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1. Introduction

I n [1], Bargmann obtained the realization of the classical Fock space F called also Segal-Bargmann space
[2] as a space of entire functions on C, equipped with the norm

∥ f ∥F :=
[

1
π

∫
C
| f (z)|2e−|z|2dz

]1/2
.

For f ∈ F with f (z) =
∞
∑

n=0
anzn, we have

∥ f ∥F =

[
∞

∑
n=0

n!|an|2
]1/2

.

The ordinary Fock space also has a reproducing kernel Kz(w) = ewz. The space F was applied in many
works [3–8]. Precisely, the derivative operator d

dz
and the multiplication operator by z are closed, densely

defined operators on F such that d
dz

is the adjoint operator of z, and Dom
(

d
dz

)
= Dom(z.), see [1, page 210].

These operators also satisfy the commutation relation[
d
dz

, z
]
= I,

where I is the identity. From this relation and by an application of the general result of functional analysis
[17, Proposition 2.1], Chen and Zhu [4] proved the following uncertainty principle for the Fock space F . Let
f ∈ F , and let a, b ∈ C, then ∥∥∥∥( d

dz
+ z − a

)
f
∥∥∥∥

F

∥∥∥∥( d
dz

− z − b
)

f
∥∥∥∥

F
≥ ∥ f ∥2

F .
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The authors Chen and Zhu [4] also proved that this inequality is optimal. The equality holds if and only
if there exist c ∈ R, c ̸= −1 and C ∈ C:

f (z) = C exp
(
− 1 − c

2(1 + c)
z2 +

a − ibc
1 + c

z
)

, z ∈ C.

Recently in [5,6] the author of the paper studied the properties of the difference operator D f (z) :=
1
z ( f (z) − f (0)) on the Fock space F , by examining the theory of extremal functions in the context of a
Tikhonov-regularized extremal problem.

Let r be a positive integer such that r ≥ 2. In this work we search a realisation of r-Fock space denoted

Fr, for which we study the r-derivative operator dr

dzr , the multiplication operator by zr and the r-difference

operator Dr f (z) := 1
zr ( f (z)− f (0)).

The r-Fock space Fr is the Hilbert space of entire functions f on C, r-even, such that

∥ f ∥Fr :=
[

1
π

∫
C
| f (z)|2e−|z|2dz

]1/2
< ∞.

For f ∈ Fr with f (z) =
∞
∑

n=0
anzrn, we have

∥ f ∥Fr =

[
∞

∑
n=0

(rn)!|an|2
]1/2

.

The space Fr is a reproducing kernel Hilbert space (RKHS) that is Fr ⊂ F with

∥ f ∥F ≤ ∥ f ∥Fr .

The r-derivative operator dr

dzr and the multiplication operator by zr are closed, densely defined operators

on Fr such that dr

dzr is the adjoint operator of zr. These operators also satisfy the commutation relation[
dr

dzr , zr
]
= r!I + Er,

where Er is the r-Euler operator. The r-Euler operator Er yields new structural information, and its positivity
(⟨Er f , f ⟩Fr ≥ 0, ∀ f ∈ Fr) proved the following uncertainty inequality for f ∈ Dom(Er):∥∥∥∥(zr +

dr

dzr − a
)

f
∥∥∥∥

Fr

∥∥∥∥(zr − dr

dzr − b
)

f
∥∥∥∥

Fr

≥ r!∥ f ∥2
Fr

, a, b ∈ C.

However, I do not have an answer to the question of whether this inequality is optimal or not.
Building on the ideas of Saitoh et al. [9–11], we find the minimizer (denoted by F∗

λ,Dr
(h)) for the extremal

problem:

inf
f∈Fr

{
λ∥ f ∥2

Fr
+ ∥Dr f − h∥2

Fr

}
,

where h ∈ Fr and λ > 0. We prove that the extremal function F∗
λ,Dr

(h) (which exists from Saitoh-type extremal
formulations) is given by

F∗
λ,Dr

(h)(z) = ⟨h, Ψz⟩Fr ,

where

Ψz(w) =
∞

∑
n=0

(z)rn+rwrn

λ(rn + r)! + (rn)!
, w ∈ C.

