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Abstract: In this paper, we extend the classical logistic law by incorporating autonomously evolving,
time-dependent coefficients that allow both the intrinsic growth rate 7(t) and the carrying capacity K(t) to
vary over time according to logistic modulated dynamics. In particular, the carrying capacity is modeled as a
logistic process with intrinsic growth rate « and saturation parameter j, yielding an asymptotic level of % The
objective is to investigate how temporal variability in the governing coefficients influences both transient and
asymptotic regimes of the population dynamics and to assess the extent to which the system behavior can be
controlled through a reduced set of key parameters. Analytical results are derived in closed form, expressed
in terms of hypergeometric functions, and compared with numerical integrations for validation purposes.
It is shown that the model admits a long-term equilibrium determined by the ratio %, independently of the
initial population size Sy, while short- and medium-term dynamics are strongly shaped by the interplay
between Sy and the non-autonomous logistic evolution of the carrying capacity K(t). These results illustrate
how analytically tractable non-autonomous logistic models with internally generated coefficient trajectories
can enhance the qualitative understanding of population dynamics and provide reliable benchmarks for
numerical simulations, with potential applications in sustainable resource management, aquaculture, and
ecological modeling.

Keywords: logistic growth modeling, population dynamics, exact solution by hypergeometric functions,
approximate solution by numerical integration, symbolic and numerical simulation
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1. Introduction

T his paper extends the classical logistic law (1) by introducing autonomously generated time variability
in its fundamental parameters. In particular, the intrinsic growth rate (f) and the carrying capacity
K(t) are allowed to evolve dynamically, following logistic modulation laws that are prescribed independently

of the population state. Within this framework, population dynamics are governed by a non-autonomous
logistic equation whose coefficients are themselves driven by simple yet meaningful autonomous evolutionary
dynamics.

The main objectives of this work are threefold:

e to investigate the effects of logistic variability in the parameters K(t) and -y(¢) on the qualitative behavior
of the population dynamics described by Eq. (1); e to derive closed-form analytical solutions, expressed in
terms of hypergeometric functions, and to complement these results with illustrative numerical simulations
aimed at validating the analytical expressions and highlighting the resulting dynamical behavior;

e to examine how the global behavior of the system can be effectively regulated by tuning a reduced set
of parameters, thereby providing a parsimonious yet flexible modeling framework.

By combining analytical derivations with illustrative numerical examples, the present study aims to
clarify how time-dependent coefficient dynamics, generated independently of the population variable, can
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be embedded in classical growth models to capture non-autonomous interactions commonly observed in
real-world systems.

The analysis focuses primarily on a logistic equation with a dynamically evolving carrying capacity and is
subsequently extended to account for time-dependent structures in the intrinsic growth rate () and carrying
capacity K(t). Rather than addressing isolated special cases, the proposed framework emphasizes the general
mechanisms by which parameter variability influences both transient and asymptotic regimes.

A key implication of this approach is the ability to steer the system dynamics by controlling the trajectories
of v(t) and K(t). This feature not only simplifies the mathematical treatment but also provides a practical
tool for applications in which resource availability and population pressure co-evolve through externally
prescribed or internally generated coefficient paths. In contexts such as aquaculture, wildlife management, or
renewable resource exploitation, the model can inform decisions on initial population levels and intervention
strategies to prevent overexploitation, excessive mortality, or inefficient resource use.

In this perspective, the extended logistic framework contributes both to the theoretical understanding of
non-autonomous dynamical systems and to the development of analytically grounded models that support
sustainable management practices in ecological and economic settings. The contribution of this paper is
primarily theoretical. The proposed framework is designed to provide an explicit closed-form solution for
a non-autonomous logistic equation with structured time-dependent coefficients. Rather than introducing
new feedback mechanisms or a general modeling paradigm, the results are intended as exact benchmark
solutions that can support numerical investigations and comparative analyses in more general settings where
closed-form solutions are not available.

2. The history of the logistic equation

Population dynamics is a fundamental subject across disciplines including biology, genetics, demography,
and epidemiology. Mathematical models play a crucial role in elucidating these dynamics, and the logistic
differential equation is a primary tool for describing and analyzing population growth. Verhulst initially
proposed the logistic model [1] and can be expressed as follows:

S'(t):y(l—sg))s(t), teR, 7,K>0. (1)

In this context, the constant K > 0 is identified as the carrying capacity, and in its simplest form, it
is assumed to be fixed. The positive parameter  regulates the growth dynamics of the population S(f);
specifically, it represents the per-capita net reproductive rate, defined as the average number of births minus
deaths per individual (see [2]).

This equation, owing to its versatility, has gained considerable popularity and has been used in various
bio-mathematical models to describe the temporal evolution of a species, whose numerical value at time £ is
denoted by S(t). The Eq. (1) was derived as an alternative to the Malthusian model, S(t) = S(t), which, in the
long term, leads to unbounded and thus physically implausible population growth. Conversely, the Verhulst
model, also known as the logistic growth model or logistic, captures the self-limiting boundary encountered by
population expansion. As detailed in [2], the population exhibits exponential growth when the population size
is minimal; however, for larger values, factors such as crowding, food scarcity, and environmental influences
become significant.

