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1. Introduction

V‘ ariational inequality theory contains a wealth of new ideas and techniques. Variational inequality
theory was introduced by Lions and Stampacchia [1] in early sixties, can be viewed as a novel
generalization of the variational principles. Variatitional principles have played a leading role in the

developments of complicated and complex problems arising in game theory, mechanics, geometrical optics,
general relativity theory, economics, transportation, differential geometry and related areas. It is well known
fact that the variational inequalities are equivalent to the fixed point problem. This equivalent formulations
have played an important role to study the existence of the solution and to develop efficient numerical
methods for solving variational inequalities and related optimization problems. Noor [2,3] has proposed
and suggested three (multi step) forward-backward iterative methods for finding the approximate solution
of general variational inequalities using the technique of updating the solution and auxiliary principle.
These Noor(three-step) schemes are a natural generalization of the splitting methods for solving partial
differential equations. Noor (three-step) iterations contain Mann (one-step) iteration and Ishikawa (two-step)
iterations as special cases. It has been established [2—4] that Noor(three-step) iterations perform better than
two-step(Ishikawa iteration) and one step method Mann iteration. Ashish et al. [5,6], Cho et al. [7] and
Kwuni et al. [8] explored the Julia set and Mandelbrot set in Noor orbit using the Noor (three step) iterations.
We would like point out Noor(three-step) iterations have influenced the research in the fixed point theory,
optimization and will continue to inspire further research in compressive sensing, image in painting fractal
geometry, chaos theory, coding, number theory, spectral geometry, dynamical systems, complex analysis,
nonlinear programming, graphics and computer aided design. For recent developments and applications
of the variational inequalities and their variant forms, see [1-4,7,9-50] and the references therein.

Variational inequality theory has been generalized and extended in several directions using novel and
innovative ideas to tackle complex and complicated problems. Noor [32,33] considered two new classes of
variational inequalities involving two arbitrary operators in 1988, which are known as general variational
inequalities and have applications in oceanography, non-positive and non symmetric differential equations
theory. An important special case of these general variational inequalities is known as inverse variational
inequalities has been considered in [11,14,17-21,46,47,51].

Open J. Math. Sci. 2026, 10, 94-108; d0i:10.30538 / oms2026.0272 https:/ /pisrt.org/psr-press/journals/oms


https://pisrt.org/psr-press/journals/oms/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oms

Open J. Math. Sci. 2026, 10, 94-108 95

Motivated and inspired by ongoing recent research in variational inequalities, we consider the inverse
variational inequalities, which is a special case of quasi variational inequalities involving two arbitrary
operators, see Noor [33]. Several special cases are discussed as applications of the inverse variational
inequalities in §2. In §3, we establish the equivalence with the fixed point problem, which is use to discuss
the unique existence of the solution as well as to suggest several inertial iterative method along with the
convergence analysis. We also apply the auxiliary principle technique involving an arbitrary operator to
consider some iterative schemes for solving the inverse variational inequalities in §4. In §5, dynamical system
approach is applied to study the stability of the solution and to suggest some iterative methods for solving the
inverse variational inequalities exploring the finite difference idea. Our results in this paper can be viewed as
significant refinement and correct form of the results in [11,14,17-21,46,47,51]and the references therein.

We have given only a brief introduction of this fast growing field. The interested reader is advised to
explore this field further and discover novel fascinating applications of inverse variational inequalities in
other areas of sciences such as machine learning, artificial intelligence, data analysis, fuzzy systems, random
stochastic, financial analysis and related other optimization problems.

2. Formulations and basic facts

Let Q) be a nonempty closed convex set in a real Hilbert space H. We denote by (-, -) and || - || be the inner
product and norm, respectively.
For given nonlinear operators g,/ : H — H, we consider the problem of finding u € € such that

(o(u) +g(u) —h(p), h(v) —g(u)) >0, VveQ, o

is called the inverse extended general variational inequality, which is the main motivation of our investigation
and consideration. We would like to mention that the inverse variational inequalities considered in [11,14,17—
21,37,45,46,51] are quite different than the problem (1).

Consequently, it is evident that all the known results for extended general variational inequalities are also
valid for both types of inverse variational inequalities.

Special cases

We now point out some very important and interesting problems, which can be obtained as special cases
of the problem (1).

1. For h = I, the problem (1) reduces to finding v € (), such that

(on+8() —puv—g(u) >0, Yweq, )

which is called the inverse general variational inequality.
2. For g = I, then the problem (1) reduces to finding y € (), such that

(o(u) +p—h(u),h(v) = (u)) 20, VveQ, ®)

is the inverse general variational inequality involving the operator /.
3. If g = h, then problem (1) is equivalent to finding u € () such that

(o(n),g(v) —g(u)) >0, Yweq, 4)

is the inverse variational inequality, considered and studied in [11-14,18-21,45,46,51] with applications
in various areas of mathematical and engineering sciences.

