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Abstract: In this paper we construct indecomposable vector bundles associated to monads on multiprojective
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associated to the monads on X = P2n+1 × P2n+1 × · · · × P2n+1 and prove that the cohomology vector bundle
which is simple, a generalization of special instanton bundles. We also prove stability of the kernel bundle
and that the cohomology vector bundle associated to the monad on Pa1 × · · · × Pan is simple. Lastly, we
construct explicitly the morphisms that establish the existence of monads on P1 × · · · × P1.
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1. Introduction

T he existence of indecomposable low rank vector bundles on algebraic varieties in comparison with the
ambient space has been a fertile area in algebraic geometry for the last 45 years. Regardless it remains

intriguing, fascinating and exciting to construct new examples of indecomposable low rank vector bundles.
Some of the remarkable works in this regard are: the famous Horrocks-Mumford bundle of rank 2 over P4 [1],
the Horrocks vector bundle of rank 3 on P5 [2] the Tango bundles [3] of rank n − 1 on Pn for n ≥ 3 and the
rank 2 vector bundle on P5 in characteristic 2 by Tango [4] are all obtained as cohomologies of certain monads.

This (monads) is one of the techniques used to construct these vector bundles. They appear in many
contexts within algebraic geometry. and were first introduced by Horrocks [5] where he proved that all vector
bundles E on P3 could be obtained as the cohomology bundle of a given monad. In vector bundle construction
via monads on a given algebraic variety, the first task is to show the existence of monads. Fløystad [6] gave
a theorem on the existence of monads over projective spaces. Costa and Miro-Roig [7] extended these results
to smooth quadric hypersurfaces of dimension at least 3. Marchesi, Marques and Soares [8] generalized
Fløystad’s theorem to a larger set of varieties. Maingi [9–12] proved the existence of monads on Pn × Pm,
P2n+1 × P2n+1, Pa1 × Pa1 × Pa2 × Pa2 × · · · × Pan × Pan and on Pn × Pn × Pm × Pm respectively and proved
simplicity of the cohomology bundles associated.

A natural and efficient technique to construct monads and hence more examples of vector bundles is to
vary the ambient variety and choose a different polarisation. In Section three of the paper, we first generalize
the work of Maingi [10] by construction of monads on P2n+1 × · · · × P2n+1 for a rank β − α − γ. We then prove
stability of the kernel bundle which is a generalization of the dual of Schwarzenberger (steiner) bundles. Next
we prove simplicity of the cohomolgy vector bundle. Specifically we establish the existence of monads

0 −−−−→ OX(−1, · · · ,−1)⊕α −−−−→
f

⊕O⊕β
X −−−−→

g
OX(1, · · · , 1)⊕γ −−−−→ 0,

on X = P2n+1 × · · · × P2n+1. We shall call the monad above Type I in this paper.
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Next, in Section four we establish the existence of monads on X = Pa1 × · · · × Pan for the polarisation
L = OX(α1, · · · , αt). This is a generalization of the results of Maingi [9, Theorem 3.2] where he gave a
conditional variant theorem for the existence of a monad on Pn × Pm.

Specifically we establish the existence of monads

0 −−−−→ OX(−α1, · · · ,−αt)⊕α −−−−→
f

⊕O⊕β
X −−−−→

g
OX(α1, · · · , αt)⊕γ −−−−→ 0,

on X = Pa1 × · · · × Pan which we shall call monad Type II. We then prove stability of the kernel bundle ker g
and finally prove that the cohomology vector bundle, E = ker g/ im f is simple.

Lastly, in Section five we construct the morphisms that establish the existence of monads

M• : 0 −−−−→ OX(−1, · · · ,−1)⊕k −−−−→
A

O⊕2n⊕2k
X −−−−→

B
OX(1, · · · , 1)⊕k −−−−→ 0,

on P1 × · · · × P1 which are matrices whose entries are multidegree monomials.

2. Preliminaries

In this work we give generalizations for previous results by several authors. To be specific we build upon
results by Maingi [9–11] therefore the definitions, notation, the methods applied are quite similar and the trend
follows the paper by Ancona and Ottaviani [13]. In this section we define and give notation in order to set up
for the main results. Most of the definitions are from chapter two of the book by Okonek, Schneider and
Spindler [14].

Definition 1. Let X be a nonsingular projective variety.

1. A monad on X is a complex of vector bundles:

0 → M0
α−→ M1

β−→ M2 → 0,

which is exact at M0 and at M2 i.e. α is injective and β surjective.
2. A monad as defined above has a display diagram of short exact sequences as shown below:

0 0y y
0 −−−−→ M0 −−−−→ ker β −−−−→ E −−−−→ 0

||
y y

0 −−−−→ M0 −−−−→
α

M1 −−−−→ coker α −−−−→ 0

β

y y
M2 M2y y
0 0

3. The kernel of the map β, F = ker β and the cokernel of α, coker α for the given monad are also vector
bundles and the vector bundle E = ker(β)/ im(α) and is called the cohomology bundle of the monad.

