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Abstract: We introduce r-Fock space .%, which generalizes some previously known Hilbert spaces, and study
r

the r-derivative operator % and the multiplication operator by z". A general uncertainty inequality of

Heisenberg-type is obtained. We also consider the extremal functions for the r-difference operator D, on

the space and obtain approximate inversion formulas.
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1. Introduction

n [1], Bargmann obtained the realization of the classical Fock space % called also Segal-Bargmann space
[2] as a space of entire functions on C, equipped with the norm

Il = [ X [spe e

[ee]
For f € & with f(z) = ¥ a,z", we have
n=0

o 1/2
1fllz = [Z n!anlzl -
n=0

The ordinary Fock space also has a reproducing kernel K, (w) = e”?. The space .# was applied in many

works [3-8]. Precisely, the derivative operator % and the multiplication operator by z are closed, densely

defined operators on .# such that % is the adjoint operator of z, and Dom ( %) = Dom(z.), see [1, page 210].

These operators also satisfy the commutation relation

d
{dz'z] =1

where [ is the identity. From this relation and by an application of the general result of functional analysis
[17, Proposition 2.1], Chen and Zhu [4] proved the following uncertainty principle for the Fock space .%. Let
f € .%,and leta,b € C, then

(&) (G = 0) o], 2 0
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The authors Chen and Zhu [4] also proved that this inequality is optimal. The equality holds if and only
if thereexistc € R,c # —1and C € C:

_ 1—c , a—ibc
f(z)-Cexp( 2(1+C)z + 1+Cz>, zeC.

Recently in [5,6] the author of the paper studied the properties of the difference operator Df(z) :=
1 o . .
z(f(z) — f(0)) on the Fock space .7, by examining the theory of extremal functions in the context of a
Tikhonov-regularized extremal problem.

Let r be a positive integer such that r > 2. In this work we search a realisation of r-Fock space denoted

r
Fr, for which we study the r-derivative operator %, the multiplication operator by z" and the r-difference

operator D, f(z) := 1 (f(z) — £(0)).

The r-Fock space .%; is the Hilbert space of entire functions f on C, r-even, such that

Ifllz, = [711/@ f(z)|2e_|zzdz} 1/2 .

For f € Z, with f(z) = Y a,z™, we have

n=0

o 1/2
1fll7, = Z rn) anlzl :

The space .%; is a reproducing kernel Hilbert space (RKHS) that is .%#, C .# with

Iflz < lIfllz-

The r-derivative operator éi and the multiplication operator by z" are closed, densely defined operators

on %, such that % is the adjoint operator of z’. These operators also satisfy the commutation relation
d
—,z'| =rlI+E,
{dz’ h

where E, is the r-Euler operator. The r-Euler operator E; yields new structural information, and its positivity
((E/f, f)z, =20,V f € F) proved the following uncertainty inequality for f € Dom(E,):

|(-+a =), |- -& )1,

However, I do not have an answer to the question of whether this inequality is optimal or not.
Building on the ideas of Saitoh et al. [9-11], we find the minimizer (denoted by Fy ;, (1)) for the extremal
problem:

> r!||f|\2%, a,b e C.

7

. 2 — h|)?
g {AIFI5 +1Df i}

where i € .7, and A > 0. We prove that the extremal function Fy , () (which exists from Saitoh-type extremal
formulations) is given by

Fyp,(h)(z) = (b, ¥z) 7,

where
)rnJrr m

; rn—l—r N+ (rm)V weC.

Moreover, we establish approximate inversion formulas for the r-difference operator D, on the r-Fock
space %. A pointwise approximate inversion formulas for the operator D, are also discussed.
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The paper is organized as follows. In §2 we introduce the r-Fock space .%;; and we establish a generalized
uncertainty inequality of Heisenberg-type for the space .%,. In §3 we examine the extremal functions for the
r-difference operator D,; and we give approximate inversion formulas for the operator D, on the r-Fock space
Fr.

