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Abstract: This note introduces a 1-parameter of cubic curves naturally associated to the sphere S4 considered
in the unique 5-dimensional irreducible representation space of SO(3). Eight examples are discussed with
the last two being elliptic curves. Also, two conics are defined naturally in our setting by a special basis of
the Lie algebra sl(3,R).
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1. Introduction

T he paper [1] of Nigel Hitchin starts with a very interesting approach of the unit sphere S4. More
precisely, this sphere is not considered directly in the Euclidean space E5 := (R5, gcan) but is the

unit sphere in a five-dimensional linear space of real 3 × 3 matrices. Concretely, the space is the intersection
Sym0(3) := Sym(3) ∩ sl(3,R) where Sym(3) is the six-dimensional space of symmetric matrices while sl(3,R)
is the usual Lie algebra of the special Lie group SL(3,R) of dimension 8. The space Sym0(3) arises naturally in
the Cartan decomposition:

sl(3,R) = Sym0(3)⊕ so(3); dim : 8 = 5 + 3.

Considering a diagonal matrix as being defined by diag(λ1, λ2, λ3) we use the traceless property of
elements of sl(3,R) in order to define the cubic curve C : y2 = (x − λ1)(x − λ2)(x − λ3). Hence, the present
work focuses on the study of the 1-parameter family of cubics C = C(u), u ∈ [0, 2π) provided by S4 as unit
sphere in Sym(3) ∩ sl(3,R) endowed with the inner product Trace(B1B2). So, we compute the Weierstrass
coefficients p, q and the discriminant ∆ of C(u). Also, a main subject is that of examples and hence an elliptic
curve is discussed after two singular cubics. We finish the first part with a non-existence result of Euclidean
cubic polynomials for our setting.

In the second part of this paper we consider conics naturally provided by the symmetric matrices from
a specific basis of sl(3,R). We point out that this research continues that of [2] where cubics and conics are
geodesically associated to the points of a geometric surface.

2. Cubic curves from the matrix approach of S4

Nigel Hitchin introduces in [1] a 1-parameter family of Einstein metrics on the standard sphere S4. The
parameter is an integer k ≥ 3 and each metric is self-dual, SO(3)-invariant, of positive scalar curvature, and
noncompact but admits a compactification as a metric with conical singularities. In fact, for k = 3, there is no
singularity at all, and the metric is the standard one on the 4-sphere.

The underlying sphere S4 is considered as the unit sphere in the 5-dimensional linear space Sym0(3) :=
Sym(3) ∩ sl(3,R) of symmetric and traceless 3 × 3 real matrices B, with SO(3) acting by conjugation. The
invariant inner product of Sym0(3) is defined as Trace(B1B2) and hence S4 corresponds to the matrices B ∈
Sym0(3) with eigenvalues λ1, λ2, λ3 ∈ R satisfying:{

λ1 + λ2 + λ3 = 0,
λ2

1 + λ2
2 + λ2

3 = 1.
(1)
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The intersection of the plane Π : λ1 + λ2 + λ3 = 0 with the sphere S2 provided by the second equation (1)
yields the ellipse:

E : (λ2 − λ1)
2 + 3(λ1 + λ2)

2 = 2, (2)

having the eccentricity:

e =

√
2
3
≃ 0.81649. (3)

The inverse 1
e =

√
3
2 ≃ 1.2247 is the eccentricity of the self-complementary hyperbolas, conform [3], while

the intersection of the plane Π with the general rotational ellipsoid E : λ2
1

a2 +
λ2

2
b2 +

λ2
3

c2 = 1, for a, b, c > 0, is the
ellipse:

E(a, b, c) :
(

1
a2 +

1
c2

)
λ2

1 +
2
c2 λ1λ2 +

(
1
b2 +

1
c2

)
λ2

2 − 1 = 0,

with the eccentricity:

e2 = e2(a, b, c) =
2
√
(a2 − b2)2c4 + 4a4b4

2a2b2 + c2(a2 + b2) +
√
(a2 − b2)2c4 + 4a4b4

.

It results that the eigenvalues λ defines a curve on the sphere S2:

C : r̄(φ) = (λ1, λ2, λ3)(φ) :=
(

1
2
(e sin φ −

√
2 cos φ),

1
2
(e sin φ +

√
2 cos φ),−e sin φ

)
, φ ∈ [0, 2π). (4)

We point out that in [1, p. 192] the eigenvalues are expressed with rational functions of

t =
∣∣∣ tan

(
3π

4
+

φ

2

) ∣∣∣ = ∣∣∣ tan φ
2 − 1

tan φ
2 + 1

∣∣∣,
but we prefer a trigonometrical approach.