Definition 2. Let X be a nonsingular projective variety, let L be a very ample line sheaf, and V, W, U be finite
dimensional k-vector spaces. A linear monad on X is a complex of sheaves,

M• : 0 V ⊗L −1 W ⊗OX U ⊗L 0A B ,

where A ∈ Hom(V, W)⊗ H0L is injective and B ∈ Hom(W, U)⊗ H0L is surjective.
The existence of the monad M• is equivalent to: A and B being of maximal rank and BA being the zero

matrix.
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Definition 3. Let X be a non-singular irreducible projective variety of dimension d and let L be an ample line
bundle on X. For a torsion-free sheaf F on X we define

1. the degree of F relative to L as degL F := c1(F) ·L d−1, where c1(F) is the first Chern class of F,
2. the slope of F as µL (F) := degL F

rk(F) .

2.1. Hoppe’s criterion over polycyclic varieties

Suppose that the Picard group Pic(X) ≃ Zl where l ≥ 2 is an integer then X is a polycyclic variety. Given
a divisor B on X we define δL (B) := degL OX(B). Then one has the following stability criterion [15, Theorem
3]:

Theorem 1 (Generalized Hoppe criterion). Let G → X be a holomorphic vector bundle of rank r ≥ 2 over a polycyclic
variety X equiped with a polarisation L if

H0(X, (∧sG)⊗OX(B)) = 0,

for all B ∈ Pic(X) and s ∈ {1, . . . , r − 1} such that δL (B) < −sµL (G) then G is stable and if δL (B) ≤ −sµL (G)

then G is semi-stable.
Conversely if then G is (semi-)stable then

H0(X, G ⊗OX(B)) = 0,

for all B ∈ Pic(X) and all s ∈ {1, . . . , r − 1} such that (δL (B) ≤) δL (B) < −sµL (G).

Notation 1. Suppose the ambient space is X = Pa1 × · · · × Pan then Pic(X) ≃ Zn.
We shall denote by gi for i = 1 · · · , n the generators of the Picard group of X, Pic(X).
Denote by OX(g1, · · · , gn) := p1

∗OPa1 (g1) ⊗ · · · ⊗ pn
∗OPan (gn), where pi for i = 1, · · · , n are natural

projections from X onto Pai .
For any line bundle L = OX(g1, g2, · · · , gn) on X and a vector bundle E, we write E(g1, g2, · · · , gn) = E ⊗

OX(g1, g2, · · · , gn) and (g1, g2, · · · , gn) := g1[h1 × Pa1 ] + · · ·+ gn[Pan × hn] representing its corresponding divisor.
The normalization of E on X with respect to L is defined as follows:
Set d = degL (OX(1, 0, · · · , 0)), since degL (E(−kE, 0, · · · , 0)) = degL (E) − nk · rank(E) there is a

unique integer kE := ⌈µL (E)/d⌉ such that 1 − d. rank(E) ≤ degL (E(−kE, 0, · · · , 0)) ≤ 0. The twisted bundle
EL−norm := E(−kE, 0, · · · , 0) is called the L -normalization of E.

Lastly, the linear functional δL on Zn is defined as δL (p1, p2, · · · , pn) := degL OX(p1, p2, · · · , pn).
For the q−th cohomology group we use the notation Hq(F ) in place of Hq(X, F ), for the sake of brevity.

The following proposition is actually a corollary of Theorem 1 above, a special case of the generalized
Hoppe criterion on stability.

Proposition 1. Let X be a polycyclic variety with Picard number n, let L be an ample line bundle and let E be a rank
r > 1 holomorphic vector bundle over X. If H0(X, (

∧q E)L−norm(p1, · · · , pn)) = 0 for 1 ≤ q ≤ r − 1 and every
(p1, · · · , pn) ∈ Zn such that δL ≤ 0 then E is L -stable.

Proposition 2. Let 0 → E → F → G → 0 be an exact sequence of vector bundles. Then we have the following exact
sequence involving exterior and symmetric powers

0 −→
q∧

E −→
q∧

F −→
q−1∧

F ⊗ G −→ · · · −→ F ⊗ Sq−1G −→ SqG −→ 0.

Theorem 2 (Künneth formula). Let X and Y be projective varieties over a field k. Let F and G be coherent sheaves on
X and Y respectively. Let F ⊠ G denote p∗1(F )⊗ p∗2(G ) then Hm(X × Y, F ⊠ G ) ∼=

⊕
p+q=m

Hp(X, F )⊗ Hq(Y, G ).
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Lemma 1. Let X = Pa1 × · · · × Pan then

Ht(X,OX(p1, · · · , pn)) ∼=
⊕

t
∑

qi=1

Hq1(Pa1 ,OPa1 (p1))⊗ Hq2(Pa2 ,OPa2 (p2))⊗ · · · ⊗ Hqn(Pan ,OPan (pn)).