2. Generalized uncertainty principle

Heisenberg [12] showed that we can not determine simultaneously the position and the momentum of a
particle with an arbitrary precision. This principle has been formulated by the following inequality

" 2 g

where h represents Planck’s constant and 0y, 0, denote the standard deviations of the position and the
momentum of the particle respectively. There exist many similar uncertainty principles, in quantum physics
and in mathematics [4,13-15]. In this section we are going to prove a generalized uncertainty principle of
Heisenberg-type for the r-Fock space .%;.

We begin by recalling some results about trigonometric functions of r-order [16].

Let wy, k =1,...,r, the r-th roots of unity

wy = eZiﬂ(k—l)/r‘
Let z € C. A function f(z) is called r-even if

flwgz) = f(z), k=1,...,r

For example, the r-hyperbolic cosine [16] given by

cosh,( i

)

is r-even, entire function on C and satisfies | cosh,(z)| < el?.
The r-Fock space .%; is the set of all entire functions f on C, r-even, such that

1 e
1%, = ;/C I£(2)[2e 7 dz < oo.

It is a Hilbert space when equipped with the inner product

/f e Pdxdy, f,ge 7
For f,¢ € %, with f(z) = E a,z"™ and g(z) = ozo) b,z'", we have
n=0 n=0
£, = Y (rn)!|an]?,
n=0

and

(9) 5 = Y (rn)lanby.

n=0

} forms a Hilbert’s basis for the space .%;; and each f € .%; can be written as
neN

- y
r)"rl
)= £
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and )
2 [(f,2") 7]
I, = 3 2wl
Al r n;) (rn)!
The function K, , z € C, given by
K. (w) := cosh,(wz), weC,

is a reproducing kernel for the r-Fock space .%,, that is for (1) we have
() Krz € F,z€C,

(i) (f Krz) .z, = f(2), f € Fr.
So that, for f € .#, and z € C, we have

2
F@)] < 1Kzl 2,1 £l 7, < €272 £ .-

We conclude also that the family {K; .,z € C} is dense in the space .%,.
Let f € %, with f(z) = ¥ a,z™. From [1], we have

n=0

e}

27 = Z n!|an|2.
n=0

I1f

Using the inequality n! < (rn)!, we obtain

Ifllz <

o 1/2
Z%)(rn)!lanlzl = Ifll7-

Therefore the inclusion .%, C .# is continuous embedding.
In the following we consider the r-derivative operator % and the multiplication operator by z". We
denote by

Dom (;;) ={feF :fY e}, Dom(z):={feF:2fecF}

their domains. Each domain contains the elements of the basis { } . Thus, Dom (Cid—;) and Dom(z".)
neN

are dense in the space .%;.

Lemma 1. The r-derivative operator % and the multiplication operator by z" are closed, densely defined operators on

Fr and satisfy the commutation rule

d?‘
[dz"zr] =71+ E, ()
where E, is the operator given by
BfC) =T i)
z2) =) — 52 z).
' j=1 (r_])!(]!)Z
Proof. Clearly the operators (?—er and z" are densely defined (the set of { \/Z(V:T)’ }neN is contained in each of
d"

their domains). As in the same of [1, page 210] we prove that the operators dr and z" are closed. Let now

f € %, wehave
7| = I - )

But
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Thus &
3 @ f(2) =1f(z) + Ef(2) +2°f ") (2).

Therefore we obtain .
7| @) = @) + B,

The lemma is proved. O

We define the Hilbert space %(1) as the space of all function f € .%, such that

\|f||%<1> = [l2' fllz < oo.

Then Dom(z".) = %Y and if f e 2%\ with f(z) = ij a,z"™ we have

n=0

We define also the Hilbert space %(2) as the space of all function f € .%; such that

1A%, = PIF QP + £V, < o

Then Dom (CCIV ) = %% and if f € % with f(z) = OZO‘, a,z"" we have
n=0

I£12, 0 = rtlaol? + 2 | W2
‘r

It is easy to see the inequality

1l @ < 1fll 0

Therefore, we have the continuous inclusion %(1) C %(2).

