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Abstract: Active lock-in options are a class of complex derivatives characterized by pronounced path
dependence and optimal decision making features, and they possess significant application value in the
design of structured financial products and risk management. This paper investigates the pricing of active
lock-in call options under a stochastic volatility framework. The lock-in decision is formulated as an optimal
stopping problem and is further reformulated as a partial differential equation with obstacle constraints.
By introducing a linear complementarity problem formulation, the structural properties of the option value
function and the optimal lock-in boundary are systematically characterized. From a numerical perspective,
an IMEX time discretization scheme is employed to transform the continuous problem into a sequence of
time-layered discrete complementarity systems. These systems are efficiently solved using the projected
successive over relaxation (PSOR) algorithm. Numerical experiments are conducted to analyze the structural
features and economic interpretations of the value function and the associated free boundary surface.
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1. Introduction

W ith the continuous development of financial derivatives markets, option products have increasingly
expanded their roles in risk management, return enhancement, and asset allocation. Compared

with standard European options whose payoffs depend solely on the underlying asset price at maturity, an
increasing number of complex derivatives incorporate path dependent features, making option values depend
not only on terminal states but also on the price evolution of the underlying asset over the entire life of the
contract [1]. In this context, lock-in options, also referred to as shout options, permit holders to secure partial
or full payoffs in advance during the life of the contract and have therefore attracted growing attention in both
academic research and practical applications [2]. The core feature of lock-in options lies in allowing the holder,
at one or multiple points prior to maturity, to confirm future payoffs in advance based on market conditions,
thereby effectively reducing downside risk without fully sacrificing subsequent upside potential [3]. Among
various lock-in options, active lock-in options grant the holder the right to independently choose the lock-in
timing at any moment prior to maturity, making the payoff structure depend jointly on the underlying asset
prices at the lock-in time and at maturity. This mechanism confers upon such options the dual characteristics
of early payoff locking and continued participation in market fluctuations, which makes them especially
appealing in the design of structured wealth management products, insurance linked derivatives, and capital
protected financial instruments [4].

However, precisely because active lock-in options introduce path dependence and dynamic decision
mechanisms, their pricing problems are mathematically significantly more complex than those of standard
options, as option values depend not only on terminal prices but also on the entire price evolution path of the
underlying asset and the choice of optimal lock-in timing.

In existing studies, reliance on the deterministic volatility assumption of the Black Scholes Merton
framework often fails to capture market phenomena such as implied volatility smiles, volatility clustering,
and changes in volatility term structures, resulting in systematic deviations between theoretical prices and
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market observations [5]. Therefore, incorporating stochastic volatility models into lock-in option pricing,
so as to more realistically characterize uncertainty in underlying asset prices, is of significant theoretical
importance and practical value. Against this background, this paper systematically investigates the pricing
of active lock-in options under stochastic volatility environments, aiming to characterize their value structure
and optimal lock-in decision mechanisms within modeling frameworks that more closely reflect real market
characteristics. Such research not only deepens theoretical understanding of optimal decision making in path
dependent options but also provides reliable theoretical foundations and numerical tools for the pricing and
risk management of complex structured derivatives in real financial markets.

2. Preliminaries

2.1. The Heston Stochastic volatility model

The Heston stochastic volatility model [6] introduces a mean reverting square root diffusion to describe
the stochastic dynamics of variance, allowing the asset return volatility to evolve randomly over time while
exhibiting long-run mean reversion.

Under the risk neutral measure Q, the dynamics of the asset price X; and the instantaneous variance z;
are given by

% = rdt + /z dWF, 1)
t
dzy = (0 — z¢) dt + 02+/z¢ AWF, )

where r denotes the constant risk free interest rate and W and W7 are standard Brownian motions defined on
a filtered probability space.

The parameters satisfy « > 0, 8 > 0, and 0, > 0, with initial variance zyp > 0. Here, x represents the
speed of mean reversion of the variance process, ¢ is the long-run variance level, and ¢, controls the volatility
of variance.

To ensure strict positivity of the variance process and avoid degeneracy of the diffusion term, the model
is commonly assumed to satisfy the Feller condition

2k0 > o2, ®)

2.2. Payoff structure of the active lock-in call option

Let the option maturity be denoted by T, and define the remaining time to maturityas t =T — ¢t.