Theorem 3 ([16], Theorem 4.1). Let n ≥ 1 be an integer and d be an integer. We denote by Sd the space of homogeneous
polynomials of degree d in n + 1 variables (conventionally if d < 0 then Sd = 0). Then the following statements are true:

1. H0(Pn,OPn(d)) = Sd for all d.
2. Hi(Pn,OPn(d)) = 0 for 1 < i < n and for all d.
3. Hn(Pn,OPn(d)) ∼= H0(Pn,OPn(−d − n − 1)).

Lemma 2. If
n

∑
i=1

pi >0 then hp(X,OX(−p1, · · · ,−pn)⊕k) = 0 where X = Pa1 × · · · × Pan and for 0 ≤ p <

dim(X)− 1, for k a positive integer.

Lemma 3. Let A and B be vector bundles canonically pulled back from A′ on Pn and B′ on Pm then

Hq

(
s∧
(A ⊗ B)

)
= ∑

k1+···+ks=q

{
s⊕

i=1

(
s

∑
j=0

ki

∑
m=0

Hm(∧j(A))⊗ (Hki−m(∧s−j(B)))

)}
.

Proof. The proof follows from the following standard identities:

1.

Hq(A1 ⊕ · · · ⊕ As) = ∑
k1+···+ks=q

{
s⊕

i=1

Hk
i (Ai)

}
.

2.

Hq(A ⊗ B) =
q

∑
m=0

Hm(A)⊗ Hq−m(B).

3.

∧s(A ⊗ B) =
s

∑
j=0

∧j(A)⊗∧s−j(B).

Lemma 4 ([6], Main theorem). Let k ≥ 1. There exists monads on Pk whose maps are matrices of linear forms,

0 −−−−→ OPk (−1)⊕a −−−−→
A

O⊕b
Pk −−−−→

B
OPk (1)⊕c −−−−→ 0,

if and only if at least one of the following is fulfilled;
(1) b ≥ 2c + k − 1 and b ≥ a + c,
(2) b ≥ a + c + k.

Lemma 5 ([10], Theorem 3.9). Let n and k be positive integers and A and B be morphisms of linear forms as in

B :=

 x0 · · · xn y0 · · · yn
. . . . . . . . . . . .

x0 · · · xn y0 · · · yn

 ,

and

A :=



−y0 · · · −yn
. . . . . .

−y0 · · · −yn

x0 · · · xn
. . . . . .

x0 · · · xn


,
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then there exists a linear monad of the form

0 −−−−→ OP2n+1(−1)⊕k −−−−→
A

O⊕2n+2k
P2n+1 −−−−→

B
OP2n+1(1)⊕k −−−−→ 0.

Lemma 6 ([10], Theorem 3.2). Let X = Pn × Pm and let L = OX(ρ, σ) be an ample line bundle on X. Denote by
N = h0(OX(ρ, σ))− 1. Let α, β, γ be positive integers such that at least one of the following conditions holds

(1) β ≥ 2γ + N − 1, and β ≥ α + γ,
(2) β ≥ α + γ + N.
Then, there exists a linear monad on X of the form

0 −−−−→ OX(−ρ,−σ)⊕α −−−−→
A

O⊕β
X −−−−→

B
OX(ρ, σ)⊕γ −−−−→ 0.

Definition 4. Let X be a projective variety. A sheaf S on X is a steiner bundle if has short exact sequence of the
form

0 −−−−→ OX(−1)⊕a −−−−→ O⊕b
X −−−−→ S −−−−→ 0.

They were first defined by Dolgachev and Kapranov [17].

Definition 5. [18] Let k ≥ 0 the exact sequence of sheaves on P2n+1

0 −−−−→ OX(−1)⊕k −−−−→
ϕ

O⊕2n+2k
X −−−−→ S −−−−→ 0,

where ϕ is given by the matrix x0 · · · xn y0 · · · yn
. . . . . . . . . . . .

x0 · · · xn y0 · · · yn

 ,

defines a 2n + k−bundle S on P2n+1 called a (generalized) Schwarzenberger bundle.

The display of the monad in Lemma 5 is

0 0y y
0 −−−−→ OP2n+1(−1)⊕k −−−−→ S∗ := ker (B) −−−−→ E −−−−→ 0

||
y y

0 −−−−→ OP2n+1(−1)⊕k −−−−→
A

O⊕2n+2k
P2n+1 −−−−→ S := coker (A) −−−−→ 0

B

y y
OP2n+1(1)⊕k OP2n+1(1)⊕ky y

0 0

A special instanton bundle on P2n+1 of quantum number k is defined by the exact sequence

0 −−−−→ OP2n+1(−1)⊕k −−−−→ S∗ := ker (B) −−−−→ E −−−−→ 0,

which is exactly the way Spindler and Trautmann remarkably described [18] where S is a Schwarzenberger
bundle of rank 2n + k which is defined by the short exact sequence

0 −−−−→ OP2n+1(−1)⊕k −−−−→
A

O⊕2n+2k
P2n+1 −−−−→ S := coker (A) −−−−→ 0,
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and they were proved by Ancona and Ottaviani [13], Theorem 2.2 to be stable and in Theorem 2.8 they proved
that E is simple. Independently, Bohnhorst and Spindler [19] proved the stability of rank n Schwarzenberger
bundles on Pn.