In applied mathematics, the logistic model has been extensively validated using empirical data from
various biological systems. Initial research by G.F. Gause, N.P. Smaragdova, and A.A. Witt in the 1930s
confirmed its ability to accurately depict predator-prey interactions [3]. Pearl and Reed effectively employed
it to model the growth of the United States population [4]. More broadly, mathematical biology remains
one of the primary disciplines that use the logistic equation, as evidenced by comprehensive analyses in
Edelstein-Keshet [5] and Murray [6].

Eq. (1) has also been widely used in bio-economic models of sustainable resource management, as
exemplified in Clark’s monograph on renewable resources [7] and in ecological harvesting strategies, as
discussed by Kot [8]. In economic applications, the function S(t) often represents the number of prospective
buyers for a product, as in the research of Alliney [9] and Ritelli, Barbiroli, and Fabbri [10]. An influential
example is the Fisher-Pry model of technological substitution [11], in which S(¢) denotes the market share of



Open J. Math. Sci. 2026, 10, 109-123 111

an emerging technology. Initially, adoption is driven by positive feedback, so that each new user stimulates
further adoption; however, as the pool of remaining potential adopters diminishes, the growth rate decelerates
and ultimately reaches a plateau. This dynamic, characterized by autocatalytic dissemination and saturation,
yields the classic sigmoid diffusion curve observed in numerous innovation diffusion phenomena.

Eq. (1) is a differential equation of the form

where ¢ : [0,00) — R is a differentiable function with ¢’(S) < 0 and such that ¢(0) = a > 0; furthermore we
assume that there exists Ky > 0 such that g(Ky) = 0.

This is the concept of “dynamic” introduced by Freedman [12] in his research on antiparasitic conflict,
specifically through the engagement of a natural enemy of the parasites within biological agriculture. It is
also discussed in [2]. Subsequently, this concept has been proposed within economic models as well (see [10]),
where the core idea is that S(t) represents the demand for a good at time ¢, with its dynamics governed by the
logistic differential equation. In such cases, this can be correlated with other scalar differential equations that
model the dynamics of the goods’ producers.

Nonetheless, there is a long-standing interest in generalizing the classical logistic Eq. (1), motivated not
only by theoretical considerations but also by the need for more flexible and realistic modeling frameworks.
In this direction, a seminal contribution is due to Nkashama [13], who studied the non-autonomous logistic
equation

u(t) =u(t)[A(t) — B(t)u(t)], teR. )

Under strong assumptions on the coefficient functions, including continuity, strict positivity, boundedness
away from zero, and almost-periodicity of A,B : R — R, Nkashama established fundamental results
concerning the existence, uniqueness, positivity, and global attractor structure of solutions. More precisely,
assuming the uniform bounds

O<D€0§A(f)§0é1, O<,BQ§B(1L)§‘31, t e R. 3)

Nkashama proved the existence of a unique positive bounded solution acting as a global forward attractor,
together with a backward exponential stability of the zero solution. These results provide an important
historical benchmark in the theory of non-autonomous logistic equations.

The primary objective of this paper is to explore and extend the classical logistic law (1), allowing its
key parameters, the intrinsic growth rate v and the carrying capacity K, to vary over time. In particular, we
introduce logistic—type feedback in which v and/or K evolve according to their own logistic dynamics.

Allowing v and K to depend on time accommodates realistic scenarios in which reproduction rates
and resource limitations vary, due to factors such as climate cycles, harvesting policies, or technological
and ecological developments. By treating these parameters as either externally prescribed or governed
endogenously by supplementary logistic laws, we establish a versatile framework that bridges the divide
between basic autonomous models and more plausible non-autonomous systems.

Our analysis proceeds in two main stages:

(1) we model (1) by considering v and/or K themselves to evolve according to logistic dynamics, thereby
extending the classical formulation through nested feedback structures.

(2) we provide symbolic examples and numerical simulations to illustrate how the logistic variability
of parameters affects transient and asymptotic behaviour of the system. These examples highlight both the
robustness of the model and its applicability in concrete management contexts.

A principal motivation for this research is the potential to regulate the system by adjusting only two
parameters. This economical configuration not only facilitates mathematical analysis but also provides
practical tools for developing sustainable strategies. By selecting appropriate initial conditions and parameter
trajectories, resource allocation within the system can be optimized, thereby reducing inefficiencies and
waste. For instance, in fisheries and aquaculture, our framework may inform the selection of initial stocking
levels to prevent overpopulation, mortality peaks, or underutilization of the available environment. Similar
interpretations apply to ecological reserves or the management of renewable resources, where logistic feedback
on environmental support can indicate either degradation or recovery of natural habitats.
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By integrating rigorous analysis with illustrative case studies, this work demonstrates how the logistic
law can be enhanced to more accurately describe systems subject to dynamic environmental constraints and
reproductive potential. The resulting framework advances both theoretical understanding of non-autonomous
differential equations and practical applications in population management, economic planning, and
sustainability policies.