Moreover, we establish approximate inversion formulas for the r-difference operator Dr on the r-Fock
space Fr. A pointwise approximate inversion formulas for the operator Dr are also discussed.
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The paper is organized as follows. In §2 we introduce the r-Fock space Fr; and we establish a generalized
uncertainty inequality of Heisenberg-type for the space Fr. In §3 we examine the extremal functions for the
r-difference operator Dr; and we give approximate inversion formulas for the operator Dr on the r-Fock space
Fr.

2. Generalized uncertainty principle

Heisenberg [12] showed that we can not determine simultaneously the position and the momentum of a
particle with an arbitrary precision. This principle has been formulated by the following inequality

σxσp ≥ h
4π

,

where h represents Planck’s constant and σx, σp denote the standard deviations of the position and the
momentum of the particle respectively. There exist many similar uncertainty principles, in quantum physics
and in mathematics [4,13–15]. In this section we are going to prove a generalized uncertainty principle of
Heisenberg-type for the r-Fock space Fr.

We begin by recalling some results about trigonometric functions of r-order [16].
Let ωk, k = 1, . . . , r, the r-th roots of unity

ωk = e2iπ(k−1)/r.

Let z ∈ C. A function f (z) is called r-even if

f (ωkz) = f (z), k = 1, . . . , r.

For example, the r-hyperbolic cosine [16] given by

coshr(z) =
∞

∑
n=0

zrn

(rn)!
, (1)

is r-even, entire function on C and satisfies | coshr(z)| ≤ e|z|.
The r-Fock space Fr is the set of all entire functions f on C, r-even, such that

∥ f ∥2
Fr

:=
1
π

∫
C
| f (z)|2e−|z|2dz < ∞.

It is a Hilbert space when equipped with the inner product

⟨ f , g⟩Fr :=
1
π

∫
C

f (z)g(z)e−|z|2dxdy, f , g ∈ Fr.

For f , g ∈ Fr with f (z) =
∞
∑

n=0
anzrn and g(z) =

∞
∑

n=0
bnzrn, we have

∥ f ∥2
Fr

=
∞

∑
n=0

(rn)!|an|2,

and

⟨ f , g⟩Fr =
∞

∑
n=0

(rn)!anbn.

The set
{

zrn√
(rn)!

}
n∈N

forms a Hilbert’s basis for the space Fr; and each f ∈ Fr can be written as

f (z) =
∞

∑
n=0

⟨ f , zrn⟩Fr

(rn)!
zrn,
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and

∥ f ∥2
Fr

=
∞

∑
n=0

∣∣⟨ f , zrn⟩Fr

∣∣2
(rn)!

.

The function Kr,z, z ∈ C, given by

Kr,z(w) := coshr(wz), w ∈ C,

is a reproducing kernel for the r-Fock space Fr, that is for (1) we have
(i) Kr,z ∈ Fr, z ∈ C,
(ii) ⟨ f , Kr,z⟩Fr = f (z), f ∈ Fr.

So that, for f ∈ Fr and z ∈ C, we have

| f (z)| ≤ ∥Kr,z∥Fr∥ f ∥Fr ≤ e|z|
2/2∥ f ∥Fr .

We conclude also that the family {Kr,z, z ∈ C} is dense in the space Fr.

Let f ∈ Fr with f (z) =
∞
∑

n=0
anzrn. From [1], we have

∥ f ∥2
F =

∞

∑
n=0

n!|an|2.

Using the inequality n! ≤ (rn)!, we obtain

∥ f ∥F ≤
[

∞

∑
n=0

(rn)!|an|2
]1/2

= ∥ f ∥Fr .

Therefore the inclusion Fr ⊂ F is continuous embedding.