In the next section we are going to establish the existence of monads on a more general space namely
P2n+1 × P2n+1 × · · · × P2n+1 and prove stability of the kernel bundle T and simplicity of the cohomology
vector bundle E.

3. Monad type I and associated vector bundles

The goal of this section is to construct monads over a multiprojective space of m copies of P2n+1. More
specifically we generalize the results of Maingi [10] by varying the ambient space. We rely on methods similar
to those used in [11]. The kernel bundle T is a more generalized version of the dual of a Schwarzenberger
vector bundle and we prove that it is stable and consequently we prove that the cohomology vector bundle E
associated to the monad on X is simple. The vector bundle E is a generalized version of an instanton bundle.

Theorem 4. Let X = P2n+1 × · · · × P2n+1 and L = OX(1, · · · , 1) an ample line bundle. Denote by N =

h0(OX(1, · · · , 1))− 1. Then there exists a linear monad M• on X of the form

M• : 0 −−−−→ OX(−1, · · · ,−1)⊕α −−−−→
f

O⊕β
X −−−−→

g
OX(1, · · · , 1)⊕γ −−−−→ 0,

if atleast one of the following is satified

1. β ≥ 2γ + N − 1, and β ≥ α + γ,
2. β ≥ α + γ + N, where α, β, γ be positive integers.

Proof. For the ample line bundle L = OX(1, . . . , 1) we have the Segre embedding

i∗ : X = P2n+1 × · · · × P2n+1 P
(

H0(X,OX(1, . . . , 1))
) ∼= PN:=(2n+2)m−1 ,

such that i∗(OX(1)) ≃ L .
Suppose that one of the conditions of Lemma 4 is satified and we have a = α, b = β, c = γ and k = 2n + 1

thus there exists a linear monad

0 −−−−→ OP2n+1(−1)⊕α −−−−→
A

O⊕β

P2n+1 −−−−→
B

OP2n+1(1)⊕γ −−−−→ 0,

on P2n+1 whose morphisms are matrices A and B with entries monomials of degree one where

A ∈ Hom(OP2n+1(−1)⊕α,O⊕β

P2n+1) ∼= H0(P2n+1,OP2n+1(1)⊕αβ),

B ∈ Hom(O⊕β

P2n+1 ,OP2n+1(1)⊕γ) ∼= H0(P2n+1,OP2n+1(1)⊕βγ).

Thus, A and B induce a monad on X,

0 −−−−→ L −1⊕α Ā
−−−−→ O⊕β

X

B̄
−−−−→ L ⊕γ −−−−→ 0,

where whose morphisms are matrices Ā and B̄ with entries multidegree monomials such that

Ā ∈ Hom(OX(−1, . . . ,−1)⊕α,O⊕β
X ),

and
B̄ ∈ Hom(O⊕β

X ,OX(1, . . . , 1)⊕γ).

The kernel bundle T of the above monad is a generalization of the dual of Schwarzenberger vector bundles
[19] which we now proceed to prove that it is stable.
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Lemma 7. Let T be a vector bundle on X = P2n+1 × · · · × P2n+1 defined by the sequence

0 −−−−→ T −−−−→ O⊕β
X −−−−→ OX(1, · · · , 1)⊕γ −−−−→ 0,

then T is stable.

Proof. We show that H0(X,
∧q T(−p1, · · · ,−pm)) = 0 for all

m

∑
i

pi > 0 and 1 ≤ q ≤ rank(T).

Consider the ample line bundle L = OX(1, · · · , 1) = O(L).
Its class in

Pic(X) = ⟨[h1 × P2n+1], · · · , [P2n+1 × hm]⟩,

corresponds to the class

m

∑
i=1

1 · [hi × P2n+1],

where hi, i = 1, · · · , n are hyperplanes of P2n+1 with the intersection product induced by h2n+1
i = 1 and

h2n+2
i = 0.

Now from the display diagram of the monad we get

c1(T) = c1(O
β
X)− c1(OX(1, · · · , 1)⊕γ)

= β(0, · · · , 0)− γ(1, · · · , 1)

= (−γ, · · · ,−γ).

Now L(2n+1)m > 0 hence , the degree of T is:

degL T = −γ([h1 × P2n+1] + · · ·+ [P2n+1 × hm]) · (
m

∑
i=1

1 · [hi × P2n+1])m(2n+1)−1

= −γLm(2n+1) < 0.

Since degL T < 0, then (
∧q T)L−norm = (

∧q T) and it suffices by Proposition 1, to prove that

h0(
∧q T(−p1, · · · ,−pm)) = 0 with

m

∑
i=1

pi ≥ 0 and for all 1 ≤ q ≤ rank(T) − 1. Next we twist the exact

sequence
0 −−−−→ T −−−−→ O⊕β

X −−−−→ OX(1, · · · , 1)⊕γ −−−−→ 0,

by OX(−p1, · · · ,−pm) we get,

0 −→ T(−p1, · · · ,−pm) −→ OX(−p1, · · · ,−pm)
⊕β −→ OX(1 − p1, · · · , 1 − pm)

⊕γ −→ 0,

and taking the exterior powers of the sequence by Proposition 2 we get

0 −→
q∧

T(−p1, · · · ,−pm) −→
q∧
(OX(−p1, · · · ,−pm)

⊕β) −→
q−1∧

(OX(1 − 2p1, · · · , 1 − 2pm)
⊕β+γ) · · · .