Before proceeding, we summarize the notation and the variables used throughout the paper. The main
quantity of interest is the population size S(t), whose dynamics are governed by a non-autonomous logistic
equation with time-dependent coefficients. Specifically,

e 5(t) denotes the population size at time ¢;

e Sy is the initial population size, i.e. S(0) = Sy > 0;

e y(f) > 0 is the intrinsic growth rate, evolving according to a prescribed logistic law, and y9 = (0)
denotes its initial value, while 4 represents the constant intrinsic growth rate;

e g and b are the coefficients of the logistic law governing the evolution of y(t);

e K(t) > 01is the carrying capacity, evolving according to a prescribed logistic law;

e « and B are the coefficients of the logistic law governing the evolution of K(t);

e K(0) = Ky denotes the initial value of the carrying capacity, while K represents the constant carrying
capacity.

Throughout the paper, the time domain is assumed to be t > 0, which is the standard setting for
population models with prescribed initial conditions.

3. Logistic coefficients models

3.1. Time dependent carrying capacity and growth rate

In epidemiological and ecological applications, permitting the parameters of the logistic model, notably
the carrying capacity K and the growth rate -y, to vary over time enables a more comprehensive and realistic
representation of real-world dynamics. For example, in infectious disease modeling, a time-dependent K(t)
effectively captures the impacts of public health interventions such as social distancing, mask mandates,
vaccination programs, and the administration of antiviral or monoclonal antibody therapies, all of which serve
to decrease the effective susceptible population and consequently limit the maximum extent of the epidemic.

Beyond epidemiology, variable coefficients hold equal significance within pure biological contexts.
In population ecology, a time-dependent carrying capacity aptly characterizes seasonal fluctuations
in resource availability, including food supply, habitat space, or water levels, which subsequently
influence boom-and-bust cycles in species populations. Variable growth rates can effectively model
temperature-dependent metabolic rates in ectotherms or reproductive suppression caused by stress under
adverse conditions.

Mathematically, these extensions of (1) take the form of

s = 1) (1-x) @),
S(0) = Sy > 0,

(4)

where y(t) and K(t) are governed by additional differential equations within a coupled system, such as a
logistic differential equation. Foundational contributions in this area include Nkashama’s non-autonomous
almost-periodic logistic model [13], Meyer’s seasonal resource-driven population model [14], and related
contributions in [15]. These frameworks facilitate the analysis of the interactions between external forcing and
internal feedback mechanisms in shaping transient dynamics, stability features, and long-term persistence.
Such insights are indispensable for both epidemic management and the conservation of biological populations.

Eq. (4) can be integrated, and in particular, by changing the variable S = u~!, it is a Bernoulli equation.
The solution, which can be obtained using standard undergraduate-level techniques, is:

exp (fot 'y(T)dT)

S(t) T .
Ko exp (f v(2)dg) dr

©)

= t
s%*‘fo
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In light of the represention depicted in (2), we note that

(1)
A(t) = = L.
(1) =7, B =
The initial section of the contribution seeks to identify potentially explicit solutions to (4), permitting
variability of () and K(t) that is governed by a logistic differential equation in both cases. We will examine
the two scenarios separately, i.e., taking K(t) = K as fixed, while () is variable, and vice versa. Subsequently,
we will also present the results in which both parameters vary in a logistic manner.

3.2. Computable examples

Assuming to work with the expression of the logistic equation in (4), we let y(¢) and K(t), to follow these
dynamics:

F(t) = ay(t) = by(t)?
(6)
7(0) =70 >0,
and
K(t) = aK(t) - BK(t)?,
@)
K(0) = Ky > 0.
The solution to (6) and (7) are respectively
() = . and K(t) = : ®)

b—l—(%—b) e—at ﬁ—l—(%o—ﬁ) et

as a logistic law of the form drives them (2), with parameters a, b, a, § > 0.
Consider the Eq. (4) assuming <y(t) is defined in (8) and K(0) = K, so we are implicitly working
with a fixed carrying capacity while a variable net reproduction rate of the population. According to these

assumptions, (4) becomes
fm=vm0—¥0w»

S(O) =59 > 0.