In the following we consider the r-derivative operator dr

dzr and the multiplication operator by zr. We
denote by

Dom
(

dr

dzr

)
:= { f ∈ Fr : f (r) ∈ Fr}, Dom(zr.) := { f ∈ Fr : zr f ∈ Fr},

their domains. Each domain contains the elements of the basis
{

zrn√
(rn)!

}
n∈N

. Thus, Dom
(

dr

dzr

)
and Dom(zr.)

are dense in the space Fr.

Lemma 1. The r-derivative operator dr

dzr and the multiplication operator by zr are closed, densely defined operators on
Fr and satisfy the commutation rule [

dr

dzr , zr
]
= r!I + Er, (2)

where Er is the operator given by

Er f (z) =
r−1

∑
j=1

(r!)2

(r − j)!(j!)2 zj f (j)(z).

Proof. Clearly the operators dr

dzr and zr are densely defined (the set of
{

zrn√
(rn)!

}
n∈N

is contained in each of

their domains). As in the same of [1, page 210] we prove that the operators dr

dzr and zr are closed. Let now
f ∈ Fr, we have [

dr

dzr , zr
]
=

dr

dzr (z
r f (z))− zr dr

dzr ( f (z)).

But
dr

dzr (z
r f (z)) =

r

∑
j=0

r!
j!(r − j)!

(zr)(j) f (r−j)(z) =
r

∑
j=0

(r!)2

(r − j)!(j!)2 zj f (j)(z).
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Thus
dr

dzr (z
r f (z)) = r! f (z) + Er f (z) + zr f (r)(z).

Therefore we obtain [
dr

dzr , zr
]

f (z) = r! f (z) + Er f (z).

The lemma is proved.

We define the Hilbert space U
(1)

r as the space of all function f ∈ Fr such that

∥ f ∥
U

(1)
r

:= ∥zr f ∥Fr < ∞.

Then Dom(zr.) = U
(1)

r and if f ∈ U
(1)

r with f (z) =
∞
∑

n=0
anzrn we have

∥ f ∥2
U

(1)
r

=
∞

∑
n=0

(rn + r)!|an|2.

We define also the Hilbert space U
(2)

r as the space of all function f ∈ Fr such that

∥ f ∥2
U

(2)
r

:= r!| f (0)|2 + ∥ f (r)∥2
Fr

< ∞.

Then Dom
(

dr

dzr

)
= U

(2)
r and if f ∈ U

(2)
r with f (z) =

∞
∑

n=0
anzrn we have

∥ f ∥2
U

(2)
r

= r!|a0|2 +
∞

∑
n=1

((rn)!)2

(rn − r)!
|an|2.

It is easy to see the inequality
∥ f ∥

U
(2)

r
≤ ∥ f ∥

U
(1)

r
.

Therefore, we have the continuous inclusion U
(1)

r ⊂ U
(2)

r .

Lemma 2. We have (zr.)∗ = dr

dzr and
(

dr

dzr

)∗
= zr.

Proof. Let g(z) =
∞
∑

n=0
bnzrn. We put (zr.)∗g(z) =

∞
∑

n=0
cnzrn. Set f (z) = zrn, then ⟨ f , (zr.)∗g⟩Fr = ⟨zr f , g⟩Fr

implies that cn = (rn+r)!
(rn)! bn+1, i.e.

(zr.)∗g(z) =
∞

∑
n=0

(rn + r)!
(rn)!

bn+1zrn = g(r)(z).

Hence (zr.)∗ ⊆ dr

dzr . Conversely, let f ∈ U
(1)

r and g ∈ U
(2)

r with f (z) =
∞
∑

n=0
anzrn and g(z) =

∞
∑

n=0
bnzrn,

we have

zr f (z) =
∞

∑
n=1

an−1zrn, (3)

g(r)(z) =
∞

∑
n=0

(rn + r)!
(rn)!

bn+1zrn, (4)

and

⟨zr f , g⟩Fr =
∞

∑
n=1

(rn)!an−1bn =
∞

∑
n=0

(rn + r)!anbn+1 = ⟨ f , g(r)⟩Fr .
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This proves that dr

dzr ⊆ (zr.)∗, and thus (zr.)∗ = dr

dzr . The relation
(

dr

dzr

)∗
= zr follows immediately. The

lemma is proved.