Taking cohomology we have the injection:

0 −→ H0(X,
q∧

T(−p1, · · · ,−pm)) ↪→ H0(X,
q∧
(OX(−p1, · · · ,−pm)

⊕β)).

Set G = OX(−p1, · · · ,−pm)β = OX(−p1, · · · ,−p2) ⊗ O⊕β
X and using Lemma 2 H0(X,

∧q G ) expands

into H0(X,
q

∑
j=0

∧jOX(−p1, · · · ,−p2)⊗O⊕β
X ) and since

m

∑
i

pi > 0 by Lemma 3 then

h0(X,
q∧
(OX(−p1, · · · ,−pm)

⊕β)) = h0(X,
q∧

T(−p1, · · · ,−pm)) = 0,

i.e. h0(
∧q T(−p1, · · · ,−pm)) = 0 and thus T is stable.
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Theorem 5. Let X = P2n+1 × · · · × P2n+1, then the cohomology vector bundle E associated to the monad

0 −−−−→ OX(−1, · · · ,−1)⊕α −−−−→
A

O⊕β
X −−−−→

B
OX(1, · · · , 1)⊕γ −−−−→ 0,

of rank β − α − γ is simple.

Proof. The display of the monad is

0 0y y
0 −−−−→ OX(−1, · · · ,−1)⊕α −−−−→ T −−−−→ E −−−−→ 0

||
y y

0 −−−−→ OX(−1, · · · ,−1)⊕α −−−−→
f

O⊕β
X −−−−→ Q −−−−→ 0

g
y y

OX(1, · · · , 1)⊕γ OX(1, · · · , 1)⊕γy y
0 0

Since E is simple if its only endomorphisms are the homotheties then we need to prove that Hom(E, E) =
k which is equivalent to h0(E ⊗ E∗).

The first step is to take the dual short exact sequence

0 −−−−→ OX(−1, · · · ,−1)⊕α −−−−→ T −−−−→ E −−−−→ 0,

to get
0 −−−−→ E∗ −−−−→ T∗ −−−−→ OX(1, · · · , 1)⊕α −−−−→ 0.

Tensoring by E we get

0 −−−−→ E ⊗ E∗ −−−−→ E ⊗ T∗ −−−−→ E(1, · · · , 1)⊕α −−−−→ 0.

Now taking cohomology gives:

0 −−−−→ H0(X, E ⊗ E∗) −−−−→ H0(X, E ⊗ T∗) −−−−→ H0(E(1, · · · , 1)⊕α) −−−−→ · · ·,

which implies that
h0(X, E ⊗ E∗) ≤ h0(X, E ⊗ T∗). (1)

Now we dualize the short exact sequence

0 −−−−→ T −−−−→ O⊕β
X −−−−→ OX(1, · · · , 1)⊕γ −−−−→ 0,

to get
0 −−−−→ OX(−1, · · · ,−1)⊕γ −−−−→ O⊕β

X −−−−→ T∗ −−−−→ 0.

Now twisting by OX(−1, · · · ,−1) and taking cohomology and get

0 −→ H0(X,OX(−2, · · · − 2)⊕γ) −→ H0(X,OX(−1, · · · ,−1)⊕β) −→ H0(X, T∗(−1, · · · ,−1)) −→

−→ H1(X,OX(−2, · · · ,−2)⊕γ) −→ H1(X,OX(−1, · · · ,−1)⊕β) −→ H1(X, T∗(−1, · · · ,−1)) −→

−→ H2(X,OX(−2, · · · ,−2)⊕γ) −→ H2(X,OX(−1, · · · ,−1)⊕β) −→ H2(X, T∗(−1, · · · ,−1)) −→ · · · ,

from which we deduce H0(X, T∗(−1, · · · ,−1)) = 0 and H1(X, T∗(−1, · · · ,−1)) = 0 from Lemmas 1, 2 and
Theorem 3.
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Lastly, tensor the short exact sequence

0 −−−−→ O(−1, · · · ,−1)⊕α −−−−→ T −−−−→ E −−−−→ 0,

by T∗ to get
0 −−−−→ T∗(−1, · · · ,−1)⊕α −−−−→ T ⊗ T∗ −−−−→ E ⊗ T∗ −−−−→ 0,

and taking cohomology we have

0 −−−−→ H0(X, T∗(−1, · · · ,−1)⊕α) −−−−→ H0(X, T ⊗ T∗) −−−−→ H0(X, E ⊗ T∗) −−−−→

−−−−→ H1(X, T∗(−1, · · · ,−1)⊕α) −−−−→ · · · .