)
From (5), we have that the solution to (9), after straightforward but elementary computations, is

R CED R L
S%—i—%(a %(b'yo(e”f—l)—i-a)?—l)

S(t) =

Conversely, similar results can be derived by incorporating into the Eq. (4) a variable term representing
the carrying capacity, denoted as K(t), which is governed by a logistic growth law. Meanwhile, the net
reproduction rate 7y(t) remains constant at y for all t. Consequently, this model examines the impact of a
time-dependent carrying capacity, adhering to a logistic law, while maintaining the net reproduction rate as
constant. Therefore, from (5) we get

t e”YT
v/

Integrating the denominator term by term, one finds

(10)

bt ﬁ(e7t — ]) ’7‘3(3(’7—01)t _ 1) ,7(1 _ e(’?—ﬂ()t)

= —dr = + +
0 K(1) o a(a—7) aKo — 7Kg
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thus (10) becomes

et
S(t) = .
Y 1 ay+apKoel —y(a—pKole (Tl —apKy — 7 pKoeT
So a Ko (=)

Finally, it is possible to derive analogous results by incorporating, as a variable component in (4), the
carrying capacity K(t) governed by a logistic evolution law, and by allowing the net reproduction rate 7(t)
to vary as described in (8). Thus, this model investigates the effects of a time-dependent carrying capacity
following a logistic trajectory, in conjunction with a fluctuating net reproduction rate, thereby enhancing the
model’s complexity and robustness.

Accordingly, from (5) and calling with I(t) the integral of y(7) in [0, f]:

ot ot a _ In(byo (e —1) +a) —Ina
I(t)—/0 ’)/(T)dT—/O b+(,yl—b) e—aTdT_ 5 , (11)

we find the solution

I(f)

(12)
/ I (1)
SO K(1)
This implies that we must evaluate the following 1ntegra1:
t
')’(T) I(t
= e T,
o K(7)
and, after some standard computations, we get
1
FalTh (byo (7 1) +a)? (e (5 — B) +B)
N(t) = / dr.
— a
0 oz(e “T(%—b)er)
We perform the change of variable x = ¢*7, so that we obtain, after some simplifications,
Yoa b "
N() = T | (a+bpo(x—1))h P (3 (a - BKo) + BKo) dx, (13)
that can be split into
%
« 1
,YocK (/ BKo(a+byo(x —1))6 1 dx+ / x"a(a — BKo)(a+ byo(x —1))2 ! dx) .
0
The first integral is elementary, indeed, letting s = a + byo(x — 1), we get
1 1
byo(e”—1)+a Po <(b70 (e —1) +a)® _ab>
/31(0/ sh1ds = . (14)
a Y0

On the other hand, to compute the second integral, we make use of a strategy already presented in [15],
that deals with splitting the domain of integration into two sub-integrals and using a result presented in [16].
So, we have that

at

(6= pKo) [ x7F (b0 (x = 1)F dx = (@~ BKo) (M(1) — M(0)), (15)

where

at

M(t):/oe (a4 by (x—1)) 1 dx. (16)
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Note that

e a+Dbyy(x—1)=a—byy+byox
1_4 L1 /00 %71
o (a—byo+byox)t " =by§ ( MZ‘J + x)
which, assuming a > byg and 1— 2 > 0, allows us to use the entry 3.197.8 page 317 of [16].
Indeed, we have that

7

a’ a—by

- 51 -1
q (o=t )P et(afa)b,yb 2t
M(t) = ) . zFl(l—;,l—‘;‘,z—"‘—be 70),

and similarly

1 1 1
—byg \? p1
a ( 5 ) bg 1 b
Y0 & x 70
M(0) = E{l--1—--,2——, - .
(0) a—uw 24 < b a a’ a-— b'y())

Note that a condition for the convergence of the integral, according to the entry 3.197.8 page 317 of [16],

we need that &« < a and a > by,.

The computation of the integral (16) relate to Euler’s integral representation of the Gauss Hypergeometric
Function » F; (see [17-19]):

oF (I, m, q,2z) =

=
g}l 3
—
—
~—
=
—~
3
~—
=
N
=

I‘(q))” " 1 (17)
— —q m— _ —m— _ -1
~ T(q—m)T(m) /0 AT - T,

where (.), is a Pochhammer symbol. The series is convergent for any I, m, g if |z| < 1, and for Re (I +
m —q) < 0if |z| = 1. For the integral representation is required Re (q) > Re(m) > 0. Here I'(z) denotes
the Gamma Function. A quick overview of Gauss Hypergeometric Function can be found in [20]. The steps
to obtain (15) via (17) are the same as those presented in [21], and are based on the decomposition of the
integral as the difference between the integral from 0 to the upper limit and the integral from 0 to 1, followed
by the normalization of the first integral in order to exploit the integral representation (17) theorem of the
Hypergeometric function.
Finally, combining together (14) and (15), we have that (13) is

7011*% (@ — BKo) (M(t) — M(0)) + BKo (ai (byo (e —1) + a)% - 1>
N(#) = aK ’
0
and to get (12), we recall (11), obtaining
el(t)

The integral in Eq. (16) cannot be expressed in terms of elementary functions. For this reason,
hypergeometric functions provide a natural and effective analytical framework to represent the solution of
the differential equation in closed form. This exact representation is not pursued for its own sake, but
rather because it offers a rigorous analytical benchmark that can support, validate, and corroborate numerical
implementations, especially in regimes where purely numerical approaches may obscure the structural
dependence on the model parameters.