We define the Hilbert space S
(1)

r as the space of all function f ∈ Fr such that

∥ f ∥
S

(1)
r

:= ∥(zr f )(r)∥Fr < ∞.

Then Dom
(

dr

dzr (z
r.)

)
= S

(1)
r and if f ∈ S

(1)
r with f (z) =

∞
∑

n=0
anzrn, from (3) and (4) we have

(zr f )(r)(z) =
∞

∑
n=0

(rn + r)!
(rn)!

anzrn.

Thus

∥ f ∥2
S

(1)
r

=
∞

∑
n=0

((rn + r)!)2

(rn)!
|an|2.

We define also the Hilbert space S
(2)

r as the space of all function f ∈ Fr such that

∥ f ∥2
S

(2)
r

:= (r!)2| f (0)|2 + ∥zr f (r)∥2
Fr

< ∞.

Then Dom
(

zr dr

dzr

)
= S

(2)
r and if f ∈ S

(2)
r with f (z) =

∞
∑

n=0
anzrn, we have

zr f (r)(z) =
∞

∑
n=1

(rn)!
(rn − r)!

anzrn.

Thus

∥ f ∥2
S

(2)
r

:= (r!)2|a0|2 +
∞

∑
n=1

((rn)!)3

((rn − r)!)2 |an|2 < ∞.

It is easy to see the inequalities

∥ f ∥
S

(2)
r

≤ ∥ f ∥
S

(1)
r

, ∥ f ∥
U

(1)
r

≤ 1√
r!
∥ f ∥

S
(1)

r
.

Therefore, we have the continuous inclusions S
(1)

r ⊂ S
(2)

r and S
(1)

r ⊂ U
(1)

r .

Lemma 3. We have Dom
([

dr

dzr , zr
])

= S
(1)

r .

Lemma 4. (See [17, Proposition 2.1]). Let A and B be self-adjoint operators on a Hilbert space H , then

∥(A − a) f ∥H ∥(B − b) f ∥H ≥ 1
2
|⟨[A, B] f , f ⟩H | ,

for all f ∈ Dom([A, B]) and all a, b ∈ C.

Theorem 1. Let f ∈ S
(1)

r . For all a, b ∈ C, we have

∥(zr +
dr

dzr − a) f ∥Fr∥(z
r − dr

dzr − b) f ∥Fr ≥ r!∥ f ∥2
Fr

. (5)

Proof. Let f ∈ S
(1)

r . Now, let A and B be the operators defined for f ∈ S
(1)

r by

A f (z) :=
(

zr +
dr

dzr

)
f (z), B f (z) := i

(
zr − dr

dzr

)
f (z).

By (2), Lemmas 2 and 3, the operators A and B possess the following properties.
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(i) A∗ = A and B∗ = B,

(ii) [A, B] = −2i
[

zr,
dr

dzr

]
= 2i(r!I + Er),

(iii) Dom([A, B]) = S
(1)

r .

On the other hand, let f (z) =
∞
∑

n=0
anzrn, then

Er f (z) =
∞

∑
n=0

αn(r)anzrn,

with

αn(r) =
r−1

∑
j=1

(rn)!(r!)2

(r − j)!(j!)2(rn − j)!
≥ 0.

Thus, the inequality (5) follows from Lemma 4 and the fact that

⟨Er f , f ⟩Fr =
∞

∑
n=0

αn(r)|an|2 ≥ 0.

This completes the proof of the theorem.

Remark 1. I do not have an answer to the question of whether this inequality is optimal or not.

