution for the moment problem.

6. Applying polynomial approximation on unbounded subsets, to elements of the positive cone of
certain function spaces, by nonnegative polynomials. Consequently, we obtain solution for the
multidimensional moment problem on [0, +00)?, using approximation of any nonnegative function from
C (51 x S2), by tensor products of polynomials (71, ® r2,m) (t1,t2) = *1.m (£1) tom (£2), 11, (t;) >0 Vt; €
R . This leads to the results of [45], including Theorem 13 recalled below.

7. Using functional calculus for self-adjoint operators.

8. Recalling the methods applied in [18-20], regarding solving moment problem on special compact subsets
of R?. The case of semi-algebraic compact subsets and Schmudgen’s Positivstellensatz are recalled.

9. Results from [42-45] on polynomial approximation on unbounded closed subsets are reviewed and
applied. In this case, the density of polynomials and uniqueness of the solution in L%, (R%) spaces for
a moment determinate measure 1 on R?, d > 2 is pointed out. As has been discussed and has been
proved in [19], such results are no longer valid when we replace L;l (R?) with L}% (Rd) , d > 2,even for

moment determinate measures y.
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10. Expressing our necessary and sufficient conditions in terms of quadratic forms, even in the case of
some multidimensional moment problems on RY and on R%. To do this, we use approximation of
any element from the positive cone of the domain function space by sums of squares of polynomials
as (p1 (t1) -~ pa (t2))% pi € R]ti], or respectively by sums of products [T¢, (p?(t;) + tig?(t;)), where
pi, qi € Rt;]. Since our solutions are continuous linear functionals (or operators), passing to the limit,
the positivity on the positive cone of the domain space is maintained. We also point out the connection
with the notion of positive sequence on an interval.

3. Results

3.1. Existence of the solutions for moment problems on compact subsets

One of the main applications of convexity consists of proving Hahn-Banach type results for extension of
linear functionals and operators. For example, separation theorem for convex disjoint sets has been applied
in references [7,18], and extension of linear operators was applied in [41,42] and reviewed in [44]. As we
have already seen in the Introduction, when solving the existence problem, we are interested only in the
linear solutions T satisfying (1), which are positive on the positive cone of the domain function space X. In
other words, if we are looking for such a linear solution Tmapping Xinto the ordered vector space Y, then
Tmust verify Tx>0 for all x€X,. As we have recalled in §2, if X,Y are ordered Banach spaces, then the
positivity of a linear operator from X to Y implies its continuity. The implication in the reverse sense stays
valid under natural assumptions on density of positive polynomials in the positive cone X . We start this
paper by recalling solutions of moment problems on compact subsets of RY. Next, the statement of a general
Hahn-Banach type theorem, formulated in the framework of positive linear operators on ordered vector spaces
is reviewed. This general result can be applied to the moment problem on a compact subset K with nonempty
interior [18,41]. The review will continue with the problem of moments on semi-algebraic compact subsets
K (see [7,20]). The form of positive polynomials g, ¢ (t) >0 VteK, namely their decomposition as sums of
special positive polynomials involved in the definition of K, plays an important role in both types of compacts
mentioned above. The form of positive polynomials g, g (t) >0 Vt€K, namely their decomposition as sums of
special positive polynomials involved in the definition of K, plays an important role in both types of compacts
mentioned above. For example, in Theorems 1 and 2 stated below the special nonnegative polynomials
are those from AK, while in case of a semi-algebraic compact defined by equality (5) below, these special
polynomials are fi,...,fn, (multiplied by a sum of squares ) riz, ri€R[fy,...,t5] ). In the last section, moment

problems on unbounded subsets are discussed. Here the Ilaoint is the uniqueness of the solution. In what
follows, we recall notions and results from the article [18]. Let K be a compact subset with a nonempty
interior in RY, d>2. Since K is a closed subset in RY, there exists a family (pi);cs of polynomials of degrees
smaller or equal to two, such that K=;¢; pi_l ([0, 400)). One denotes by E(K) the vector space generated
by the polynomials of degree at most one and the polynomials p;, i€l. So, E(K) is contained in the vector
space Ry[ty, ... ,t4] of all polynomials having the degree at most two. One defines the convex cone E (K) that
consists of elements in E(K) which take nonnegative values at all points of K. Let G (K) be the subset of those
TeE (K) that generate an extremal ray of E (K) . One also defines the important subset

G1 (K) :ATEeG (K); [ Tllx=1} -

In the case when K is convex, one can take as E(K) the subspace of all polynomials of degree at most one.
For example, when d=1 and K= [0, 1], we see that

Gy (K)={t, 1—t} .