In the contract structure of an active lock-in call option, the holder is allowed to choose a single lock-in
time t* at any point within the interval [0, T| and execute the lock-in operation. Upon execution of the lock-in,
the option immediately realizes its intrinsic value (S;+ — K) T, while the original contract is reset to a European
call option with remaining maturity T = T — t* and strike price set equal to the prevailing asset price, namely
K' = S4-. After the lock-in, the holder continues to hold this at the money (ATM) European call option until
maturity.

From the perspective of terminal payoff, if the lock-in is executed at time t* and S;+ = §, the total payoff
of the active lock-in call option at maturity T can be written as

IIr = max(St — K, S—K, 0). 4)

Using the identity max(x,c) = ¢+ (x —¢)" for ¢ > 0, the terminal payoff admits the equivalent
decomposition
My = (S—K)"+(Sr—9)". )

This decomposition shows that a single lock-in operation is financially equivalent to the combination
of two payoff components: the intrinsic value (S;+ — K)* realized immediately at the lock-in time, and the
random terminal payoff (St — S¢«)* of a European call option with strike price K = S-.
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3. Model construction of active lock-in options under stochastic volatility

This chapter develops a pricing model for active lock-in options under a stochastic volatility environment
within a continuous time financial market framework.

By characterizing the joint dynamics of the underlying asset price and volatility and explicitly specifying
the payoff structure induced by the active lock-in mechanism, the pricing problem is rigorously formulated
as a free boundary problem with optimal stopping features, thereby laying the foundation for subsequent
theoretical analysis and numerical solution.

3.1. Modeling

Under the risk neutral measure Q, the underlying asset price process {S;}:>¢ and its variance process
{vt}+>0 are described by the classical Heston stochastic volatility model, whose dynamics satisfy the following
system of stochastic differential equations.

%%ﬂw+¢awW%
t

dvy = k(0 — vy) dt + Cﬁdwt(z),

AW, W), = pdt. ©6)

Here, r denotes the constant risk free interest rate, x > 0 is the speed of mean reversion of the variance
process, 8 > 0 is the long run variance level, { > 0 represents the volatility of variance parameter, and p €
[—1,1] is the correlation coefficient between the asset price and variance processes. Let the option maturity be
T, and define the remaining time to maturity as T = T — t, with u(S, v, T) denoting the option value function
at the current state (S, v, T).

Based on the payoff decomposition in §2.2, an immediate lock-in at state (S, v, T) yields

(P(S' o, T) = (S - K>+ =+ CEur(SrK/ =S5,0, T)/ )

which serves as the obstacle in the associated optimal stopping problem, the European call price admits the
semi closed form
CEUI’(S/ K/ o, T) = S pl (S/ K/ 0, T) - KeirT P2(S/ K/ o, T)/ (8)

the terms P, j = 1,2, are given by the standard Heston probability representations,

1 1 /e« e~ iuIn(K/S) ‘I’j(u; v,7T) )
M&Kuﬂ=§+;A R — du, =12, )
where ¥;(u; v, T) are functions derived from the Heston characteristic function.
For the lock-in continuation value, the strike is reset to K’ = S, hence
Ceur(S,K' = 8S,0,7) =S (P1(S,S,0,7) —e ""P,(S,S,0,7)) . (10)
Substituting (10) into (7) yields the compact obstacle
¢(S,0,7) = (S—=K)T+S(Pi(S,S,0,7)—e "P(S,S,0,7)) . (11)

3.2. Optimal Stopping Formulation

Based on the preceding model specification, the value function of the active lock-in call option can
naturally be formulated as an optimal stopping problem.Specifically, under the risk neutral measure Q, the
option value can be expressed as

u(S,v,7) = sup EC [(Se+ = K)t + Cpur (So+, K = S¢v, 000, T — T)] . (12)

*€(0,7]
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Here, T* denotes the admissible lock-in time, the first term represents the intrinsic value realized
immediately upon lock-in, and the second term corresponds to the value of the at the money European call
option held after the lock-in.

3.3. The Heston generator and the PDE in the continuation region

For any sufficiently smooth function f(S,v), the infinitesimal generator L associated with the Heston
stochastic volatility model [7] is defined as

Lf =rSfs+x(6 —0)fy + %vszfss + p&vS fsy + %{fzvfw. (13)

In the continuation region (i.e., where u > ¢), the option value function satisfies the following partial
differential equation according to the risk neutral pricing principle.

o = Lu —ru, u> ¢, (14)

Here, ¢(S,v,T) denotes the payoff function corresponding to immediate execution of the lock-in
operation.