Table 1 reports the relative error associated with the solution provided by Eq. (18), computed by
comparing the numerical approximation with the corresponding analytical expression. The numerical solution
used for comparison was computed by means of the NDSolve solver implemented in Mathematica. The error is
evaluated for increasing values of the final time T, using the following set of parameters:

So = 8.
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Table 1. Maximum relative error between numerical and analytical solutions, Sana, i.e., (18), for increasing final

time T
Final time T | error(T) = maXie[o,1] [Snum(£) = Sana (0
maXieo,7) |Sana ()|
30 1.61859 x 107
31 1.61859 x 107
32 1.61859 x 107
33 1.61859 x 107
34 1.61859 x 107
35 1.61859 x 107
36 1.61859 x 107
37 1.61859 x 107
38 1.61859 x 107
39 1.61859 x 107
40 1.61859 x 107

The results reported in Table 1 show that the relative error remains uniformly bounded and stable as the
final time T increases, providing further evidence of the accuracy and consistency of the analytical solution
(18).

3.3. Simulations of logistic coefficients models

This section presents several simulations concerning the model delineated in (12), which considers the
scenario where both coefficients of Eq. (4) exhibit logistic variation. Firstly, it is essential to note that (12), to
ensure the convergence of the integral, needs that « < a and a > bvyy. A first consequence of this binding
condition on the parameters is related to the behaviour of the y(t). Indeed,

aZe—t (% — b)
7(t) = 5 >
—at (4 _
(e (55 =2) +0)
which implies that y(#) is strictly increasing since we assume that a > b7yg. In practical terms, this indicates
that the net population growth rate remains consistently positive and does not alter its sign, thereby ensuring

that it maintains biological relevance as a positive value.
Moreover, by (4), we have

7

S0 = e [Y0) (50 K(B) +(0)(K(8) = S((K() ~25(0) + K(1) (K(1) = 5(1))5(0) ],

where the last equation comes from the substitution of the right hand side of (4). We notice that S(t) = 0 if
e 5(t)=0;
e 5(t) = K(t).
Considering the non-trivial solution S(t) = K(t), we get that

S(t) = y(t) K(t). (19)

Since 7(t) > 0 according to (8) and due to the fact that a > by, the sign of Eq. (19) depends only on K(t),
ie.,
2,—at
ace® (K% - ﬁ)

(e (%-6)"

K(t) = (20)
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All the parameters of (20) are positive and therefore the sign of (20) depends only on the quantity Kio - B.
Therefore the sign of (19) ultimately depends on the the quantity g- — , and in particular

S(t) <0 ifa<Kyp, S(t) >0 ifa>Kpp. (21)

Ultimately, the scenario associated with S(#) < 0 pertains to the existence of a local (or global) maximum
in the solution of (12), while 5(#) > 0 indicates the existence of a local (or global) minimum for the solution of
(12). In the remainder of this section, we will present several simulations that illustrate the characteristics of
the general solution that have just been highlighted.

Finally, it is interesting to see which is the long-term equilibrium of (12), i.e., applying the de I"'Hopital
rule, assuming that a, b, y, Ko, So > 0 and « < a, a > by, we obtain

1(t)
lim S(f) = lim -~ =

«
—. (22)
t—oc0 P SLO +N() B

Indeed, notice that

. . 1 1 a
lim e/(") = lim a~ 7 (byg)tet,
t—o0 t—o0

since as t — +oo,
1 .
a+b(—1+e"Myy ~ bye" — (a+b(—l+e”t)'yo)b ~ (b’yo)%eﬁt.

On the other hand, the denominator is dominated by
1 1 1 19 4 B 1.1 1o
K—Oaa by (Koﬁbb'yé’ eb> = Eu bhbyger’.

Therefore,

3.3.1. Parameter conditions

For clarity, we explicitly list below the assumptions on the model parameters used throughout the
analytical derivation. These conditions serve two distinct purposes: biological plausibility and analytic
convergence.

e Biological plausibility. We assume

a>0, b>0, 70>0, Ko >0, 50>0,

which ensure positivity of the intrinsic growth rate, carrying capacity, and population size. These assumptions
are standard in population dynamics models and exclude biologically meaningless negative quantities.
o Analytic convergence. The conditions

a<a, a > by,

are required to guarantee the convergence of the integral representations used in the hypergeometric reduction.
Under these assumptions, the relevant integrals admit closed forms in terms of hypergeometric functions. If
these conditions are not satisfied, the integral representations cannot be employed and the solution must be
obtained through numerical integration.