In the case d>2, the family of polynomials #"(1—t)", m,nEN appearing in the Hausdorff moment
problem, can be replaced by the family A (K) of polynomials that are finite products of elements from G; (K),
the constant 1 corresponding to an “empty” product. Since A (K) has only a multiplicative structure with order
unit, one considers the convex cone I'=T'(K) formed by convex combinations with nonnegative coefficients
of elements from I (K) . Finaly, one introduces the set 71(K) of all linear forms L on R[ty,...,t;] having the
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properties L (1) =1 and L(T)>0 for all T€A (K) . In [11], the set 77(K) is studied in key Lemma 3, preceded by
proving that 77(K) is a compact convex, if we endow it by the weak topology w (7 (K), A (K)) . An interesting
geometric property is that any extreme point T of A (K) is multiplicative on E:R [t] (see [16], Lemma 3, pp.
256-257). However, we do not apply this last remark in our statements, that concern directly only the way
of solving moment problems. The order of stating the following results published in research articles or
specialized books follows the chronological order of their publication date.

Theorem 1 (see [18]). (Solution for the moment problem). Let K be compact in R?, d > 2 with nonempty interior in R?,
A sequence (s;)jcna is a moment sequence on K if and only if the linear form Ls defined on R[t] by Ls(t) :=sj,j € N,
verifies the condition L(T) > 0 for all polynomials T € A(K).

The next result provides the expression of positive polynomials on a compact having nonempty interior.

Theorem 2 (see [18]). Any positive polynomial on a compact having nonempty interior in R? is a linear combination
with nonnegative coefficients of polynomials from A(K).

Next, we continue with the Schmiidgen’s Positivstellensatz, which is related to the solution of the moment
problem on semi-algebraic compact subsets. There exists Putinar’s Positivstellensatz. If f1,..., fi € R[t] are
such that the set

K:={teR%; fi(t)>0,..., fu(t) >0}, (5)

is compact, then K is called a semi-algebraic compact. We denote by ©? the convex cone generated in R[t] by
all squares of polynomials:
¥?:=co{q*; g € R[]},

and by
22<f1,,_,,fm> = 22+f122+~'~+fm22+f1f222+”'+f1~~~fm22,

the multiplicative convex cone generated by £? and f1, .. ., fi.

Theorem 3 (see [7], [20]). (Decomposition of positive polynomials on semi-algebraic compact subsets). With the above
notations, the following assertion holds true. Let K be a semi-algebraic compact and q € R[t],q(t) > 0 forall t € K.
Then q € Z2(f1, ..., fm)-

In other words, Theorem 3 says that in several dimensions, positive polynomials on semi-algebraic
compact subsets can be decomposed as sums whose terms are squares of polynomials multiplied by products
of polynomials f; appearing in the definition of the involved semi-algebraic compact K.

Here is a possible relationship between Theorems 2 and 3 recalled in this review paper. For example,
Theorem 3 involves sums of squares multiplied with products f;--- f;, I € {0,1,...,m}, while Theorem 2
involves linear combinations with nonnegative coefficients of elements from A(K). The common point seems
to be that the polynomials appearing in these linear combinations are products of polynomials that define
the compact under attention (see the definitions of A(K) in [16] and respectively of Z2(fy,..., f) in [8] and
[20]). Hence, in Theorem 3 positivity conditions on positive polynomials can be written in terms of quadratic
forms. Consequences of Theorem 2 are derived below in Theorems 6—8. For the next three theorems, see [18],
[41]. Theorems 4-8 stated below represent the author’s contribution to this and related subjects. For example,
Theorem 4 provides characterization of the existence of a positive linear extension T of Ty, such that T is
dominate by P on the positive cone X . A quite similar type result, written in the framework of the moment
problem, is stated in Theorem 5. Theorems 6 and 7 follow as applications to a concrete domain space, using
the notion of positive sequence on an interval. Generally, the terms of this sequence are elements of an order
complete Banach lattice. Theorem 8 represents a constrained extension result for linear operators applied to
a multidimensional moment problem. Our extension satisfies not only the positivity constraint on X, but
also the condition of being dominated by a given convex operator. For example, in Theorem 8 this convex
constraint is defined by a vector valued norm. Usually, the convex operator defining the upper constraint on
the solution may be defined on the entire domain space X, or on the positive cone X .
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Theorem 4. Let X be an ordered vector space, Y an order complete vector space, M C X a vector subspace, Ty: M — Y
a linear operator, P: X — Y a convex operator. The following two statements are equivalent.