The terminal condition corresponds to the option value at zero remaining maturity, namely the
instantaneous payoff of an at the money European call option.

u(S,0,0) = (S—K)*. (15)

3.4. Log transform and generator in (x,v)

To align the analytical formulation with the numerical discretization, we work in the log moneyness
variable

x = ln<1i) , S = Ke*, (16)
and define the transformed value function
U(x,v,7) :=u(Ke*,v, 7). (17)
Accordingly, we also express the obstacle in (x, v) coordinates as
®(x,0,7) := p(Ke*, v, T). (18)

By the chain rule, the derivatives of u(S, v, T) with respect to (S, v) can be expressed in terms of derivatives

of U(x,v,T) as

1 1 1
Ug = Eux/ Uss = ﬁ(uxx - ux): Uy = Uy, Usy = guxv‘ (19)

Substituting (19) into the Heston generator in (S,v) yields the infinitesimal generator in the variables

(x,0):
_1

(x,0)
L59U >

1 1
0 Uy + 8o Uy + Eg’,‘zv Uyy + (r — zv) Uy +x(0 — v)Uy. (20)
In the continuation region, the value function satisfies:
a:U(x,0,7) = LXU(x,v,7) — rU(x,0,7), U(x,v,7) > ®(x,0,7). (21)

The terminal condition at T = 0 is inherited from the payoff:

U(x,v,0) = u(Ke*,v,0) = (Ke* — K)*. (22)
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3.5. Complementarity conditions

By combining the PDE (21) in the continuation region with the immediate lock-in condition U = &,
the pricing problem of the active lock-in call option can be equivalently formulated as a standard Linear
Complementarity Problem (LCP).

U(x,v,7) > ®(x,0,7),
U — LU +rU >0, (23)
(U —®) (0:U — L&OU +rU) =0,

Here,x ¢ R,v > 0,and T € (0, T).

These complementarity conditions characterize the optimal switching mechanism between the
continuation region and the active lock-in region: when immediate lock-in is optimal, the option value satisfies
U = ®; otherwise, in the continuation optimal case, the value function satisfies the corresponding partial
differential equation, thereby providing the theoretical foundation for subsequent numerical solution methods.
4. Numerical experiments

In the previous section, the pricing problem of the active lock-in call option was formulated as a linear
complementarity problem with obstacle constraints. Building on this formulation, this section further develops
the corresponding numerical solution methods.

4.1. IMEX discretization framework

Within the continuation region, the option value function satisfies
o-U(x,0,7) = E(“’)U(x, v,7) —rU(x,v,1), U(x,v,7) > ®(x,0,7), (24)

where ®(x, v, T) is the obstacle and the infinitesimal generator £(*?) is given in (20). A fully implicit treatment
of the mixed-derivative term p ¢ v Uy, may deteriorate the monotonicity properties of the discrete operator. We
therefore employ an IMEX discretization in which the unmixed diffusion terms are handled implicitly, while
the mixed derivative and drift terms are treated explicitly.

We separate the spatial operator into an implicit and an explicit component,

LEU — U = LimpU + Lexpll, (25)
with
1 1,
Eimpu = EU Usx + Eg 0 Uyo, (26)
1
LopU = p&v Uy + (r—iv)ux—l—x((?—v)uv—ru. 27)

Let {xi}f\]:"o and {vj}]N:”O be a tensor grid in (x,v) and let U(7) collect the nodal values {U(x;,v;,7)} ina
fixed ordering. We denote by Liyp; and Leyp , finite difference approximations of Limp and Lexp, respectively,

so that p
EU(T) = 'Cimp,h U(T) + *Cexp,h U(T)' (28)

In terms of difference operators, we implement
1 .. 1., ..