We further observe that one of the analytic conditions, namely a > b7y, also implies that the intrinsic
growth rate (t) is strictly increasing. This feature reinforces the modeling framework, as it corresponds
to a scenario in which the population’s intrinsic growth potential improves over time, consistently with the
assumed evolutionary setting.
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3.3.2. A decreasing carrying capacity K(t)

Figure 1 illustrates the behavior of the solutions (t) and K(t) in (8), considering two contrasting
evolutions for the coefficients. Indeed, K(t) is decreasing, reaching its asymptote, bearing in mind that y(t) is
strictly increasing.

{K(®),y(®}
A

1.2}
1.0}
08¢
0.6/ K(t)
04
0.2+

Y

\/
-~

0 20 40 60 80
Figure 1. Net reproduction rate and carrying capacity. (t) in blue with a = 0.32, b = 0.25, 79 = 0.5. K(¢t)
in orange with « = 0.25,8 = 0.43,Ky = 1. ¥(t) in blue and K(t) in orange. Figure 1 shows an increasing
intrinsic growth rate () following a logistic S-shaped profile, approaching a stable plateau, while the carrying

capacity K(t) decreases from an initially high level toward a lower asymptotic value, reflecting a progressively
constrained environment

Figure 1 depicts 7(f) increasing with a classic S-shaped curve from an initial low value towards a steady
plateau. This illustrates a net reproduction rate that increases over time, potentially as individuals reach
maturity or breeding conditions improve, before stabilizing at its maximal sustainable level.

Conversely, Figure 1 demonstrates that K(t) decreases rapidly from an initially elevated capacity towards
alower asymptote. This signifies an environment or resource base that initially seems abundant but diminishes
over time as a result of overexploitation, contamination, or habitat destruction, eventually stabilizing at a
diminished long-term carrying capacity.

Together, these complementary trends exemplify a system in which reproductive potential augments
despite diminishing environmental support, culminating in a period during which increased breeding success
partially offsets habitat decline, ultimately attaining a steady state wherein both rates and capacities stabilize.

The initial image in Figure 2 illustrates a sudden increase in the (12). Specifically, within this context, it
is observed that 59 < Kp; the system is compelled to reach the carrying capacity during its initial phase, for
t close to 0. Evidently, since the carrying capacity K(f) also varies logistically, the system does not attain the
value of Ky. However, during its initial stage, a significant increase in the population S(t) can be observed.
In other words, the population size at time t = 0 is less than Ky, thus compelling the solution to increase,
driven by a favorable carrying capacity. According to (21), it is established that « = 0.25 < BKy = 0.43,
thereby confirming that S(t) < 0, which signifies the presence of either a local or global maximum within the
population dynamics. It is evident that subsequent to a phase of significant growth, a peak value is reached,
after which the population commences to decline. The initial analysis provided at the outset of this section
serves as a crucial tool for scrutinizing the system’s development and for resource management. In the context
of fish aquaculture, for instance, it is unfavorable from both an economic and sustainability perspective to
experience a swift increase in population size that is then followed by a decline. Furthermore, from (22),
it is understood that the system, as time approaches infinity, attains its asymptotic value represented by %
The intriguing aspect is that the long-term equilibrium of S(t) is entirely dependent on the parameters of the
logistic carrying capacity; therefore, as we have the ability to control the initial number of individuals Sy, by
simply managing the ratio %, we are able to avoid waste of resources. Indeed, it is generally undesirable for
Sp > % ; rather, the contrary is preferable, considering both economic and sustainability viewpoints.



Open J. Math. Sci. 2026, 10, 109-123 119

04

0.2

o 20 40 60 80

0.8+

06l N— S

™R

0.4+

0.2+

0 20 40 60 80
Figure 2. Population dynamics. Above: (12) witha = 0.32, b = 0.25, 79 = 0.5,a4 = 0.25, = 0.43,Kg = 1,50 =
0.65. Below: (12) witha = 0.32, b = 0.25, 79 = 0.5,& = 0.25, B = 0.43,Kp = 1,59 = 1.2. (12) in solid black line,
Sp in solid red line and (22) in orange dashed line. Figure 2 shows how different initial conditions Sy relative to

Kp and % generate either transient growth with a subsequent peak or an immediate monotonic decay, while the
long-term equilibrium is uniquely determined by %

Conversely, the second image in Figure 2 illustrates a scenario where there is an immediate, rapid decline
in the population towards its asymptote % This phenomenon reflects the choice of the initial condition
So > Kp. The system does not encounter pressure to increase its population; rather, it demonstrates immediate
saturation within population dynamics, characterized by a carrying capacity inadequate for ensuring the
survival of all individuals. Cceteris paribus, alterations in the initial conditions influence the evolution of
the system; in this instance, both conditions satisfy that Sy > Ky and Sg > % From an applied perspective,
this situation results in resource depletion, which is undesirable both economically and from a sustainability
standpoint. Furthermore, since 5(t) < 0, the global maximum is attained at t = 0, thereby indicating that a
decline in the population must necessarily be observed.