But H1(X, T∗(−1, · · · ,−1)⊕α = 0 for α > 1 from above. So we have

0 −−−−→ H0(X, T∗(−1, · · · ,−1)⊕α) −−−−→ H0(X, T ⊗ T∗) −−−−→ H0(X, E ⊗ T∗) −−−−→ 0.

This implies that
h0(X, T ⊗ T∗) ≤ h0(X, E ⊗ T∗). (2)

Since T is stable then it follows that it is simple which implies h0(X, T ⊗ T∗) = 1.
From (1) and now (2) and putting these together, we have

1 ≤ h0(X, E ⊗ E∗) ≤ h0(X, E ⊗ T∗) = h0(X, T ⊗ T∗) = 1.

We have h0(X, E ⊗ E∗) = 1 and therefore E is simple.

4. Monad type II and associated vector bundles

The goal of this section is to construct monads over a multiprojectivespace Pa1 × · · · × Pan . More
specifically we generalize the results of Maingi [10] by varying the ambient space and the polarisation L .
We prove that the kernel bundle F is stable and thereafter we prove that the cohomology vector bundle E
associated to the monad on X is simple.

Theorem 6. Let X = Pa1 · · · × Pan and L = OX(α1, · · · , αt) an ample line bundle. Denote by N =

h0(OX(α1, · · · , αt))− 1. Then there exists a linear monad M• on X of the form

M• : 0 −−−−→ OX(−α1, · · · ,−αt)⊕α −−−−→
f

O⊕β
X −−−−→

g
OX(α1, · · · , αt)⊕γ −−−−→ 0,

if atleast one of the following is satified

1. β ≥ 2γ + N − 1, and β ≥ α + γ,
2. β ≥ α + γ + N, where α, β, γ be positive integers.

Proof. For the ample line bundle L = OX(α1, . . . , αt) we have the Segre embedding

i∗ : X = Pa1 × · · · × Pan P
(

H0(X,OX(α1, . . . , αt))
) ∼= PN ,

such that i∗(OX(1)) ≃ L and where N =

((
a1 + α1

α1

)(
a2 + α2

α2

)
· · ·
(

an + αt

αt

))
− 1.

Suppose that one of the conditions of Lemma 4 is satified thus there exists a linear monad

0 −−−−→ OPN (−1)⊕α −−−−→
A

O⊕β

PN −−−−→
B

OPN (1)⊕γ −−−−→ 0,

on PN whose morphisms are matrices A and B with entries monomials of degree one where

A ∈ Hom(OPN (−1)⊕α,O⊕β

PN ) ∼= H0(PN ,OPN (1)⊕αβ),

B ∈ Hom(O⊕β

PN ,OPN (1)⊕γ) ∼= H0(PN ,OPN (1)⊕βγ).
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Thus, A and B induce a monad on X,

0 −−−−→ L −1⊕α Ā
−−−−→ O⊕β

X

B̄
−−−−→ L ⊕γ −−−−→ 0,

where whose morphisms are matrices Ā and B̄ with entries multidegree monomials such that

Ā ∈ Hom(OX(−α1, . . . ,−αt)
⊕α,O⊕β

X ),

and
B̄ ∈ Hom(O⊕β

X ,OX(α1, . . . , αt)
⊕γ).

Theorem 7. Let F be a vector bundle on X = Pa1 × · · · × Pan defined by the short exact sequence

0 −−−−→ F −−−−→ O⊕β
X −−−−→

g
OX(α1, · · · , αt)⊕γ −−−−→ 0,

then F is stable for an ample line bundle L = OX(α1, · · · , αt).

Proof. We are going to show that H0(X,
∧q F(−p1, · · · ,−pn)) = 0 for all

n

∑
i=1

pi > 0 and 1 ≤ q ≤ rank(F)− 1.

Consider the ample line bundle L = OX(α1, · · · , αt) = O(L). Its class in Pic(X) = ⟨[hi × Pai ], i =

1, . . . , n]⟩ corresponds to
n

∑
i=1

1.[hi × Pai ] where each hi is a hyperplane in Pai with intersection product induced

by hai
i = 1 and hai+1

i = 0 for i = 1, . . . , n.
From the display of the monad we get

c1(F) = c1(O
⊕β
X )− c1(OX(α1, · · · , αt)

⊕γ) = (−γα1, · · · ,−γαt).

Since La1+···+an > 0, the degree of F is degL F = c1(T) ·L d−1 that is

degL F = −γn
t

∑
i=1

αi([h1 × Pa1 ] + · · ·+ [Pan × hn])

(
n

∑
i=1

1 · [hi × Pai ]

) n
∑

i=1
ai−1

= −γn
t

∑
i=1

αiL(a1+···+an) < 0.

Since degL F < 0, then (
∧q F)L−norm = (

∧q F) and it suffices by the generalized Hoppe Criterion

(Proposition 1), to prove that h0(
∧q F(−p1,−p2, · · · ,−pn)) = 0 with

n

∑
i=1

pi > 0 and for all 1 ≤ q ≤ rank(F)− 1.