Limp U = 5 diag(v) 6xxU + Eé diag(v) 600U, (29)

LoxpU = p & diag(v) 6xU + diag(r - %v) 5,U + diag(x(6 — v)) 6,U — r U, (30)

where Jyy and J,, are second order difference operators, 6y, is the mixed derivative stencil, and dy, 6, are first
order difference operators.
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On a uniform tensor grid x; = Xmin +iAx (i = 0,...,Ny) and vj = jAv (j = 0,...,Ny), we approximate
the second-order unmixed diffusion terms by standard centered differences,

Uit — 2U;j + Ui

(5xxu)i,j = A2 ’ 1<i<Ny—-1, (31)
Ui — 22U+ Uy i
(ool =~ =2, 1<j<No-1, (32)

and the mixed derivative is discretized by the standard 4-point cross stencil,

Uit1,j+1 — Uir1j-1 — Uiy i1 + Ui,
4 Ax Av ’ (33)
1<i<Ny—1, 1<j<N,—1

((SXUU),*/]‘ =

In the numerical implementation, we truncate the state space to X € [Xmin, ¥max] and v € [0, Vmax], where
Xmin iS set so that S = Ke*min is deep out of the money, xmax lies in a region where the solution is well
approximated by the obstacle, and vmax is chosen such that P(supte[olﬂ vy > Umax> is negligible under the
Heston dynamics.

At the truncated asset boundaries we impose Dirichlet conditions

U(xmin, v, T) =0,
(¥min, 0, 7) v € [0,0max], T € [0,T], (34)
U(xrnax/ 0, T) = q)(xmax/ 0, T)/

and enforce them by row replacement in the linear system. Along the variance boundaries we impose
Neumann conditions,

d,U(x,0,7) =0,
x € [xminr xmax]/ TE [0/ T}/ (35)

avu(x/ Umax, T) =0,

which are robust for the degenerate limit v | 0 and are justified at v = vmax by choosing vmax sufficiently
large so that the solution is nearly flat in v near the boundary. Along the variance boundaries we enforce a
Neumann condition Uy (x,0,T) = Uy (X, Umax, T) = 0, which can be implemented via ghost point reflection,
eg. U _1 = Ujato = 0and U;n 41 = Ujn,—1 at ¥ = Umax, yielding the one sided second derivative
approximations
(5UUU)1"0 _ Z(UZ,szulro)l ((SUUU)i,Nv _ Z(UZ,NU,A;Z uz,NU).
Let AT > 0 be the time step and 7, = mAt, m = 0,1,..., M. The IMEX Euler step in the continuation
region reads

(36)

u” — Umfl

e = LimppU" + Lexp U™, m=12,..., M, (37)
or equivalently,
(I = AT Limpp) U™ = U™ + AT Loy, , U™, (38)
N———’
—A —:bm

where diffusion is treated implicitly to alleviate stiffness, while drift, discount and the mixed derivative are
treated explicitly.

Let ®" denote the obstacle sampled at 7. The lock-in feature imposes the componentwise constraint
U™ > @". Combining this with (38) yields the standard discrete linear complementarity problem (LCP):

U” > ®", AU" >b", (U"—®")® (AU —b™) =0, (39)

where ©® denotes the Hadamard product. Finally, the lock-in feature can be expressed in the continuous form
as
min{U — ®, o:U — LU +rU} =0, (40)
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thereby defining the lock-in region and the associated free boundary.
Proposition 1 (Nonsingular M-matrix property of A). Let A := I — AT Ly ,, where
Limph = % diag(v) dxx + % &2 diag(v) dvo.

Assume Dirichlet conditions in x are enforced by row replacement and the variance boundaries v = 0 and v = Umax
are closed by Neumann discretization. Then A is a nonsingular M-matrix: it is a Z-matrix and satisfies A~1 > 0
componentwise.

Proof. (i) A isa Z-matrix.

On interior nodes, Linp ; contains only centered second differences. Since v; > 0, the resulting couplings
to nearest neighbors in A = I — AT L, , have coefficients —At ¢ with ¢ > 0. Hence all off-diagonal entries
in interior rows are nonpositive. Dirichlet rows are replaced by identity rows. Reflective Neumann closure
in v uses mirror values and preserves the same sign pattern, so the boundary rows also have nonpositive
off-diagonal entries. Therefore, A is a Z-matrix.

(ii) A is strictly diagonally dominant.

For an interior node (i, ),

§2v] sz]
Ay =1HAT | 15+ 5 L Aujil = At sz t A
k#(i,j)
S0 A(ij),ij)— L |Aqjkl=1>0.Dirichlet rows are trivially strictly diagonally dominant, and the reflective
k#(i.j)
Neumann closure retains strict diagonal dominance at v = 0 and v = Vmax.
(iii) M-matrix conclusion.
A strictly diagonally dominant Z-matrix is a nonsingular M-matrix; consequently A~! > 0. O

4.2. PSOR algorithm

To solve the discrete linear complementarity problem obtained in the previous subsection, we adopt the
Projected Successive Over Relaxation (PSOR) method. PSOR is a classical iterative algorithm for American
style option pricing and optimal stopping problems, and has been widely used in computational finance [8].