3. Approximate inversion formulas

Tikhonov regularization in statistics is the method of ridge regression. In general, this method related
to the Levenberg-Marquardt algorithm for solving nonlinear least squares problems. Tikhonov regularization
has been invented independently in many different contexts. It became widely known from its application to
integral equations [18,19].

Let H be a Hilbert space, and let T : Fr → H be a bounded linear operator from Fr into H . Let λ > 0.
We denote by ⟨., .⟩λ,Fr the inner product defined on the space Fr by

⟨ f , g⟩λ,Fr := λ⟨ f , g⟩Fr + ⟨T f , Tg⟩H .

The two norms ∥.∥Fr and ∥.∥λ,Fr are equivalent. In particular, we have

| f (z)| ≤ e|z|
2/2

√
λ

∥ f ∥λ,Fr , f ∈ Fr, z ∈ C.

Then the space Fr, equipped with the norm ∥.∥λ,Fr has a reproducing kernel Kλ,r,z. Therefore, we have
the functional equation

(λI + T∗T)Kλ,r,z = Kr,z, z ∈ C, (6)

where I is the unit operator and T∗ : H −→ Fr is the adjoint of T.
For any h ∈ H and for any λ > 0, we define the extremal function F∗

λ,T(h) by

F∗
λ,T(h)(z) = ⟨h, TKλ,r,z⟩H , z ∈ C.

Then by (6) we deduce that

F∗
λ,T(h)(z) =⟨T∗h, Kλ,r,z⟩Fr

=⟨T∗h, (λI + T∗T)−1Kr,z⟩Fr

=⟨(λI + T∗T)−1T∗h, Kr,z⟩Fr .

Hence
F∗

λ,T(h)(z) = (λI + T∗T)−1T∗h(z), z ∈ C. (7)
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The extremal function F∗
λ,T(h) is the unique solution [9, Theorem 2.5, Section 2] of the Tikhonov

regularization problem

inf
f∈Fr

{
λ∥ f ∥2

Fr
+ ∥T f − h∥2

H

}
.

Let Dr be the r-difference operator defined for f ∈ Fr by

Dr f (z) :=
1
zr ( f (z)− f (0)).

The r-difference operator Dr is also studied in [20–23]. For f ∈ Fr with f (z) =
∞
∑

n=0
anzrn we have

Dr f (z) :=
∞

∑
n=0

an+1zrn. (8)

We emphasize the non-invertibility due to the constants: Dr f = 0 if and only if f is constant, and the
inversion is meaningful only on {h : h(0) = 0} or modulo the constants.

Lemma 5. The operator Dr maps continuously from Fr into Fr, and

∥Dr f ∥Fr ≤
1√
r!
∥ f ∥Fr and ∥Dr∥ =

1√
r!

.

Proof. Let f ∈ Fr with f (z) =
∞
∑

n=0
anzrn. We have

∥Dr f ∥2
Fr

=
∞

∑
n=0

(rn)!|an+1|2 =
∞

∑
n=1

(rn)!|an|2
(rn)(rn − 1) . . . (rn − r + 1)

.

Since

sup
n≥1

[
1

(rn)(rn − 1) . . . (rn − r + 1)

]
=

1
r!

.

Then
∥Dr f ∥Fr ≤

1√
r!
∥ f ∥Fr and ∥Dr∥ =

1√
r!

.

The lemma is proved.

Building on the ideas of Saitoh [9–11] we examine the extremal function associated with the r-difference
operator Dr.

Theorem 2. (i) For f ∈ Fr with f (z) =
∞
∑

n=0
anzrn, we have

D∗
r f (z) =

∞

∑
n=1

(rn − r)!
(rn)!

an−1zrn, D∗
r Dr f (z) =

∞

∑
n=1

(rn − r)!
(rn)!

anzrn.