(a) There exists a positive linear extension T: X — Y of Ty such that T|x L <P

(b) We have Ty (h) < P(x) forall (h,x) € M x Xy such that h < x.

Theorem 5. Let X be as in Theorem 4, Y an order complete vector lattice, {x;} e}, respectively {y;};c; finite or infinite
given families in X, respectively inY, P: X — Y a convex operator. The following assertions are mutually equivalent.
(a) There exists a positive linear operator T: X — Y such that

Txj=y; forallj€], and Tx <Px forallx¢€ X.
(b) For any finite subset Jo C J, any family {a;: j € Jo} C R, the relation

ED(]'X]'SXEX - Za]ngPx
i€l j€lo

In the next result, we use the notion of positive sequence on an interval I C R, pointing out the
relationship between such a sequence and the moment problem. Theorem 6 stated below follows quite rapidly
with the aid of Theorem 5. Namely, if Y is an ordered vector lattice, and y = {yo,y1,...,Yn, ...} a sequence

n .
in Y, we say that y is of positive type on the interval I if and only if for any polynomials }_ «;t/ that take
j=0
n
nonnegative values at all points ¢ of [0, ], we have Y ajy; > 0.
j=0

In the following theorem, the domain space is L!(]0,b]), 0 < b < +oc0, with respect to Lebesgue measure
dt. The motivation of choosing this function space (containing all the polynomials), consists of the fact that
among all L?([0,b]) spaces with p € [1,+c0], L'(]0,b]) is the largest one. This is a consequence of Holder’s
inequality. Thus, if we are looking for an extension of the linear positive functional or operator, verifying
the moment conditions (1), from the subspace of polynomials to L7 ([0, b]), the case when p = 1 provides a
maximal extension. With the above-mentioned notations, the following theorem holds.

Theorem 6. Let X := L%, ([0,b]), x; the class of polynomial ¥/, j € N, § € Yy \{0}. If the sequence
{J,v0,2y1,...,mYy_1,...} is positive on [0,b], then there exists a positive linear operator T from X into Y such that
Txj=y; Vj€] and

T(x) < P(x) := (/Ob 1x(1)] dt) 7, Vxe LL,([0,b]).

Proof. To apply Theorem 5, (b) implies (a), we must verify the implication stated at point (b). More specifically,
with the notation of the present theorem, the following implication should hold true. If we define the linear
operator on the subspace of polynomials by T(x;) := yj;, j € N, for ap := fob |x(t)|dt, we must prove that

noo
Y. ajt/ < x(t) almost everywhere in [0, b] implies:

j=0
n b
Y ax; < (/0 |x(t)|dt> Xo,
j=1
that is,
b n
(/ |x(t)|dt> X0 — Y ajxj >0,
implies

(/Ob |x(t)|dt) i —jnzl ay; > 0.
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In other words, using the notations that define the Yj, we must prove that

n

Z it/ < x(t) almost everywhere in [0, b],

(6)

implies:

Ji‘{ ajy; < (/Ob |x(t)|dt> 7. @)

On the other hand, by integrating in (6), we have:

n Wt u u
I g/o x(t)dtg/o x(£)|dt, € [0,b].

This means that

n Waa!
]+1—/ Ix(t |dt</ x(£)[dt, u € [0,b].

Considering the above notations T(x;) := y;, that define T on the subspace of polynomials, we infer:

y 1’1
040]/0+Z ]+1]+]1 JBLILTRS (/ |x(t) dt)y P(x)
]:

Thus, condition (b) of Theorem 5 is satisfied. Hence the assertions (a) of the same theorem hold true. The
desired conclusion follows. [

} C Y. We consider the following statements:

Theorem 7. Let X, xi, Y, § be as in Theorem 6 and {yo, Y1, --,Yn, - - -
Vj € ], and

(a) There exists a positive linear operator T from X into Y such that Tx; = y;

T(x) < P(x) := (/Ob |x(t)dt> .5, Vxe LL,([0,b]).

(b) The sequence {y1,(1/2)y2,...,(1/(n+1))yu+1, ...} is positive on the interval [0, b] and

b]+1 .