The PSOR method is built upon the Gauss Seidel iteration [9] and incorporates two key enhancements.
First, an over relaxation mechanism is introduced through a relaxation parameter w € (1,2), which accelerates
convergence by appropriately correcting each iterative update. Second, a pointwise projection step is applied
after each update, projecting the numerical solution onto the admissible set U > & to ensure that the
complementarity constraint is satisfied at every iteration.

Let p index a grid node. At iteration k — k + 1, the p-th row of AU™ = b™ reads

AppUp + ) ApgUy = b}
q#p

With Gauss Seidel ordering, we compute

k+1 k+1 k
ud = L ( Y Al >—2Amus>),

q<p q>p

apply over relaxation

~(k+1 k k+1
0 = (1 - wuy? +wuled,
and enforce feasibility via projection,

Ur(,kH) = max{P}', lNI]S,kH)}.



Open J. Math. Sci. 2026, 10, 124-135 131

4.3. Overall solution procedure

Let the time grid be 0 = 10 < 7y < --- < Ty = T with constant step size AT = T, — T;;—1. Starting from
the terminal condition at 1p = 0, we march forward in T. At each time level T,,;, we assemble the IMEX linear
system (38) and solve the associated LCP (39) via PSOR, using the previous time layer solution as the initial
guess. Repeating this procedure for m = 1, ..., M yields a numerical approximation of U over the truncated
state space. The optimal lock-in boundary is then extracted from the discrete contact set where the numerical
solution meets the obstacle, i.e.,

{(xi,05, ) + U — D] < tol},

for a prescribed numerical tolerance tol > 0.

The obstacle constraint is enforced by the pointwise projection step, which maintains feasibility at every
inner iteration and drives the iterates toward the LCP solution. The complete IMEX-PSOR time marching
procedure is summarized in Algorithm 1.

Algorithm 1 IMEX-PSOR time-marching algorithm (active lock-in option)

Require: Tensor grid {(x;,v;)}, time grid {7}/, obstacle values {®"}, relaxation parameter w € (1,2),

tolerance ¢ > 0, maximum PSOR iterations Kpax.
Ensure: Numerical solution {U™}M_ .
1: Initialization (terminal condition): for all grid points (x;,v;) set

u); = (Ke' =K)*, (1 =0).

2: form =1to M do

3:  Assemble IMEX system: construct A and b™ from (38).
Initialize: set U"(0) « max{U”~1,®"} (componentwise).
fork = 0to Kpax — 1 do

6: for each node index p (Gauss Seidel order) do

7: Gauss Seidel update:

k+1 1 k+1 k
u;(7,GS) =4, <b$ — Y AU = Y AUy )> :

q<pr q>p

8: Over relaxation:

~(k+1 k k+1

U,(, ) — (1- w)U,E, ) —Q—wU;/GS).
9: Projection (obstacle enforcement):

U;kﬂ) = max{®7, ljlr(,kﬂ)}.

10: end for
11: Stopping criterion: if |[U™ k1) — U™ (k)| < ¢, break.

12 end for
13:  Accept time layer solution: set U" < U™ (k+1),
14: end for

4.4. Numerical results and discussion

4.4.1. Model parameters

In this subsection, numerical experiments are conducted under the Heston stochastic volatility model.

r=003, x=15 6=004 =030, p=-07. (41)
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We fix the strike at K = 100 and use the time to maturity variable T € [0,T] with T = 0.5. The state
variables are (x,v), where x = In(5/K), so that S = Ke*. To render the problem computationally tractable on
a bounded domain, we truncate the state space to
(42)

X € [Xmin, ¥max] = [—2.0, 2.0], v € [0, vmax) = [0, 0.5].