Finally, it is noteworthy that these two situations share a common element: the decreasing carrying
capacity. Indeed, as depicted in Figure 1, K(t) diminishes from an initial value of Kj to its asymptote at %
It is observed that in both simulations, the long-term population decreases relative to the initial conditions,
attributable to the decline of K(t), indicating that the model is designed to be responsive to these dynamics.
Specifically, the progression of K(t) may be regarded as either exogenous or endogenous; however, in general,
if control over it is feasible, then the entire system’s evolution can be effectively managed.

3.3.3. An increasing carrying capacity K(t)

Figure 3 demonstrates that both < (¢) and K(t) display the conventional S-shaped curve, indicative of
logistic-type growth. The net reproduction rate 7(t) commences at a relatively low initial value, increases
swiftly as the population matures or as conditions improve, and subsequently stabilizes near its asymptote,
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represented by the ratio 3. Similarly, the carrying capacity K(t), with an initial condition of Ky = 1, commences
at a modest baseline, undergoes a significant increase as resources or habitat recover, and asymptotically
approaches its carrying limit, expressed as % The steep ascent of each curve signifies a phase of rapid
enhancement, whereas the eventual plateau indicates the system’s attainment of its long-term sustainable

rates and capacities.
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Figure 3. Net reproduction rate and carrying capacity. (f) in blue with a = 0.32, b = 0.25, 79 = 0.5. K(t)
in orange with @ = 0.25,8 = 0.12,Kp = 1. ¥(¢) in blue and K(t) in orange. Figure 3 shows both the intrinsic
growth rate () and the carrying capacity K(t) following logistic S-shaped profiles, increasing from low initial

values and asymptotically approaching their respective plateaus ; and %

Collectively, these mutually reinforcing trends delineate a system wherein both reproductive capacity
and environmental support enhance progressively over time. The population not only reproduces more
effectively but also benefits from increasing resources and available space, culminating in an extended phase
of accelerated growth. Ultimately, the system attains a higher equilibrium point, where amplified rates and
expanded capacities are harmonized, establishing a new steady state. Nevertheless, to assess whether the
system can achieve a more optimal equilibrium concerning population growth, it is essential to examine the
relationship between the initial condition Sy and the long-term equilibrium % Indeed, the curve S(t) in the
initial image of Figure 4 depicts an initial sharp decline in (12).

In particular, within this context, we observe that Sy > Ky, indicating that at its initial phase, when t ~ 0,
there exists a pressure exerted on the system to attain the carrying capacity Ko. Given that K(t) also varies
logistically, the system does not exactly achieve the value of Kj; instead, there is a decrease in population
attributable to a less favorable environment. In other words, the population size at time t = 0 exceeds Ky,
indicating that the solution is compelled to decrease due to a less favorable carrying capacity. By (21), we have
thata = 0.25 > BK( = 0.12. This feature implies that S(t) > 0, so that there is a local or global minimum in the
population dynamics. Indeed, as we can observe, after the period of strong decrement, it is clear that there is
a minimum value after which the population starts to rise; in particular, S(t) rises to reach its asymptote, i.e.,
(22), that is higher than Sy; this simulation reflects that the system is able to reach a higher level of equilibrium,
exploiting the fact that this one is fully derived by the parameters of K(f).

On the other hand, the second image in Figure 4 displays a situation in which we immediately observe
a rapide decline of the population, that goes even lower than its asymptote % ; Indeed, the initial condition
is S > % > Kp. The system does not feel any pressure to increase the number of individuals, since the
initial population is above the carrying capacity. There is an immediate saturation in the population dynamics,
characterized by a carrying capacity insufficient to ensure the survival of all individuals. Alterations to the
initial conditions influence the evolution of the system, resulting in resource depletion, which is undesirable
both economically and from a sustainability perspective. Following the attainment of its global minimum, the
population subsequently increases, rapidly reaching a long-term equilibrium.

It is noteworthy that, although these two circumstances exemplify an increasing carrying capacity, they
lead to two distinct systemic states. Indeed, as we see from Figure (3), K(t) increases from an initial value of
Kp, to its asymptote % However, two simulations in Figure 4, displays two different states of the system: in
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the first, driven by a lower initial condition Sy, the population increases with respect to the initial condition
in the long term; in the second case, instead, despite K(t) is increasing, the initial condition is higher than the
asymptote %, leading to a lower long-term equilibrium.
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Figure 4. Population dynamics. Above: (12) witha = 0.32, b = 0.25, 79 = 0.5,& = 0.25, = 0.12,Kg = 1,59 =
1.5. Below: (12) witha = 0.32, b = 0.25, 79 = 05,4 = 0.25, B = 0.12, Ky = 1,59 = 3. (12) in solid black line, S
in solid red line and (22) in orange dashed line. Figure 4 illustrates how initial conditions positioned above the
asymptotic level % generate pronounced transient drops, even in the presence of a growing carrying capacity,
before eventual convergence to equilibrium

The parameter sets used in Figures 1-4 are summarized in Table 2.