Due to the first identity (1) we introduce now a parametrized cubic curve naturally associated to this
setting:

C(φ) : y2 = Pφ(x) := (x − λ1(φ))(x − λ2(φ))(x − λ3(φ)), φ ∈ [0, 2π), (5)

and then we have immediately the main theoretical result of this note:

Proposition 1. The Weierstrass coefficients p, q of the cubic curve C(φ) : y2 = x3 + px + q are:

p = constant = −1
2

, q = q(φ) = −
√

6
18

sin(3φ) ∈
[

qmin = − 1
3
√

6
, qmax =

1
3
√

6

]
. (6)

The discriminant ∆ := 4p3 + 27q2 of C(φ) is:

∆(φ) = −1
2

cos2(3φ) ∈
[
−1

2
, 0
]

. (7)

The discriminant map ∆ has an unique fixed point (∆(φ) = φ), namely φ0 ≃ −0.257079.

Proof. We have directly:

∆ = 27 · 6
182 sin2(3φ)− 1

2
=

1
2
(sin2(3φ)− 1). (8)

The value of the fixed point is obtained by using WolframAlpha as solution cos2(3φ) = −2φ. It is easy
to prove the uniqueness of this fixed point: let us consider the function f : R → R, f (x) := 2x − cos2(3x).
This function is smooth and it has the derivative f ′(x) = 2 − 3 sin(6x). For x ∈

[
− 1

2 , 0
]

it results 6x ∈

[−3, 0] ⊂ (−π, 0] and hence sin(6x) < 0 which means that the restriction of f to the interval
[
− 1

2 , 0
]

is strictly
increasing.
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Remark 1. i) For the sake of completeness we provide also the expressions in t:

q(t) =
(1 − t2)(1 − 14t2 + t4)

3
√

6(1 + t2)3
, ∆(t) = −2t2(t2 − 3)2(3t2 − 1)2

(1 + t2)6 , t ∈ [0,+∞]. (9)

ii) We have the periodicity: ∆(φ + π) = ∆(φ) which means that the function ∆(·) corresponds to a
function on the projective space RP1. Indeed, with

(
cos φ = u√

u2+v2 , sin φ = v√
u2+v2

)
we have the function:

∆ : RP1 → R, [u, v] → ∆([u, v]) = −u2(u2 − 3v2)2

2(u2 + v2)3 . (10)

iii) Due to the expression of the coefficient q we note the trigonometrical identity:

sin(3φ) = 4 sin φ sin
(

φ +
π

3

)
sin

(
φ +

2π

3

)
, (11)

which was used in [4] in order to prove the famous Morley’s theorem (1899).
iv) A very useful remark of the anonymous referee is that the 1-parameter cubic curve C(φ) is based

only on the spectral data (λ1, λ2, λ3). Hence, it remains a (very interesting) open problem if the dependence
of 3φ captures some geometrical or representation-theoretic information(s) about the Hitchin’s matrix-model
viewpoint of the initial round sphere S4.

Our main interest is in studying remarkable examples. Firstly, we remark that are six singular cases

provided by the vanishing of ∆ from (7); in fact, for the singular angles 3φ ∈
{

(2k+1)π
2 ; k = 0, ..., 5

}
we derive

only two singular curves while a periodicity of 3 in the values of the parameter k yields antipodal points on S2.

Example 1. For k = 1 we have φ = π
2 (or t = 0), the cubic curve C

(
π
2
)
= C1 : y2 = x3 − x

2 + 1
3
√

6
is singular

and corresponds to the point r̄
(

π
2
)
= e

(
1
2 , 1

2 ,−1
)
∈ S2.

Example 2. Similarly, for k = 4 we have φ = 3π
2 (or t = +∞), the cubic curve C

( 3π
2
)
= C2 : y2 = x3 − x

2 − 1
3
√

6
is singular and corresponds to the point r̄

( 3π
2
)
= −r̄

(
π
2
)
.

Example 3. For k = 0 we have φ = π
6 (or t = 1√

3
) and the cubic curve C

(
π
6
)
= C2 corresponds to the point

r̄
(

π
6
)
= 1

2

(
e−

√
6

2 , e+
√

6
2 ,−e

)
∈ S2.

Example 4. Similarly, for k = 3 we have φ = 7π
6 (or t =

√
3) and the cubic curve C

( 7π
6
)
= C1 corresponds to

the point r̄
( 7π

6
)
= −r̄

(
π
6
)
.

Example 5. For k = 2 we have φ = 5π
6 and the cubic curve C1 corresponds to the point r̄

( 5π
6
)

=

e
(

1,− 1
2 ,− 1

2

)
∈ S2.

Example 6. For k = 5 we have φ = 11π
6 and the cubic curve C2 corresponds to the point r̄

(
11π

6

)
= −r̄

( 5π
6
)
.