Lemma 2. We have (z".)* = g—; and (%)* =z

Proof. Let g(z) = § byz™. We put (z".)*g(z) = E cnz™. Set f(z) = 2", then (f,(2".)"¢) 7 = (Z'f,8) 7,
n=0

implies that ¢, = %bnﬂ, ie.

@ s = 3 o e = g0,

Hence (z".)* C g—; Conversely, let f € 2" and g€ % with flz) = E 1,2 and g(z) = % buz™,
n=0

n=0
we have .
= Z anilzﬁ’l, (3)
n=1
2 (rn+r)!
sz =Y ((m),)bnﬂzm, 4)
n=0 :
and . -
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This proves that éi’ (z".)*, and thus (z".)* =
lemma is proved. O

zZ

rr. The relation (3—;) ' = 7’ follows immediately. The

We define the Hilbert space Y}(U as the space of all function f € .%, such that

A1l g = Iz )] 2, < oo

Then Dom ((?r (zr.)) = jﬂr(l) and if f € 5”,(1) with f(z) = Z a,z™, from (3) and (4) we have

(er)(r)(z) — i Manzm‘

o (rn)!

Thus (« ) )
> ((rn+r
||f”i,r<1) = ET| n|2

We define also the Hilbert space 5”,(2) as the space of all function f € .%, such that

\Ifll;;z) = (MPIFO) + 11273, < co.

Then Dom ( ccliz ) 7% and if f e 72 with f(z) = OXO‘, a,z"™, we have
n=0

Thus
Hf||§,< (r!)?lao|* + E 2Ian\2 < 0.

It is easy to see the inequalities
1Al < FH g [1fllg 0 fllfll

Therefore, we have the continuous inclusions %(1) - 54(2) and 5”,(1) - %(1).
Lemma 3. We have Dom ([%,zrb = %(1).

Lemma 4. (See [17, Proposition 2.1]). Let A and B be self-adjoint operators on a Hilbert space ¢, then
(A =a)fllal(B=0)flr =3 \<[A BIf. f)rl,
forall f € Dom([A,B])and all a,b € C.

Theorem 1. Let f € 5”,(1). Foralla,b € C, we have

I+ afls @~ £ - 0)fls, = P, )

Proof. Let f € 71 Now, let A and B be the operators defined for f ks by

r

Af@) = (74 55 ) f@, B =i (7 - 52) @)

By (2), Lemmas 2 and 3, the operators A and B possess the following properties.
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(i) A* = Aand B* = B,

. . d’ .

(ii) [A, B] = —2i [zr, dz’} =2i(r'I+E,),
(iii) Dom([A, B]) = .7V

On the other hand, let f(z) = Z a,z", then

n=0

= i an(r)az™,
n=0
with )
- )‘(f')
; )2(rn —j)! =0

Thus, the inequality (5) follows from Lemma 4 and the fact that

(E+f, )z szn (r)|an|* > 0.

This completes the proof of the theorem. [J
Remark 1. I do not have an answer to the question of whether this inequality is optimal or not.

3. Approximate inversion formulas

Tikhonov regularization in statistics is the method of ridge regression. In general, this method related
to the Levenberg-Marquardt algorithm for solving nonlinear least squares problems. Tikhonov regularization
has been invented independently in many different contexts. It became widely known from its application to
integral equations [18,19].

Let 27 be a Hilbert space, and let T : %, — J# be a bounded linear operator from .%; into . Let A > 0.
We denote by (.,.), #, the inner product defined on the space .%; by

fr8hnz =M 8z, +(Tf,T8)r-
The two norms ||| # and ||.||, &, are equivalent. In particular, we have

elz*/2
f(2)] < 7

Then the space .%;, equipped with the norm ||.||, # has a reproducing kernel K, , .. Therefore, we have

fe%,zeC.

r/

the functional equation
(/\I + T*T)K/\,r,z = Kr,z, S C, (6)

where [ is the unit operator and T* : 7 — .7, is the adjoint of T.
For any h € 7 and for any A > 0, we define the extremal function Fy 1.(h) by

Fyr(h)(z) = (h, TKypz) v, 2z €C.