Table 2. Summary of parameter sets used in Figures 1-4

Figure a b Yo o ‘B KO S()

Fig. 1 032102505 |025|043 | 1

Fig. 2 (above) | 0.32 | 025 | 0.5 | 025 | 043 | 1 | 0.65
Fig. 2 (below) | 0.32 | 0.25 | 0.5 | 0.25 | 043 | 1 1.2
Fig. 3 032 |1025|05 (025|012 | 1

Fig. 4 (above) | 0.32 | 0.25 | 05| 025 | 0.12 | 1 1.5
Fig. 4 (below) | 0.32 | 025 | 0.5 | 025 | 0.12 | 1 3

4. Conclusions

The results and simulations presented in this work underscore the model’s primary characteristic,
in which both coefficients of the logistic equation undergo autonomous logistic evolution prescribed
independently of the population dynamics. Based on the analytical findings, we determined the conditions
that guarantee the monotonicity of (f) and the asymptotic behavior of K(t). Furthermore, we clarified how
the sign of the second derivative S(t) is influenced by the relationships among the parameters «, 8, and K.
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In particular, we demonstrated that the long-term equilibrium of the system is uniquely defined by the
ratio %, independent of the initial population Sy, whereas the short- and medium-term dynamics are heavily
influenced by the interaction between S and the non-autonomous logistic progression of the carrying capacity
K(t).

From a mathematical perspective, the model yields a unique asymptotic equilibrium and a clear
characterization of transient dynamics. These results also admit meaningful interpretations in applied settings.

As the carrying capacity diminishes over time, the system is inevitably directed toward a lower
equilibrium, indicative of environmental condition deterioration. In such instances, even if the initial
population is below the initial carrying capacity, the dynamic response may exhibit a swift increase followed
by a decline, leading to inefficiencies and possible resource waste. Conversely, if the carrying capacity increases
logistically, the population may initially decline when Sy exceeds K. Nevertheless, the long-term equilibrium
may surpass the initial level, indicating that environmental recovery facilitates sustainable growth. These
findings hold significant implications for ecological and resource management practices. For example, in a
fish farming context, the selection of the initial stocking level Sy is of paramount importance.

o If So > %, the system is destined to decline, as the number of individuals surpasses the long-term
sustainable equilibrium, resulting in overpopulation, resource depletion, and economic inefficiency.

oIfSy < %, the system evolves toward a sustainable equilibrium with positive growth prospects, avoiding
waste and allowing for stable exploitation.

Analogous interpretations are applicable to ecological systems, such as wildlife reserves or forest
ecosystems. A declining carrying capacity may signify habitat degradation caused by pollution or
deforestation, whereas an increasing capacity may indicate successful conservation policies or natural habitat
recovery. In both scenarios, our model underscores how the interplay between reproductive potential and
environmental support, mediated through independently evolving coefficient trajectories, influences the
long-term sustainability of populations.

Beyond its theoretical significance, the framework also provides a rational foundation for enhancing
the efficiency of the utilization of biological and environmental resources. For instance, in aquaculture, our
findings can inform the development of stocking strategies that minimize losses attributable to overcrowding
and mortality, while ensuring that growth trajectories remain compatible with the regenerative capacity of
the environment. More broadly, the model advocates that resource allocation policies—be it in fisheries,
agriculture, or wildlife management—can be optimized through the calibration of initial populations and
management interventions, to balance productivity with sustainability. In this regard, the extended logistic
approach not only advances understanding of population dynamics but also promotes practices that mitigate
waste and encourage the efficient utilization of natural resources.

In summary, the proposed framework offers a versatile tool to analyze the combined effects of logistic
variations in both net reproduction rate and carrying capacity, modeled as non-autonomous yet decoupled
processes. By linking parameter choices to qualitative outcomes, it yields valuable insights for population
management, resource allocation, and sustainability policies.

Any reference to applied contexts such as aquaculture, wildlife management, or sustainability is intended
solely as a motivating perspective. The present model does not include explicit resource dynamics, feedback
mechanisms, or optimization and control formulations, and should therefore be regarded as a theoretical
benchmark rather than as an applied management tool.

At this juncture, our analysis is deliberately confined to the theoretical development of the model and
the derivation of its closed-form analytical solution. The principal objective of this paper is to establish
the mathematical underpinnings of the extended framework and to highlight its comparative advantages
over existing methodologies. While initial numerical experiments suggest that the model is structurally
sound, an extensive econometric implementation would necessitate substantial data collection and meticulous
calibration, which are beyond the scope of this work. We view this as a promising direction for future
research and intend to pursue empirical validation of the model in subsequent studies. Moreover, rather than
opposing numerical approaches, the analytical results presented here should be viewed as complementary
tools, providing structural insight into parameter dependence and serving as rigorous benchmarks that
enrich, rather than replace, numerical investigations. Future research will take into consideration also a
periodic evolution for the carrying capacity K(t), aiming to model seasonal variation of the environment in
bio-ecological and epidemiological applications.
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