4. O ={peH:(yv) >0 VveQ}isapolar (dual) cone of a convex-valued cone Q) in #, then the
problem (4) is equivalent to finding u € H, such that

gw)eQ, peQ" and (y,g(u) =0, (5)

which is known as the inverse quasi complementarity problems and appears to be a new one.
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Obviously inverse complementarity problems include the inverse complementarity problemsx’ and linear
complementarity problems. The complementarity problems were introduced and studied by Cottle et al. [52],
Noor [25,26] and Noor et al. [31,39,53].

Remark 1. It is worth mentioning that for appropriate and suitable choices of the operators g,h, convex
set and the spaces, one can obtain several classes of variational inequalities, complementarity problems and
optimization problems as special cases of the inverse extended general variational inequalities (1). This shows
that the problem (1) is quite general and unifying one. It is interesting problem to develop efficient and
implementable numerical methods for solving the inverse variational inequalities and their variants.

We also need the following result, known as the projection Lemma (best approximation).
Lemma 1. [22] Let Q) be a closed and convex set in H. Then, for a given z € H, u € Q) satisfies the inequality
(W—z,v—pu) >0, Ywveq, (6)

if and only if,
p=1Tln(z),

where 11q is projection of H onto the closed convex set ().
It is well known that the projection operator Ilq is nonexpansive, that is,
Mo =Tall < lp—vl, vuveQ. )

Definition 1. An operator g : H — # is said to be:

1. Strongly monotone, if there exist a constant « > 0, such that

(g(w) —gw),p—v) > allp—v|?, VYuveH.

2. Lipschitz continuous, if there exist a constant > 0, such that

lg(u) =g < Bllp—vll, YuveH

3. Projection method

In this section, we use the fixed point formulation to suggest and analyze some new implicit methods for
solving the inverse variational inequalities.

Using Lemma 1, one can show that the inverse variational inequalities are equivalent to the fixed point
problems.

Lemma 2. The function y € Q) is a solution of the inverse extended general variational inequality (1), if and only if,
u € Q) satisfies the relation

8(u) = alp — ppl, ®)
where Iq is the projection operator and p > 0 is a constant.

Proof. Let u € Q) be a solution of the inverse extended general variational inequality (1). Then

(g(u) — (h(p) —p(u)), h(v) —g(u)) 20, YveQ.

Now using Lemma 1, with z = h(u) — p(u), , we obtain

g(pu) =Tl — ppl,
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the required result (8). O

Lemma 2 implies that the inverse extended general variational inequality (1) is equivalent to the fixed
point problem (8). From the Eq. (8), we have

u=u—g(p)+Talh(n) — ppl. )

We define the function @ associated with (8) as

O(p) = p—g(p) +alh(p) — ppl. (10)

To prove the unique existence of the solution of the problem (1), it is enough to show that the map ¢
defined by (9) has a fixed point.

Theorem 1.  Let the operator g be strongly monotone with constant ¢ > 0 and Lipschitz continuous with constant
¢ > 0, respectively. If the operator h is Lipschitz continuous with constan o1 > 0 and there exists a parameter p > 0,
such that

p<l—k k<1, o, 172<2c7, 11)
where

0=p+k (12)

k=1/1-20+72+0, (13)

then there exists a unique solution of the problem (1).

Proof. From Lemma 2, it follows that problems (8) and (1) are equivalent. Thus it is enough to show that the
map ®(u), defined by (10) has a fixed point.
Forallv # u € Q(u), we have

@) = @W)l| =llp —v = (&(1) = gWNIl + Tl [h(#) — pp] = ) [h(v) — pv]|
<llu—v—(gp) = gl + [1h(v) = h(p) = p(v = p)]|
<l =v—(g(p) =g@)Il+ [[h(v) = h()[| +pllv = pll
<lu—v—(g(p) =gl +orllv—ull +pllv—ull
Sl —v—(gp) = gW)ll + (o + 1) v —ull, (14)
where we have used the facts the projection operator Il is nonexpansive and the operator / is a Lipschitz
continuous with constant o > 0.