Then by (6) we deduce that
F;\F,T(h>( ) :<T h, K/\rz> Fr
=(T*h, (AL +T*T) " 'K;..) #,
=((M+T*T)'T*h, K, 2) 7,
Hence

Fip(h)(z) = (M +T*T) 'T*h(z), z€C. @)
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The extremal function F} (k) is the unique solution [9, Theorem 2.5, Section 2] of the Tikhonov
regularization problem

. 2 —_ 12
g A, 1)

Let D, be the r-difference operator defined for f € .%; by
1
Dirf(z) = 5 (f(z) = £(0)).

The r-difference operator D, is also studied in [20-23]. For f € .%, with f(z) = ) a,z"" we have

n=0

z) = Z A1z @®)
n=0

We emphasize the non-invertibility due to the constants: D;f = 0 if and only if f is constant, and the
inversion is meaningful only on {/ : 1(0) = 0} or modulo the constants.

Lemma 5. The operator D, maps continuously from %, into %, and
ID:fl7, < =Ifll7, and D/ = —
Tf Fr = \/17' f F an ril = \/17'

[e0]
Proof. Let f € %, with f(z) = ¥ a,z"™. We have
n=0

d d Hay|?
D 25‘ — | 2 — (rn) ‘ n .
” i’f”,/, ng:g(”ﬂ ‘an+1| ;1;1 (rn)(rn—l)...(rn—r+1)
Since
1 1
ilgl) (rm)(rm—1)...(rn—r+1)]  r’
Then , .
g < — T = —.
IDrfll.z, < \/ﬁHfH;@ and | Dyl Jr

The lemma is proved. O

Building on the ideas of Saitoh [9-11] we examine the extremal function associated with the r-difference
operator D;.

Theorem 2. (i) For f € ., with f(z) = Y. a,z™, we have

n=0
D*f(z)_iwa 2 DD, f(2) _iM“m
r - = (1’7’1). n—1 T - = 1’7’1) n .

(ii) For any h € F, and for any A > 0, the problem
in {AIf15, + 1D.f — Hl, ©)

has a unique extremal function given by
Fyp,(h)(2) = (1, ¥2) 7,

where
)rn-i—r

n;o)‘ rn+r +(rn)!'

w e C.
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Proof. (i) If f,g € % with f(z) = § a,z™ and g(z) = Ozo: b,z™, then
n=0

n=0
[ee] - [ee] .
(Drf,8) 7, = ) (rn)lay by = ) (rn—71)lanb,_— = (f, D) 7,
n=0 n=1
where .
Z m—r) I
n=1
And therefore -
A
DDrf :2 m 7’) 1,2
n=1

(il) We put h(z) = Eo hpz'™ and Fy p, (h)(z) = oZolofnz’”. From (7) we have (Al + Dy D,)Fy p, (h)(z) =
n= n=
D;h(z). By (i) we deduce that

(rn—r)th, 1

fo:O/ fn_)\(rn)!—l—(rn—r)!’ nZl
Thus
Fip (@) = ¥ i __zmnir — (1, ) (10)
A,Dy N n=0 /\(rn+r)'+ (rn)! - r Yz2) F0s
where i .
Y. (w) = n;) A @ cC.

The theorem is proved. 0O

In the next part of this section we establish the estimate properties of the extremal function Fy ,, (h)(z),
and we deduce approximate inversion formulas for the r-difference operator D,. These formulas are
the analogous of Calderén’s reproducing formulas for the Fourier type transforms [24,25]. A pointwise
approximate inversion formulas for the operator D, are also discussed.

The extremal function F} , (1) given by (10) satisfies the following properties.