Example 7. For φ = 0 (or t = 1) we have the elliptic curve C(0) : y2 = x3 − x
2 with ∆ = − 1

2 and correspond

to the equatorial point r̄(0) =
(
− 1√

2
, 1√

2
, 0
)

∈ S2. This elliptic curve appears in the LMFDB Database as
https://www.lmfdb.org/EllipticCurve/Q/256/c/1 with the equation:

C(0) : Y2 = X3 − 8X, ∆ = −211 = −2048, X = 22x, Y = 23y, (12)

and is a CM-elliptic curve. We remark that Susumo Okubo showed in [5] that the space of 3 × 3 traceless
complex matrices can be endowed with a multiplication, derived from the usual matrix multiplication, in such
a way that it becomes a non-unital composition algebra.
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In [6] we introduce the notion of Euclidean polynomial as being a monic polynomial for which the sum of
squares of its roots is equal with the sum of squares of its proper coefficients; for the monic polynomial Pφ of
(5) this means that p2 + q2 = λ2

1 + λ2
2 + λ2

3 = 1 which means that q2 = 3
4 . We obtain a non-existence result as

follows:

Proposition 2. There are no Euclidean polynomials Pφ of (5)-type.

Proof. From q2 = 3
4 it results q± = ±

√
3

2 but q+ > qmax. The value q− is greater than qmin but the cubic
equation provided by the expression of q from (6):

X
(

4
3

X2 − 1
)
=

2
e

q− = − 3√
2

, (13)

has only one real solution X ≃ −1.3796 < −1 and hence it can not be a sin φ.

3. The geometry of the spherical curve C and two conics from Sym0(3)

In this section we firstly study the Frenet geometry of curve C considered as curve in the Euclidean space
E3 := (R3, ⟨·, ·⟩canonic):

C : r̄(φ) = e
(
− cos

(
φ +

π

6

)
, cos

(
φ − π

6

)
,− sin φ

)
∈ S2. (14)

Its tangent vector field is:

T(u) = r̄′(φ) = e
(

sin
(

φ +
π

6

)
,− sin

(
φ − π

6

)
,− cos φ

)
∈ S2. (15)

Its binormal vector field is constant since r̄ belongs to the plane Π : λ1 + λ2 + λ3 = 0:

B(u) = r̄′(φ)× r̄′′(φ) = − e√
2
(1, 1, 1) ∈ S2. (16)

Then its torsion is zero while the curvature function is constant:

k(φ) =
∥r̄′(φ)× r̄′′(φ)∥

∥r̄′(φ)∥3 = 1, (17)

which confirm that in the given plane Π this curve is the unit circle centered in O(0, 0, 0). Its normal vector
field is:

N(φ) = B(φ)× T(φ) = e
(

cos
(

φ +
π

6

)
,− cos

(
φ − π

6

)
, sin φ

)
= −r̄(φ) ∈ S2. (18)

We have studied recently other classes of spherical curves in both S2 and S3 in [7], [8] and [9].

Example 8. We point out that an interesting problem is when the matrix Frenet(φ) = (T(φ), N(φ), B(φ)) ∈
SO(3) is symmetric. A straightforward computation yields the characterization Frenet(φ) ∈ Sym(3) if and
only if φ = −π

4 when:

Frenet
(
−π

4

)
=

1√
3

 1−
√

3
2

1+
√

3
2 −1

1+
√

3
2

1−
√

3
2 −1

−1 −1 −1

 , TraceFrenet
(
−π

4

)
= −1. (19)

The corresponding elliptic curve is:

C
(
−π

4

)
: y2 = x3 − x

2
+

1
6
√

3
, ∆

(
−π

4

)
= −1

4
. (20)
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Secondly, we associate two conics to our linear space Sym0(3). To do this, we recall after [10, p. 13] that
the semisimple Lie algebra sl(3,R) is spanned by the matrices:

E1 =

 0 0 0
1 0 0
0 0 0

 , E2 =
1
2

 1 0 0
0 −1 0
0 0 0

 , E3 = −Et
1, D =

1
6

 1 0 0
0 1 0
0 0 −2

 , (21)

P1 =

 0 0 1
0 0 0
0 0 0

 , P2 =

 0 0 0
0 0 1
0 0 0

 , R1 = −Pt
2, R2 = Pt

1, (22)

where the subscript t means the transposition map. The motivation for this choice of basis consists in the
presence of E2 and D as elements in Sym0(3) .

With the approach of [3] a matrix Γ ∈ Sym(3) defines naturally a conic in the Euclidean plane E2 of
coordinates (x, y) through the equation:

(
x y 1

)
· Γ ·

 x
y
1

 = 0. (23)

In conclusion, there are two associated conics:
i) E2 is the degenerate hyperbola consisting in the pair of bisectrices B1 : y = x, B2 : y = −x,
ii) D is the circle centered in the origin O(0, 0) ∈ R and having the radius R =

√
2.

The symmetric matrix (19) yields a hyperbola with the eccentricity:

ẽ =

√
1 +

1√
3
≃ 1.2559. (24)
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