} is positive on the interval [0,b] and

bf“ .

(c) The sequence {yo,y1,---,Yn,- - -

Then (a) = (b) and (a) = (c).
Proof. (a) = (b). Assume that (a) holds. If Z ajxi(t) = i aif >0 t e [0,b], by integrating on [0,u] C [0,b],

one obtains ‘
n it
&j
0

This can be written as

i"" Xjt1
=T\ j+1
=0 N
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in L, ([0,b]). Since T: L},([0,b]) — Y is positive and linear, with T(x;) = y;,j € N, we infer that

n .
2aj<.y’“>zomy.
=0 j+1

]

Hence, the sequence {y1, (1/2)ya,...,(1/(n+1))y,41,...} is positive on [0, b]. On the other hand, from

(a), we know that
b jd bj+1 N
— ) < 7 — 5
y=105) < ([[0ar)g= (7)o ien

Thus, the implication (a) implies (b) is proved. The assertion (a) implies (c) is almost obvious and can be
proved in a similar way. [

Let K C R d > 2, be a compact subset with nonempty interior, Y an order complete vector lattice
endowed with a linear topology such that the positive cone Y is normal (see [4]), # a positive regular Borel
measure on K, and X := L;(K) We denote by x; the class of the polynomial .= tjl'l e t{f, t=(t,...,t3) €K,
=01, .- js) € N, (¥j)jene asequenceinY, d > 2. Let § be a fixed not null element from Y. With the above
notations and using results recalled above, we have the following result (see [41]).

Theorem 8. There exists a unique positive linear operator T € L1 (X,Y) such that

Ty=y, view, Te<([oldn) g vrex

if and only if for any polynomial p = Y. a;jx; € A(K) the following inequalities hold:
j€lo

dy) - 7.

3.2. Approximation by nonnegative polynomials on unbounded subsets

Y ajt

j€Jo

0< ) ajy;< (/K

j€Jo

Theorems 9, 10, 13 represent the author’s contribution to the type of approximation mentioned in the title
of this subsection. Then such approximations are applied to prove the relationship between positivity and
continuity for classes of linear operators (see Theorem 12).

Theorem 9. Let K C [0,+0c0) be a compact subset, and f: K — [0, 400) a continuous function. Then there exists
a sequence (Pm)men of polynomial functions from R[t| such that p,,(t) > f(t) for all t € [0,+0c0) and all m, with
limy, pm |k = f. The convergence holds uniformly on K.

For proof of Theorem 9 see [43], Lemma 2.

Next, we recall the notion of a moment determinate measure on a closed unbounded subset. If F C R is
an unbounded closed subset, a positive Borel measure y on F is called M-determinate (moment determinate,
or simply determinate), if and only if the polynomials p,(t) := #" := /' ---}%, n € N, are elements of the
space L}l (F) and p is uniquely determined by its moments

f'dy, n e N
Jprdu n

This means that for any other such positive Borel measure A with

/ f1d) = / fdy, Vne N,
F F

we have A = y as measures ( [ 9dA = [; gdy for all ¢ € C.(F)).
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Theorem 10 (see [42], [44]). Let F be a closed unbounded subset in R%, d > 1, and U a positive M-determinate Borel
regular measure on F. Then for any ¢ € (Cc(F))+, there exists a sequence (Gm)men of polynomials, g, (t) > @(t) >
0Vt e F,Vm €N, limy, g = ¢ in L}, (F). In particular,

1i,gn./qudﬂ = /qudu,

the positive cone of nonnegative polynomials on F is dense in (L;(F)) , and the subspace R[t] of all polynomials is
+
dense in L}, (F).

Before continuing with the moment problem, we recall the following useful general-type result on
continuity of any positive linear operator acting on ordered Banach spaces (see [35]).

Theorem 11. Let X, Y be ordered Banach spaces and T: X — Y a positive linear operator. Then T is continuous.
The implication in the reverse sense also holds under the conditions mentioned below.

Theorem 12. Let X be an ordered Banach space of functions on F C R?, containing a convex sub-cone C C (R][t]) 4 :=
{q € R[t],q(t) > 0Vt € F}, with C = X, Y an ordered Banach space, and T € B(X,Y) a bounded linear operator
mapping X into Y, with Tq > 0 forall ¢ € C. Then Tx > 0 for all x € X (hence T is positive).