Lemma 6. If A > 0and h € %, then

/2
@) [Fx p, (1) (2)] < \/7 182,

(ii) |DyFy p, (h) (2)] < \/m”hnﬂ-‘w
(iid) [[EX p, (M)[| 7, < rllhllﬁ

Proof. Let A > Oand h € %, with h(z) = OZO; hyz"™. From (10) we have

n=0
[Fx p, (1) (2)] < [¥zll2 (]| 7,-

Using the fact that (x +1)? > 4xy we obtain

2

oo

‘Z|r(n+1)

||‘1I2H2ff7, = Z(rn)! [/\(rn + )+ (rn)!

Z|2r n+1)

1 o0
= >  en L S 0 oy coshi(2P).

n=0

This gives (i).
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On the other hand, from (8) and (10) we have

ad (rn)!h
D,F; " m— (h,®,) 5 11
r A,Dr rg)A rn+r +(rn)!z < ’ z>/r/ ( )
where
i wz)rn
EA(rn )+ ()
Then
|DyFx p, () (2)] < || Dz 7, 1] 7,
But 2 )
o0 m 1 &% ‘Z| m
@, % = ! 2 — h, (|z]?).
1:11%, n;)(r”) Al +7)!+ (rn)! /\ng;o (rn+r)! = = Gan 08 ([2%)
This gives (ii).

Finally, from (10) we have

I, ()1, = X ()t | g Dt
Then we obtain -
I, 001%, < g5 (=)o al” = il
which gives (iii) and completes the proof of the lemma. O

We establish approximate inversion formulas for the operator D;.

Theorem 3. If A > 0and h € F,, then
() lim || D,F; p, () k5, =0,
A—=0T !

(i) lim ||Fy p (Drh) — hol|.z, = 0, where ho(z) = h(z) — h(0).
A0t ’

Proof. Let A > 0and h € %, with h(z) = ¥ h,z™. From (11) we have
n=0

2 =A(rn+71)hy
D,F h)( ", 12
A0, (1) n; rn+r'—|—(rn)z (12)
Therefore )
= A(rn 4 1) hy|
D,Fip (h) —h|% = !
IDrELp, ()~ 0l = eyt |5t
Again, by dominated convergence theorem and the fact that
A(rn+ 7)) 12 2
! < A
(rn) Afn+r)t+ (rm)t] — (rm)tlhn "
we deduce (i).
Finally, from (8) and (10) we have
. ad —A(rn)th
F; p,(Dyh)(z) — =Y ) . (13)

) Y
L A(m) + (rn—)!

So, one has

) © T A ] P
IE3 p, (Dyh) — hol|%, =} (rn)! AGrn) + (rm—r)]

n=1
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Using the dominated convergence theorem and the fact that

A(rn)!|hy| 2 \
)l + (rn—r)! < (7”)~|hn|2,

(rn)! A

we deduce (ii). O

We deduce also pointwise approximate inversion formulas for the r-difference operator D,.

Theorem 4. If A > 0and h € %, then
(i) lim D,Fy p (h)(z) = h(z),
A—0t ’
(i) lim Fy p (Dyh)(z) = ho(z) = h(z) — h(0).
A—0+ 77

Proof. Let h € %, with h(z) = Y h,z™. From (12) and (13), by using the dominated convergence theorem
n=0
and the fact that
A(rn 1) hy|

Alrn+ 1)+ (rn)!

A(rn)!hy|
A(rn)! + (rn —1)!

2™, [2[™ < [Ra |21,

we obtain (i) and (ii)). O
Remark 2. Leth € .%,, in the limit case A — 07, the problem (9) reduces to the Tikhonov problem
- _ 2
fler};y{ IDrf = hliz, }
and it’s extremal function is defined as

F&Dr (h)(z) = %im F)T,D, (h)(z), zeC.

—0

And from Theorem 4(i), for h € .%,, we obtain
D/Fip, (h)(z) = lim D/{p, (h)(2) = h(z)
! A—0+ !
On the other hand, from Theorem 4(ii), for h € .%,, we obtain
FgDr(Drh)(z) = lim Fy D"(Drh)(z) = hy(z) = h(z) — h(0).
! A—=0t+ 7

We emphasize the pointwise inversion formula is meaningful only on {h : h(0) = 0} or modulo the
constants.
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