To assess the robustness of the extracted optimal lock-in boundary under mesh refinement, we compare
the free boundary surfaces computed on two grid resolutions:

(Nyx, Ny, M) € {(121,41,40), (181,61,60)}, (4.20)
where N, and N, denote the numbers of uniform grid points in the x- and v-directions, respectively, and M
is the number of uniform time steps in 7. Unless stated otherwise, (121,41,40) is treated as the reference
resolution for reporting, while (181,61, 60) is used to quantify refinement effects. The free boundary S¢(7,v)
is defined as the critical surface corresponding to the contact condition U = &. For consistency across
resolutions, the PSOR solver is run with a fixed set of default parameters:

w = 1.6, tol = 1078,

Kmax = 20000. (4.21)

Table 1 reports representative boundary values at selected (7,v) pairs, together with the absolute
differences between the two grids. The results indicate that the boundary is numerically stable under
refinement: moving from (121,41, 40) to (181, 61, 60) produces only minor changes in S¢(7,v) across the tested

slices.

Table 1. Grid refinement study for the free boundary S¢(7,v)

(7, 0) 5}121,41,40) SJ([181,61,60) AS] | 1851/ 5}121,41,40)
(0.10, 0.04) | 106.4654 106.5877 | 0.1223 0.0011
(0.25,0.04) | 110.7506 110.7904 | 0.0399 0.0003
(0.50, 0.04) | 115.8223 115.6489 | 0.1734 0.0015
(0.25, 0.08) | 114.3525 114.3841 | 0.0316 0.0002

4.4.2. PSOR parameter sensitivity analysis

In this subsection we fix the model parameters and the reference discretization (Ny, N, M) =
(121,41,40), and vary only the key PSOR parameters to assess their impact on (i) the extracted free
boundary and (ii) the convergence efficiency measured by iteration counts. As evaluation metrics, we report
representative free boundary values S¢ (7, v) at selected (7, 0) slices, together with the average and maximum
PSOR iterations per time step, denoted by avg_it and max_it.

We consider w € {1.2,1.4,1.6} while keeping the stopping tolerance fixed at tol = 10~8. Table 2 shows
that, within the reported precision, varying w does not produce observable changes in the extracted free
boundary at the representative slices. This indicates that PSOR converges to the same discrete LCP solution
on the fixed grid, and that w primarily affects the convergence rate rather than the limiting solution. In the
present setting, w = 1.4 yields the lowest iteration counts, while w = 1.2 and w = 1.6 lead to noticeably slower
convergence.

Table 2. Sensitivity to the PSOR relaxation factor w on the reference grid (121, 41,40) (with tol = 1078)

w | avg_it | max_it Sf(O.lO, 0.04) Sf(0.25,0.04) S¢ (0.50,0.04)
1.2 73.3 75 106.4654 110.7506 115.8223
14 50.0 50 106.4654 110.7506 115.8223
1.6 67.5 75 106.4654 110.7506 115.8223

1.6 and vary the tolerance tol € {107%,1078,1071°}. Table 3 shows that tightening
the tolerance does not change the extracted boundary values within the displayed accuracy, suggesting that

Next, we fix w =
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the contact set structure used for boundary extraction is already stable under relatively loose tolerances on
this grid. In contrast, stricter tolerances increase the iteration counts, reflecting the additional cost required to
reduce the LCP residual. Balancing robustness and efficiency, we adopt tol = 108 as the default choice in the

subsequent experiments.

Table 3. Sensitivity to the PSOR stopping tolerance tol on the reference grid (121,41, 40) (with w = 1.6)

tol | avg_it | max_it | 5,(0.10,0.04) | 5,(0.25,0.04) | 5,(0.50,0.04)
10 [ 500 50 106.5877 110.790463 115.6489
108 | 675 75 106.5877 110.790463 115.6489
10°0 [ 750 75 106.5877 110.790463 115.6489

4.4.3. LSMC benchmarks at boundary points

To provide an independent benchmark for the free boundary results produced by the IMEX-PSOR solver,
we additionally implement a Least Squares Monte Carlo [10] procedure for the lock-in decision. The key
idea is to simulate a large set of Heston paths and to approximate the conditional continuation value by cross
sectional regression at each discrete decision time. At time node T, given the state (S, v ), we estimate the
continuation value C (Sm, Um, Tm) and compare it with the lock-in payoff ®(S,,, vy, Tn): we lock in if & > é,
and otherwise continue.

Throughout, the model parameters and the truncated state domain are kept consistent with the
IMEX-PSOR setting. The grid size is fixed at (Ny, N,, M) = (121,41,40), and the LSMC time discretization
uses the same number of steps Nsteps = M (hence At = T/M). Path generation is performed by the Andersen
Quadratic Exponential (QE) scheme with 160000 paths.