The proof of Theorem 12 is obvious. In the context of this study, the difficulties might arrive in verifying
the assumptions from the statement of Theorem 12. The point is to prove the density of the sub-cone C in the
positive cone X of the domain space X. For the one-dimensional case d = 1, this follows from Theorem 9.

Namely, if X = C(K) for some compact subset K C [0, +c0), the dense sub-cone C C X which is under
attention is the sub-cone of polynomials p with p(t) > 0 for all t+ € [0,+o0). For arbitrary d > 2, it can be
deduced from Theorems 9 and 10, via Theorems 1 and 2 of [45].

Namely, if d = 2 and S := S; x Sy, with S; compact subsets of [0, +c0), i = 1,2, and X := C(S), the
interesting dense sub-cone in X is the convex cone C generated by polynomials g with q(t1, t2) = q1(t1)g2(t2),
gi(t;) > 0Vt; > 0,1 = 1,2. Since any nonnegative polynomial g;(¢;) on R is a sum of special polynomials
tilr](tl)t;m(t2> for some r; € R[t;] and s; € {0,1}, the condition Tx > 0 for all x € C(S) is expressible using
signature of quadratic expressions, as described in [45].

In a way, Theorem 12 claims the converse implication of that from Theorem 11 also holds true. In other
words, for a large class of linear operators T and ordered Banach spaces X, continuity of T on X and its
positivity on C C (R[t])+, where C is a dense sub-cone in X, implies positivity on the entire positive cone X
of the domain space X.

Thus, via linearity, continuity of T implies positivity (hence T is monotone increasing). In this context, we
have denoted by C the topological closure of C in X. For example, if K C [0, +o0) is compact and X = C(K),
C is the topological closure of C in X, which is equal to the closure of C in X, with respect to the topology of
uniform convergence on K.

Example 1. Let F = R, y a moment determinate measure on R, X = L%,(R), Y an ordered Banach space,
T € B(X,Y) a bounded linear operator such that if Jy C N is a finite subset and {a;: j € Jo} C R, then the
following inequality holds:

Z le'lX]' T(xl-ﬂ) > 0.

i,j€Jo

Then Tx > 0 for all x € X, hence T is positive.

Example 1 stated above refers to Theorems 10 and 12. Since T is supposed to be a continuous linear
operator which takes nonnegative values at any positive polynomial which is nonnegative on the entire real
axes, according to Theorem 12 and using the notations there, it follows that

T(x)=T (lirﬁnqm) =LmT(qm) >0, Vxe€ X
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Thus, T is positive, although we have supposed only its positivity on the subcone C of all polynomials that
are nonnegative on R. The equality C = X, appearing in the hypothesis of Theorem 12 holds true due to
Theorem 10.

The next example also refers to Theorem 12. It completes the discussion regarding the relationship
between continuity and positivity for usual classes of linear operators.

Remark 1. The uniqueness of the solution is obvious for the scalar moment problem. It is a direct consequence
of the assumption on determinacy of y. For the general case, it seems easier to prove first Theorem 10, then
deducing from this Theorem 12, as described above.

Example 2. Let H be a Hilbert space, A: H — H be a positive self-adjoint operator, c(A) the spectrum of A,
X := C(0(A)), A the ordered Banach space (see [4,5]) of all self-adjoint mappings H into H, Y := Y(A) the
commutative Banach algebra and order complete Banach lattice of self-adjoint operators studied in [15], pp.
303-305.

Let (S;) en be a sequence in Y, such that for any finite subset Jo C N, any {a;: j € o} C R,and k € {0,1},
the following inequalities hold:

0<L Z ociochi+j+k < Z OCiDéin+j+k.
i€l ijclo

Then the linear operator Ts defined on R[¢] by

I, (Z ajy) =Y s,

j€lo j€lo
admits a positive linear extension T which is dominated by the extension ®4 of the linear operator defined

by ® < Y oc]-tj ) =) tx]-Aj on the dense sub-cone C of restrictions to ¢(A) of positive polynomials on the
j€o i€lo
entire interval [0, +00). We recall that ® 4 is continuous on C(c(A)), due to functional calculus for self-adjoint

operator A. On the other hand, Theorem 9 ensures the density of the sub-cone C mentioned above in

(€(e(A)));-

The conclusion of Example 2 is that Ts admits a unique linear positive extension
T:C(c(A)) = Y(A),

with
0<T(x) <P(x) =x(A), Vxe (C(c(A))), -

This follows via Theorems 9 and 12.