(ii) For any h ∈ Fr and for any λ > 0, the problem

inf
f∈Fr

{
λ∥ f ∥2

Fr
+ ∥Dr f − h∥2

Fr

}
, (9)

has a unique extremal function given by
F∗

λ,Dr
(h)(z) = ⟨h, Ψz⟩Fr ,

where

Ψz(w) =
∞

∑
n=0

(z)rn+rwrn

λ(rn + r)! + (rn)!
, w ∈ C.
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Proof. (i) If f , g ∈ Fr with f (z) =
∞
∑

n=0
anzrn and g(z) =

∞
∑

n=0
bnzrn, then

⟨Dr f , g⟩Fr =
∞

∑
n=0

(rn)!an+1bn =
∞

∑
n=1

(rn − r)!anbn−1 = ⟨ f , D∗
r g⟩Fr ,

where

D∗
r g(z) =

∞

∑
n=1

(rn − r)!
(rn)!

bn−1zrn.

And therefore

D∗
r Dr f (z) =

∞

∑
n=1

(rn − r)!
(rn)!

anzrn.

(ii) We put h(z) =
∞
∑

n=0
hnzrn and F∗

λ,Dr
(h)(z) =

∞
∑

n=0
fnzrn. From (7) we have (λI + D∗

r Dr)F∗
λ,Dr

(h)(z) =

D∗
r h(z). By (i) we deduce that

f0 = 0, fn =
(rn − r)!hn−1

λ(rn)! + (rn − r)!
, n ≥ 1.

Thus

F∗
λ,Dr

(h)(z) =
∞

∑
n=0

(rn)!hn

λ(rn + r)! + (rn)!
zrn+r = ⟨h, Ψz⟩Fr , (10)

where

Ψz(w) =
∞

∑
n=0

(z)rn+rwrn

λ(rn + r)! + (rn)!
, w ∈ C.

The theorem is proved.

In the next part of this section we establish the estimate properties of the extremal function F∗
λ,Dr

(h)(z),
and we deduce approximate inversion formulas for the r-difference operator Dr. These formulas are
the analogous of Calderón’s reproducing formulas for the Fourier type transforms [24,25]. A pointwise
approximate inversion formulas for the operator Dr are also discussed.

The extremal function F∗
λ,Dr

(h) given by (10) satisfies the following properties.

Lemma 6. If λ > 0 and h ∈ Fr, then

(i) |F∗
λ,Dr

(h)(z)| ≤ e|z|
2/2

√
4λ

∥h∥Fr ,

(ii) |DrF∗
λ,Dr

(h)(z)| ≤ e|z|
2/2

√
4λr!

∥h∥Fr ,

(iii) ∥F∗
λ,Dr

(h)∥Fr ≤
1√
4λ

∥h∥Fr .

Proof. Let λ > 0 and h ∈ Fr with h(z) =
∞
∑

n=0
hnzrn. From (10) we have

|F∗
λ,Dr

(h)(z)| ≤ ∥Ψz∥Fr∥h∥Fr .

Using the fact that (x + y)2 ≥ 4xy we obtain

∥Ψz∥2
Fr

=
∞

∑
n=0

(rn)!

[
|z|r(n+1)

λ(rn + r)! + (rn)!

]2

≤ 1
4λ

∞

∑
n=0

|z|2r(n+1)

(rn + r)!
≤ 1

4λ
coshr(|z|2).

This gives (i).
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On the other hand, from (8) and (10) we have

DrF∗
λ,Dr

(h)(z) =
∞

∑
n=0

(rn)!hn

λ(rn + r)! + (rn)!
zrn = ⟨h, Φz⟩Fr , (11)

where

Φz(w) =
∞

∑
n=0

(wz)rn

λ(rn + r)! + (rn)!
.

Then
|DrF∗

λ,Dr
(h)(z)| ≤ ∥Φz∥Fr∥h∥Fr .

But

∥Φz∥2
Fr

=
∞

∑
n=0

(rn)!
[

|z|rn

λ(rn + r)! + (rn)!

]2

≤ 1
4λ

∞

∑
n=0

|z|2rn

(rn + r)!
≤ 1

4λr!
coshr(|z|2).