For the regression step, we approximate the continuation value as a function of the state variables (S, v).
To improve numerical stability across moneyness levels, we work with the log-moneyness x = log(S/K) and
use the basis vector

.
¥(S,v) = {1, x, %, v, V%, xv} , (43)

so that C(S, v, T) ~ ¥(S,0) " Bm.

For each prescribed (7,v), we compute the boundary point S¢(7,v). Table 4 indicates that, at the
selected representative points, the LSMC estimates of Sy are consistently higher than those from IMEX-PSOR,
with a percentage difference of approximately 2.10%-4.57%. This discrepancy mainly arises because the
LSMC continuation value is obtained via regression from finitely many simulated paths, and is therefore
affected by sampling noise and basis approximation error, which can shift the estimated threshold. In
contrast, IMEX-PSOR yields a more stable boundary extraction and is less sensitive to the choice of regression
specification or path simulation settings.

Table 4. Free boundary S¢(7,v): LSMC vs. IMEX-PSOR

(t,v) S})SOR(T, v) S]fSMC (t,v) | Percentage difference (%)
(0.25, 0.15) | 119.1698614 124.61 4.57
(0.25, 0.20) | 121.8751802 124.85 2.44
(0.40, 0.15) | 123.8141355 129.31 4.44
(0.40, 0.20) | 127.2634817 129.93 2.10

4.4.4. Effect of p on 5¢(7,v")

To examine how the correlation between the asset return and variance innovations affects the optimal
lock-in policy, we keep all other model parameters and numerical settings unchanged and vary only p €
{-0.70, —0.50, —0.30}.

Figure 1 plots, at the fixed variance level v* = 0.075, the free boundary cross section T + S¢(7,v*) under
different values of p.
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Figure 1. Effect of correlation p on the free boundary cross section at v* = 0.075

The three curves increase monotonically with 7, and for any given 7 they satisfy
S¢(t,0";p = —070) > Sg(t,v%;0=—050) > S¢(7,0";0 = —0.30). (44)

Hence, a stronger negative correlation shifts the free boundary upward.

This pattern can be interpreted through the leverage effect: a more negative p implies that a price decline
is more likely to be accompanied by an increase in variance, thereby raising future uncertainty and the option’s
continuation value. Conditional on v*, this reduces the relative attractiveness of locking in immediately, so the
holder requires a higher underlying price S to trigger the lock-in decision, which manifests as an upward shift
of the free boundary.

4.45. Effect of T on S¢(7,0)

Keeping all other model parameters and numerical settings fixed, we compare three maturities T <
{0.5,0.75, 1.0}. Figure 2 indicates that the free boundary S¢(7,v) exhibits a stable and consistent structure
across these maturities: it increases with the remaining time to maturity T and shifts upward as the variance
level v increases. This behavior reflects that a longer time horizon and higher uncertainty both enhance the
continuation value of retaining the option to lock in later, thereby postponing the lock-in decision and raising
the optimal trigger level.

Free boundary S_f(T=0.5) Free boundary S f(T=0.75) Free boundary S_f(T=1)

140
135
130
125 ¢
120
115
110
105

Figure 2. Free boundary surfaces S¢(7,v) across maturities T € {0.5, 0.75, 1.0}

A closer comparison across maturities further shows that, as T increases, the boundary surface is lifted
more noticeably in the region of larger 7, and the uplift is more pronounced at higher variance levels v. This
indicates that extending the maturity strengthens the continuation value associated with delaying the lock-in
decision, thereby raising the opportunity cost of locking in prematurely.Consequently, a higher underlying
price level S is required to trigger the lock-in decision. These findings are consistent with the financial intuition
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behind the maturity effect and also imply that the lock-in threshold of long maturity products is more sensitive
to the prevailing volatility state.

5. Conclusion

This paper develops a numerical pricing framework for active lock-in call options within the modeling
and solution paradigm of linear complementarity problems. By employing an IMEX finite difference
discretization, the continuous time pricing problem is transformed into a sequence of time stepping discrete
complementarity systems, which are efficiently solved using the PSOR algorithm. The resulting numerical
scheme is both stable and computationally efficient. It not only provides numerical approximations of the
option value function, but also lays a solid foundation for the subsequent extraction and analysis of the
associated free boundary.
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