Since the operator g is strongly monotone with constants ¢ > 0 and Lipschitz continuous with constant
{ > 0, it follows that

Il —v = (g(u) — gWNII* <llp —v[* = 2(g(p) — g(v), 1 — v) + Z*|Ig (1) — g(v)|*
<(1—20+%)|lp—v|*. (15)

From (14) and (15), we have

[@(n) — d(v)] < {\/<1—2a+a2> +p+01} I — vl = 8l — ],

where 0 and k are defined by the relation (12) and 13), respectively.
From (11), it follows that 6 < 1, which implies that the map ®(u) defined by (10) has a fixed point, which
is the unique solution of (1). O
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This alternative equivalent formulation (8) is used to suggest the following three-step iterative methods
for solving the problem (1).

Algorithm 1. For a given yg, compute the approximate solution {,, 1} by the iterative schemes

Yn =1 = v)pn + vn{pn — 8(un) + Ha[h(pn) — ppal}, (16)
wy =(1 = Bn)pn + Bnlyn — §(yn) + alh(yn) — pynl}, 17)
1 =(1— an)pn + an{wn — g(wn) + Ta[h(wy) — pw]}, (18)

which are known as modified Noor iterations and contain Ishikawa(two-set) iterations and Mann
iteration(one-step) as special cases.

We now study the convergence analysis of Algorithm 1, which is the main motivation of our next result.

Theorem 2.  Let the operators g, h satisfy all the assumptions of Theorem 1. Then the approximate solution {p,}
obtained from Algorithm 1 converges to the exact solution u € Q) of the inverse extended general variational inequality
(1) strongly in H.

Proof. From Theorem 1, we see that there exists a unique solution y € () of the inverse variational inequalities
(1). Let u € Q) be the unique solution of (1). Then, using Lemma 2, we have

p=1—an)p+an{p—g(p) +alh(p) —oul} (19)
=1 = Bn)p + Buip — g(p) + () — pul} (20)
=1 = 7n)p +vu{p — () + Halh(p) — pul}. (21)

From (18) and (19), we have

[ine1 =l =111 — an) (pn — 1) + an(wn — p — (g(wn) — g(1)))
+ anTla[g(wn) — pwn] — Tl [A(H) — op ||
<= an)llpn — pll + anllwn — p— (g(wn) — g(w))ll
+ anley [ (wn) — pwn] — T [h(pn) — pp}||
<(T—an)l[pn — pll + anflwn — p — (g(wn) — g(w))ll
+ an[|h(wn) — h(p) — p(wn — p)||
<1 —an)|pn — pl| + an(k+ p)||wn — pl
=(1 = an) |t — pl| + anb||wwn — pl, (22)

where 0 is defined by (12).
In a similar way, from (16) and (20), we have

lwn —pll <= Bu)llpn — pll +2Bubllyn — 1 — (§(yn) — (1)l
+ Bullyn — 1 —0(yn — w||
<1 = Bu)llpn — pl| + Bubllyn — pll, (23)

where 0 is defined by (11).
From (16) and (21), we obtain

llyn — wll <1 —vu) lptn — pll + vn8lptn — |
<@ = QA=) ya)llpn — pll < lpn — pll- (24)
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From (23) and (24), we obtain
[[wn = pll <(1 = Bu)llptn = ll + BBl pn — |
=1 =1 =0)Bu)llpn — pll < [lpn — pl]- (25)

Form the above equations, we have

1 — 1l <(U—an) |pn — pll + @nb|pn — p|

—[1— (1— O)a] on — ]l < fyl— (1 0)as] 0 — ]

Since ), a, divergesand 1 —6 > 0, we have [T ;{1 — (1 — 0)a;] = 0. Consequently the sequence {u, }
n=0
convergence strongly to y. From (24), and (25), it follows that the sequences {y, } and {wy } also converge to y

strongly in H. This completes the proof. [

We now use the equivalent fixed point formulation (8) to suggest some iterative methods. For a parameter

¢, we rerwite the problem (8) as
p(1-emren) —p(@-amren)|

This equivalent fixed point formulation enables to suggest the following inertial method for solving the
problem (1).

p=pu—g(p)+TIg

Algorithm 2.  For a given p, 1, compute ;11 by the iterative scheme

Pl =Hn — §(pn) + Tl

h((l —&)pn + Cﬂn—1> —p((l —&)pn +§yn_1)], n=1,2,...

We now suggest some multi-step inertial methods for solving the inverse variational inequalities (1).
Algorithm 3. For given y, j11, compute ji,, 11 by the recurrence relation

wy =pn — O (fn — pn—1), n=12,...,

Yn =(1 = vn)wn +’rn{wn — glwn) + 11, [h<w”;””> p(w” ;V”)] }
S N R

T :(106n)zn+1xn{ ~ o(z) + 11 |:h<Zn + Yn +wn+ﬂn> p<yn+zn +Wn+]/‘n>:|},

4
where &y, Bn, Yn, 00 € 10,1], V1 > 1.

