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Abstract: This note introduces a 1-parameter of cubic curves naturally associated to the sphere $* considered
in the unique 5-dimensional irreducible representation space of SO(3). Eight examples are discussed with
the last two being elliptic curves. Also, two conics are defined naturally in our setting by a special basis of
the Lie algebra sI(3,R).
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1. Introduction

he paper [1] of Nigel Hitchin starts with a very interesting approach of the unit sphere S*. More
T precisely, this sphere is not considered directly in the Euclidean space E> := (R®, g.,) but is the
unit sphere in a five-dimensional linear space of real 3 x 3 matrices. Concretely, the space is the intersection
Symg(3) := Sym(3) Nsl(3,R) where Sym(3) is the six-dimensional space of symmetric matrices while s/(3,R)
is the usual Lie algebra of the special Lie group SL(3,R) of dimension 8. The space Symi(3) arises naturally in
the Cartan decomposition:

sI(3,R) = Symy(3) ®so(3); dim:8=>5+3.

Considering a diagonal matrix as being defined by diag(A1, A3, A3) we use the traceless property of
elements of s/(3,R) in order to define the cubic curve C : y?> = (x — A1)(x — A2)(x — A3). Hence, the present
work focuses on the study of the 1-parameter family of cubics C = C(u), u € [0,27) provided by S* as unit
sphere in Sym(3) Nsl(3,R) endowed with the inner product Trace(B1B,). So, we compute the Weierstrass
coefficients p,q and the discriminant A of C(u). Also, a main subject is that of examples and hence an elliptic
curve is discussed after two singular cubics. We finish the first part with a non-existence result of Euclidean
cubic polynomials for our setting.

In the second part of this paper we consider conics naturally provided by the symmetric matrices from
a specific basis of sI(3,R). We point out that this research continues that of [2] where cubics and conics are
geodesically associated to the points of a geometric surface.

2. Cubic curves from the matrix approach of S*

Nigel Hitchin introduces in [1] a 1-parameter family of Einstein metrics on the standard sphere S*. The
parameter is an integer k > 3 and each metric is self-dual, SO(3)-invariant, of positive scalar curvature, and
noncompact but admits a compactification as a metric with conical singularities. In fact, for k = 3, there is no
singularity at all, and the metric is the standard one on the 4-sphere.

The underlying sphere S* is considered as the unit sphere in the 5-dimensional linear space Sym(3) :=
Sym(3) Nsl(3,R) of symmetric and traceless 3 x 3 real matrices B, with SO(3) acting by conjugation. The
invariant inner product of Symg(3) is defined as Trace(B1B;) and hence S* corresponds to the matrices B €
Sym(3) with eigenvalues A1, Ay, A3 € R satisfying:

)

AM+A+A3=0,
AM+AZ+A=1

Open J. Math. Sci. 2026, 10, 11-16; doi:10.30538 / oms2026.0267 https:/ /pisrt.org/psr-press/journals/oms


https://pisrt.org/psr-press/journals/oms/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oms

Open J. Math. Sci. 2026, 10, 11-16 12

The intersection of the plane IT: A1 + A, + A3 = 0 with the sphere S? provided by the second equation (1)
yields the ellipse:
E:(la—=A)"+3(M+22)" =2, @)

¢ = \E ~ 0.81649. 3)

Thei mverse = \f 1.2247 is the eccentricity of the self-complementary hyperbolas, conform [3], while

having the eccentricity:

the intersection of the plane I1 with the general rotational ellipsoid £ : + + /\3 =1,fora,b,c > 0,is the

ellipse:
1 1
E(a,b,c): <a2 > /\2_|_ SMAz + (bz ) )\2 =0,

with the eccentricity:

2 — 2(a,b,c) = 2/(a% — b2)2c* + 4atb?
2a2b2 + c2(a? + b2) + \/ a2 —b2)2ct 1 4a%pt

It results that the eigenvalues A defines a curve on the sphere S2:

1

C:7(p) = (M, A2, A3)(9) := (;(esingo V2cos @), = (esmgo—i— V2 cos @), —esin cp) p€[0,2m). (4)