This gives (ii).
Finally, from (10) we have

∥F∗
λ,Dr

(h)∥2
Fr

=
∞

∑
n=1

(rn)!
[

(rn − r)!|hn−1|
λ(rn)! + (rn − r)!

]2

.

Then we obtain

∥F∗
λ,Dr

(h)∥2
Fr

≤ 1
4λ

∞

∑
n=1

(rn − r)!|hn−1|2 =
1

4λ
∥h∥2

Fr
,

which gives (iii) and completes the proof of the lemma.

We establish approximate inversion formulas for the operator Dr.

Theorem 3. If λ > 0 and h ∈ Fr, then
(i) lim

λ→0+
∥DrF∗

λ,Dr
(h)− h∥Fr = 0,

(ii) lim
λ→0+

∥F∗
λ,Dr

(Drh)− h0∥Fr = 0, where h0(z) = h(z)− h(0).

Proof. Let λ > 0 and h ∈ Fr with h(z) =
∞
∑

n=0
hnzrn. From (11) we have

DrF∗
λ,Dr

(h)(z)− h(z) =
∞

∑
n=0

−λ(rn + r)!hn

λ(rn + r)! + (rn)!
zrn. (12)

Therefore

∥DrF∗
λ,Dr

(h)− h∥2
Fr

=
∞

∑
n=0

(rn)!
[

λ(rn + r)!|hn|
λ(rn + r)! + (rn)!

]2

.

Again, by dominated convergence theorem and the fact that

(rn)!
[

λ(rn + r)!|hn|
λ(rn + r)! + (rn)!

]2

≤ (rn)!|hn|2,

we deduce (i).
Finally, from (8) and (10) we have

F∗
λ,Dr

(Drh)(z)− h0(z) =
∞

∑
n=1

−λ(rn)!hn

λ(rn)! + (rn − r)!
zrn. (13)

So, one has

∥F∗
λ,Dr

(Drh)− h0∥2
Fr

=
∞

∑
n=1

(rn)!
[

λ(rn)!|hn|
λ(rn)! + (rn − r)!

]2

.
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Using the dominated convergence theorem and the fact that

(rn)!
[

λ(rn)!|hn|
λ(rn)! + (rn − r)!

]2

≤ (rn)!|hn|2,

we deduce (ii).

We deduce also pointwise approximate inversion formulas for the r-difference operator Dr.

Theorem 4. If λ > 0 and h ∈ Fr, then
(i) lim

λ→0+
DrF∗

λ,Dr
(h)(z) = h(z),

(ii) lim
λ→0+

F∗
λ,Dr

(Drh)(z) = h0(z) = h(z)− h(0).

Proof. Let h ∈ Fr with h(z) =
∞
∑

n=0
hnzrn. From (12) and (13), by using the dominated convergence theorem

and the fact that
λ(rn + r)!|hn|

λ(rn + r)! + (rn)!
|z|rn,

λ(rn)!|hn|
λ(rn)! + (rn − r)!

|z|rn ≤ |hn||z|rn,

we obtain (i) and (ii).

Remark 2. Let h ∈ Fr, in the limit case λ → 0+, the problem (9) reduces to the Tikhonov problem

inf
f∈Fr

{
∥Dr f − h∥2

Fr

}
,

and it’s extremal function is defined as

F∗
0,Dr

(h)(z) = lim
λ→0

F∗
λ,Dr

(h)(z), z ∈ C.

And from Theorem 4(i), for h ∈ Fr, we obtain

DrF∗
0,Dr

(h)(z) = lim
λ→0+

DrF∗
λ,Dr

(h)(z) = h(z).

On the other hand, from Theorem 4(ii), for h ∈ Fr, we obtain

F∗
0,Dr

(Drh)(z) = lim
λ→0+

F∗
λ,Dr

(Drh)(z) = h0(z) = h(z)− h(0).

We emphasize the pointwise inversion formula is meaningful only on {h : h(0) = 0} or modulo the
constants.
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