Next consider the exact sequence

0 −−−−→ F −−−−→ O⊕β
X −−−−→

g
OX(α1, · · · , αt)⊕γ −−−−→ 0,

on twisting it by OX(−p1, · · · ,−pn) one gets,

0 −−−−→ F(−p1, · · · ,−pn) −−−−→ O⊕β
X (−p1, · · · ,−pn) −−−−→

g
OX(α1 − p1, · · · , αt − pn)⊕γ −−−−→ 0,

and taking the exterior powers of the sequence by Proposition 2 one gets

0 −→
q∧

F(−p1, · · · ,−pn) −→
q∧
(OX(−p1, · · · ,−pn)

⊕β) −→
q−1∧

(OX(α1 − 2p1, · · · , αt − 2pn)
⊕γ) −→ · · · .

Taking cohomology we have the injection:

0 −→ H0(X,
q∧

F(−p1, · · · ,−pn)) ↪→ H0(X,
q∧
(OX(−p1, · · · ,−pn)

⊕β).

From here h0(X,
∧q F(−p1, · · · ,−pn)) = 0 is proved in the same way as Lemma 7 the last part and thus

F is stable.
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Theorem 8. Let X = Pa1 × · · · × Pan , then the cohomology vector bundle E associated to the monad

0 −−−−→ OX(−α1, · · · ,−αt)⊕α −−−−→
f

O⊕β
X −−−−→

g
OX(α1, · · · , αt)⊕γ −−−−→ 0,

of rank β − α − γ is simple.

Proof. The display of the monad is

0 0y y
0 −−−−→ OX(−α1, · · · ,−αt)⊕α −−−−→ F = ker g −−−−→ E −−−−→ 0

||
y y

0 −−−−→ OX(−α1, · · · ,−αt)⊕α −−−−→
f

O⊕β
X −−−−→ Q = coker f −−−−→ 0

g
y y

OX(α1, · · · , αt)⊕γ OX(α1, · · · , αt)⊕γy y
0 0

Since T is stable from Theorem 7, we prove that the cohomology vector bundle E with rank 2n is simple.
On taking the dual of the short exact sequence on the first row of the display diagram and tensoring by E

we obtain
0 −−−−→ E ⊗ E∗ −−−−→ E ⊗ F∗ −−−−→ E(t, · · · , t)⊕α −−−−→ 0.

Now taking cohomology gives:

0 −−−−→ H0(X, E ⊗ E∗) −−−−→ H0(X, E ⊗ F∗) −−−−→ H0(E(α1, · · · , αt)⊕α) −−−−→ · · ·,

which implies that

h0(X, E ⊗ E∗) ≤ h0(X, E ⊗ F∗). (3)

Dualize the short exact sequence on the first column of the display diagram to get

0 −−−−→ OX(−α1, · · · ,−αt)⊕γ −−−−→ Oβ
X −−−−→ F∗ −−−−→ 0.

Now twisting the short exact sequence above by OX(−α1, · · · ,−αt) one obtains the short exact sequence

0 −−−−→ OX(−2α1, · · · ,−2αt)⊕γ −−−−→ OX(−α1, · · · ,−αt)β −−−−→ F∗(−α1, · · · ,−αt) −−−−→ 0.

Next on taking cohomology one gets

0 −→ H0(OX(−2α1, · · · ,−2αt)⊕γ) −→ H0(OX(−α1, · · · ,−αt)β) −→ H0(F∗(−α1, · · · ,−αt)) −→

0 −→ H1(OX(−2α1, · · · ,−2αt)⊕γ) −→ H1(OX(−α1, · · · ,−αt)β) −→ H1(F∗(−α1, · · · ,−αt)) −→

−→ H2(OX(−2α1, · · · ,−2αt)⊕γ) −→ H2(OX(−α1, · · · ,−αt)β) −→ H2(F∗(−α1, · · · ,−αt)) −→ · · · ,

from which we deduce H0(X, F∗(−α1, · · · ,−αt)) = 0 and H1(X, F∗(−α1, · · · ,−αt)) = 0 from Lemmas 1, 2
and Theorem 3.

Lastly, tensor the short exact sequence

0 −−−−→ O(−α1, · · · ,−αt)⊕k −−−−→ F −−−−→ E −−−−→ 0,

by F∗ to get
0 −−−−→ F∗(−α1, · · · ,−αt)k −−−−→ F ⊗ F∗ −−−−→ E ⊗ F∗ −−−−→ 0,
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and taking cohomology we have

0 −−−−→ H0(X, F∗(−α1, · · · ,−αt)k) −−−−→ H0(X, F ⊗ F∗) −−−−→ H0(X, E ⊗ F∗) −−−−→

−−−−→ H1(X, F∗(−α1, · · · ,−αt)k) −−−−→ · · · .