We point out that in [1, p. 192] the eigenvalues are expressed with rational functions of
3T @ tan% -1
= fon (8) - [
( 4 2 ) tan % +1

but we prefer a trigonometrical approach.
Due to the first identity (1) we introduce now a parametrized cubic curve naturally associated to this
setting:
C(@) 1 y? = Pp(x) = (x — M(9)) (x — A2(9)) (x = A3(@)), ¢ € [0,27), ®)

and then we have immediately the main theoretical result of this note:

Proposition 1. The Weierstrass coefficients p, q of the cubic curve C(¢) : y* = x> + px + q are:

1 V6 1 1
p = constant = —5, q= q(p) = NET) sin(3¢) € [qmin = —?’\—@,qmax = 3el (6)
The discriminant A := 4p> + 27q% of C( ) is:
1, 1
A(p) = —=cos“(3¢) € |—=,0]. 7)
2 2
The discriminant map A has an unique fixed point (A(¢) = ¢), namely ¢y ~ —0.257079.
Proof. We have directly:
— 27 % wn230) - L = Lisin2(30) —
A =27 1gz Sin (3¢) 5= 2(sm (B¢) —1). 8

The value of the fixed point is obtained by using WolframAlpha as solution cos?(3¢) = —2¢. It is easy
to prove the uniqueness of this fixed point: let us consider the function f : R — R, f(x) := 2x — cos?(3x).

This function is smooth and it has the derivative f'(x) = 2 — 3sin(6x). For x € {—%,O] it results 6x €

[—3,0] C (—,0] and hence sin(6x) < 0 which means that the restriction of f to the interval { 2,0} is strictly
increasing. [



Open J. Math. Sci. 2026, 10, 11-16 13

Remark 1. i) For the sake of completeness we provide also the expressions in :

(1—£2)(1— 142 + )
3v6(1+12)3 7

212(12 — 3)2(3t2 — 1)?

q(t) = (1+2)6 ’

Alt) = —

€ [0, +oo]. )

ii) We have the periodicity: A(¢ + 1) = A(¢) which means that the function A(-) corresponds to a

function on the projective space RP!. Indeed, with (COS Q= sing = L) we have the function:

u
ViuZ+o?’ u2+v?

uz(u2 - 32)2)2

. 1 —
A:RP' - R, [u,0] %A([u,v])——m (10)
iii) Due to the expression of the coefficient 4 we note the trigonometrical identity:
. . . T\ . 27
sin(3¢) = 4sin ¢ sin (q) + §) sin <(p + 3> , (11)

which was used in [4] in order to prove the famous Morley’s theorem (1899).

iv) A very useful remark of the anonymous referee is that the 1-parameter cubic curve C(¢) is based
only on the spectral data (A1, A3, A3). Hence, it remains a (very interesting) open problem if the dependence
of 3¢ captures some geometrical or representation-theoretic information(s) about the Hitchin’s matrix-model
viewpoint of the initial round sphere S*.

Our main interest is in studying remarkable examples. Firstly, we remark that are six singular cases
provided by the vanishing of A from (7); in fact, for the singular angles 3¢ € { (ZkH) ;k=0,. 5} we derive

only two singular curves while a periodicity of 3 in the values of the parameter k ylelds antipodal points on S2.
Example 1. For k = 1 we have ¢ = Z (or t = 0), the cubiccurve C () =Cy : > = x° — 5 + 3\[ is singular
and corresponds to the point 7 (§) = (%, 1- ) €S2

Example 2. Similarly, for k = 4 we have ¢ = 37 (or t = +o), the cubic curve C (3f) = Cr: 2 =2 — § — 3\7

is singular and corresponds to the point 7 (3£) = —7 (%).
Example 3. For k = 0 we have ¢ = ¥ (ort = %) and the cubic curve C (£) = C, corresponds to the point

7(§) =1 (272\/6/ e+2\/61_e) €%

Example 4. S1m11arly, for k = 3 we have ¢ = 7” (or t = /3) and the cubic curve C (%) = (; corresponds to
the point 7 (%Z) = —7 (Z).