Sufficient conditions for determinacy and respectively indeterminacy of measures on R and on [0, +o0)
have been proved in [29]. Next, we focus on determinacy of product measures p1 X pp on R?, respectively on
[0, —|—oo)2, where y;,i = 1,2 are moment determinate measures on R, respectively on [0, +0c0). The reason for
doing this is to apply results like Theorem 12 stated above to the moment problem.

Theorem 13 (see [45]). Let H be a Hilbert space, A1 a positive self-adjoint operator mapping H into H, and let Y :=
Y (Aj) be the commutative Banach algebra and order complete Banach lattice of self-adjoint operators studied in [5], pp.
303-305. Let Ay € Y (A1) be a positive operator. If we denote by S; the spectrum of the positive operator A;, i = 1,2, and
S := Sy X Sy, let us consider the positive linear operator Ty mapping C(S1 x Sp) into Y (A1) that verifies the equalities

Ty (£142) = AAR  forall (ju, j,) € N2

Being given a sequence (U, ;,))( 2 of elements from Y (Ay), the following statements are equivalent:

j1j2)EN
(a) There exists a unique linear operator T mapping C(S) into Y, such that

T(H ) = U, (uj2) €N’ and 0<T(p) < Ta(p), @€ (C(S)), -
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(b) Fors; € {0,1}, i = 1,2, any finite subsets J; C N, i = 1,2, and any subsets {a;, j1 € J1}, and respectively
{Bi,j2 € J2} of real numbers, the following inequalities hold true:

. CR.1T. o . @, Alititst piatjatsy
0< Z D‘h“h( Z :Blzﬁ]z ul1+]1+51,12+]2+52> < Z “H“h( Z ‘8121812 Al AZ >

i1,j1€1 in,j2€)2 i1,j1€h i2,j2€)2

For the proof of Theorem 13 stated above, see [45], pp. 6-12, Theorems 3, 4, 5.

Corollary 1 stated below provides estimates for ||T||, U ;,y, and [[U(j, ;,)|l, although the relationship
between the involved operators T, U;, :,), and Ay, A3 is not known from the beginning.

Corollary 2 below represents the matrix version of Theorem 13, in the case where the Hilbert space H is R",
n>2.

Corollary 1. With the notations and under the hypothesis of Theorem 13, if the sequence <U(]~1 /'2))(‘ Jene of
§ J1/]2 S

self-adjoint operators satisfies conditions (b), and T is the solution of the constrained interpolation problem claimed
at point (a), then the following estimates hold:

ITI <1, 0< U, < ATAZ, UGl < (1AL - [ A2

j1.42)

Corollary 2. The statement of Theorem 13 stays valid for n x n symmetric commuting matrices Aq, Ay, U
(j1,j2) € N?, with real entries, that define linear operators satisfying the hypothesis of Theorem 13.

j1.2)

4. Conclusions

We recall an earlier Hahn—Banach type result on characterizing the existence of a positive linear extension
for a linear positive operator, preserving positivity and the condition of being dominated by a given convex
continuous operator. In most cases, this condition involves a given linear positive operator that should
dominate our extension on the positive cone of the domain space. We use the approximation results proved
in [38] of any nonnegative function from the domain space by sums of squares or by sums of products of

polynomials like
d

I1 (qlz(tz‘) + fﬂ%(ﬁ)) ,

i=1
multiplied by products of functions f; appearing in the definition of the compact semi-algebraic subset K (see
Theorem 3 stated above).

For interested readers, future research directions might focus on solving moment problems on closed
subsets F that are not Cartesian products of intervals. The polynomial approximation result claimed in
Theorem 9 stated above of functions from (L}J(F )) . by nonnegative polynomials at each point of F is still
working.

Here the problem is that the expression of such nonnegative polynomials in terms of special more simple
nonnegative polynomials seems to be not known, unlike the case of semi-algebraic compact subsets K. In
characterizing the existence of a positive linear solution, the idea is to find conditions that should be verified for
classes of special nonnegative polynomials, for example polynomials expressible in terms of sums of squares.
If this is not possible, we prove the density of such polynomials in the positive cone of our function spaces, as
described above in the present work.

Our approximation results imply the uniqueness of the solution of the full moment problem on the
corresponding function spaces. Almost all results are formulated in terms of quadratic expressions, even
when we obtain operator valued solutions. The relationship between positivity and continuity for classes of
linear operators is also discussed.
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