But since H0(X, F∗(−α1, · · · ,−αt)) = H1(X, F∗(−α1, · · · ,−αt)) = 0 from above then it follows
H1(X, F∗(−α1, · · · ,−αt)k) = 0 for k > 1, so we have

0 −−−−→ H0(X, F∗(−α1, · · · ,−αt)k) −−−−→ H0(X, F ⊗ F∗) −−−−→ H0(X, E ⊗ F∗) −−−−→ 0.

This implies that
h0(X, F ⊗ F∗) ≤ h0(X, E ⊗ F∗). (4)

Since F is stable then it is simple implying h0(X, F ⊗ F∗) = 1.
From (3) and (4) and putting these together we have;

1 ≤ h0(X, E ⊗ E∗) ≤ h0(X, E ⊗ F∗) = h0(X, F ⊗ F∗) = 1.

We have h0(X, E ⊗ E∗) = 1 and therefore E is simple.

5. Monad construction via morphisms

Let X be a nonsingular projective variety. A monad

0 M0 M1 M2 0α β

on X exists if one can give the morphisms α and β. In this section we establish the existence of monads
on P1 × · · · × P1 by providing an explicit contruction of the morphisms derived from the matrices used by
Fløystad [6] and Ancona and Ottaviani [13].

Construction 1. Let ψ : X = P1 × · · · × P1 −→ PN=2n+1 be the Segre embedding which is defined as follows:

[α10 : α11][α20 : α21] : . . . : [αm0 : αm1] ↪→ [x0 : x1 : · · · : xn : y0 : y2 : . . . : yn].

First note that since we are taking m copies of P1 then we have

N = 2m − 1 = 2m − 2 + 1 = 2(2m−1 − 1) + 1 = 2n + 1,

i.e., N = 2n + 1 where m and n are positive integers such that n = 2m−1 − 1.
Thus from Lemma 5, there exists a linear monad

0 −−−−→ OP2n+1(−1)⊕k −−−−→
A

O⊕2n+2k
P2n+1 −−−−→

B
OP2n+1(1)⊕k −−−−→ 0,

whose morphisms A and B that establish the monad are as given in Lemma 5.
We induce a monad on X = P1 × · · · × P1

M• : 0 −−−−→ OX(−1, · · · ,−1)⊕k −−−−→
A

O⊕2n⊕2k
X −−−−→

B
OX(1, · · · , 1)⊕k −−−−→ 0,

by giving the morphisms A and B with B · A = 0 and A and B are of maximal rank.
From A and B whose entries are x0, · · · , xn, y0, · · · , yn the homogeneous coordinates on P2n+1 we give the

correspondence for the the Segre embedding using the following table:
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homog.coord. on P2n+1 representation homog.coord. on X
x0 a0000···0000

x1 a0000···0001

x2 a0000···0010

x3 a0000···0011

x4 a0000···0100
...

...
xn−1 a0111···1110

xn a0111···1111

y0 a1000···0000

y1 a1000···0001

y2 a1000···0010

y3 a1000···0011

y4 a1000···0100
...

...
yn−1 a1111···1110

yn a1111···1111

where aiiii···iiii for i is 0 or 1 are monomials of multidegree (1, . . . , 1), i.e.,

representation homog.coord. on P2n+1 homog.coord. on X
a0000···0000 α10α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)0αm0

a0000···0001 α10α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)0αm1

a0000···0010 α10α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)1αm0

a0000···0011 α10α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)1αm1

a0000···0100 α10α20α30α40 · · · α(m−3)0α(m−2)1α(m−1)0αm0
...

...
a0111···1110 α10α21α31α41 · · · α(m−3)1α(m−2)1α(m−1)1αm0

a0111···1111 α10α21α31α41 · · · α(m−3)1α(m−2)1α(m−1)1αm1

a1000···0000 α11α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)0αm0

a1000···0001 α11α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)0αm1

a1000···0010 α11α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)1αm0

a1000···0011 α11α20α30α40 · · · α(m−3)0α(m−2)0α(m−1)1αm1

a1000···0100 α11α20α30α40 · · · α(m−3)0α(m−2)1α(m−1)0αm0
...

...
a1111···1110 α11α21α31α41 · · · α(m−3)1α(m−2)1α(m−1)1αm0

a1111···1111 α11α21α31α41 · · · α(m−3)1α(m−2)1α(m−1)1αm1

Specifically we define A and B as follows

B :=

 a0000···0000 · · · a0111···1111 a1000···0000 · · · a1111···1111
. . . . . . . . . . . .

a0000···0000 · · · a0111···1111 a1000···0000 · · · a1111···1111

 ,

and

A :=



−a1000···0000 · · · −a1111···1111
. . . . . .

−a1000···0000 · · · −a1111···1111

a0000···0000 · · · a0111···1111
. . . . . .

a0000···0000 · · · a0111···1111


.
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We note that

1. B · A = 0, and
2. The matrices B and A have maximal rank.

Hence we get the desired monad,

M• : 0 −−−−→ OX(−1, · · · ,−1)⊕k −−−−→
A

O⊕2n⊕2k
X −−−−→

B
OX(1, · · · , 1)⊕k −−−−→ 0.
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