Example 5. For k = 2 we have ¢ = %” and the cubic curve C; corresponds to the point 7 (57”) =
e(1,-4,-4) es

Example 6. For k = 5 we have ¢ = 1% and the cubic curve C, corresponds to the point 7 (116”) = —7(3Z).
Example 7. For ¢ = 0 (or t = 1) we have the elliptic curve C(0) : y*> = x> — % with A = —% and correspond

to the equatorial point 7(0) = (—%, %,O) € S%. This elliptic curve appears in the LMFDB Database as
https:/ /www.lmfdb.org/EllipticCurve/Q/256/c/1 with the equation:

C(0):Y>=X3-8X, A=-2"= 2048, X =2%, Y=2%, (12)

and is a CM-elliptic curve. We remark that Susumo Okubo showed in [5] that the space of 3 x 3 traceless
complex matrices can be endowed with a multiplication, derived from the usual matrix multiplication, in such
a way that it becomes a non-unital composition algebra.
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In [6] we introduce the notion of Euclidean polynomial as being a monic polynomial for which the sum of
squares of its roots is equal with the sum of squares of its proper coefficients; for the monic polynomial P, of
(5) this means that p? + q> = A7 + A3 + A3 = 1 which means that 4> = %. We obtain a non-existence result as
follows:

Proposition 2. There are no Euclidean polynomials Py, of (5)-type.

Proof. From %> = % it results g+ = :I:? but g1 > quax. The value g_ is greater than g,,;, but the cubic
equation provided by the expression of g from (6):

4, 2 3
X<3X —1)_eq__ e (13)

has only one real solution X ~ —1.3796 < —1 and hence it can notbe asin¢. O

3. The geometry of the spherical curve C and two conics from Sym(3)

In this section we firstly study the Frenet geometry of curve C considered as curve in the Euclidean space
E?:= (RS/ (") canonic):

C:7(o) =e<—cos ((p—i—%),cos ((p—%),—sin(p) €S2 (14)

Its tangent vector field is:

—7(0) = e (si LA Ty 2
T(u)—r(q))—e(sm(q)—l- 6)’ s1n(q) 6)' cosq)) € S5°. (15)
Its binormal vector field is constant since 7 belongs to the plane IT: A1 + Ay + A3 = 0:

¢

B(u) =7 () x 7' (¢) = ﬁ(l,l,l) e s2. (16)

Then its torsion is zero while the curvature function is constant:

_IP) < (@) _
M=o " 7

which confirm that in the given plane IT this curve is the unit circle centered in O(0,0,0). Its normal vector
field is: - -
_ _ ™y TN — 2
N(¢) =B(¢) xT(¢) =¢ (cos ((p—i— c ) , — COS ((p 6> ,sin (p) 7(g) € S°. (18)

We have studied recently other classes of spherical curves in both 52 and S3in [7], [8] and [9].

Example 8. We point out that an interesting problem is when the matrix Frenet(¢) = (T(¢), N(¢), B(¢)) €
SO(3) is symmetric. A straightforward computation yields the characterization Frenet(¢) € Sym(3) if and

only if ¢ = —7 when:
172\/5 1+2\/§ -1
T 1 7T
Y 2| 1+ 1-3 SINA N
Frenet( 4) =7 +2\1f 2\{ _1 , TmcePrenet( 4) = 1. (19)

c(—f);yzzx3—f+L A(—E):—l. (20)
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Secondly, we associate two conics to our linear space Sym(3). To do this, we recall after [10, p. 13] that

the semisimple Lie algebra s!(3,R) is spanned by the matrices:

000 (1 00 L1000
EE=|100 [, E=j3 -1 0|, E3=-E, =zl o1 0 | (21)
000 0 0 0 00 —2
0 0 1 000
Pp=|000], B=|001], Ri=-P, Ry=F, (22)
000 000

where the subscript ¢t means the transposition map. The motivation for this choice of basis consists in the

presence of E; and D as elements in Symip(3) .

With the approach of [3] a matrix I € Sym(3) defines naturally a conic in the Euclidean plane E? of

coordinates (x,y) through the equation:

X

(x y 1)-r- y | =o. 23)
1

In conclusion, there are two associated conics:

i) Ep is the degenerate hyperbola consisting in the pair of bisectrices By : y = x, By : y = —x,
ii) D is the circle centered in the origin O(0,0) € R and having the radius R = /2.

The symmetric matrix (19) yields a hyperbola with the eccentricity:

1
e=,/1+ — ~ 1.2559. 24
" TV )
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