Using the technique of Noor et al. [36,37], one can investigate the convergence analysis of these inertial
projection methods. Similar multi-step hybrid iterative methods can be proposed and analyzed for solving
system of inverse variational inequalities, which is an interesting problem.

4. Auxiliary principle technique

There are several techniques such as projection, resolvent, descent methods for solving the variational
inequalities and their variant forms. None of these techniques can be applied for suggesting the iterative
methods for solving the several nonlinear variational inequalities and equilibrium problems. To overcome
these drawbacks, one usually applies the auxiliary principle technique, which is mainly due to Glowinski et
al. [16] as developed in [28,30,44,45,48], to suggest and analyze some proximal point methods for solving
inverse extended general variational inequalities (1). Noor [28] modified the auxililary principle technique by
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involving an arbitrary operator. For the properties and applications of the modified technique, see Patricksson
[41].
For strongly monontone operator M, we define the distance function as

M(v, ) =M(v) = M(p),v —u),Vu,v € Q.
>Clv—pul?, mveq, (26)

where  is the strongly monononicity constant. It is important to emphasize that various types of function M
gives different modified distance function.

We apply the auxiliary principle technique involving an arbitrary operator for finding the approximate
solution of the problem (1).

For a given u € () satisfying (1), find w € Q) such that

{o(w +n(p —w)) +g(w) = h(w), h(v) = g(w)) + (M(w) = M(p),v —w) >0, VveQq, (27)

where p > 0,7 € [0,1] are constants and M is an arbitrary operator. The inequality (27) is called the auxiliary
inverse extended general variational inequality.

If w = p, then w is a solution of (1). This simple observation enables us to suggest the following iterative
method for solving (1):

Algorithm 4.  For a given g € (), compute the approximate solution y,, 11 by the iterative scheme

(O(Hur1 +1(pn — pns1)) + §(pns1) — (pns1), h(v) — §(pnt1))
+ (M(ptni1) — M(pn), v — png1) 20, Vv € Q. (28)

Algorithm 4 is called the hybrid proximal point algorithm for solving the inverse general variational
inequalities (1).
Special Case. For 1 = 0, Algorithm 4 reduces to:
Algorithm 5. For a given p, compute the approximate solution 41 by the iterative scheme
(optnr1+8(ns1) = h(pni1), 1(v) = 8 (1)) + (M(ptni1) = M(pn), v = pny1) 20, Vv €Q, - (29)
is called the implicit iterative methods for solving the problem (1).
For the convergence analysis of Algorithm 5, we need the following concepts:
Definition 2. An operator g is said to be k- pseudomontone, if
{op +8(u) = h(p), h(v) —g(p)) 20, Vveq,
implies that
—(ov+g(v) =h(v),g(u) =h(v)) 20, WveQ.

Theorem 3. Let the operator g be a h-pseudo-monotone. Let p,,q be the approximate solution obtained in Algorithm
5and y € Q) be the exact solution of the problem (1). If the operator M is strongly monotone with constant & > 0 and
Lipschitz continuous with constant { > 0, then

Sllpngr — pnll < Cllp — paa- (30)

Proof. Let u € () be a solution of the problem (1). Then

—(o(v) +8(v) —h(v),g(y) —v) 20, Vweq, (31)



Open J. Math. Sci. 2026, 10, 94-108 101

since the operator g is a h-pseudo-monotone.
Takin v = p, 11 in (31), we obtain

—(otnr1 +8(pns1) — h(pns1), (1) — h(pnt1)) = 0. (32)
Setting v = u in (29), we have
(ornt1 + &(ns1) = B(pns1), (1) — h(pnga)) + (M(pnsa) — M(pin) b = pinsa) 20, Vv e Q. (33)
Combining (33), (32) and (31), we have
(M(pns1) = M), = pngr) 2 = (0 (Hns1), §(#) = (pns1)) 2 0. (34)
From the Eq. (34), we have

0

IN

(M(pns1) = M(pn), = pns1) = (M(png1) — M(pn), = pn + pin — 1)
(M(pns1) — M(pn), = pin) + (M(png1 — M(pn), oo — Hat1),

which implies that

(M(pns1 — M(pn), inr — pn) < (M(pns1) — M(pin), g — pin)-

Now using the strongly monotonicity with constant ¢ > 0 and Lipschitz continuity with constant ¢ of the
operator M, we obtain

Sllpnsr = pal® < Cllptass = pullllpen = el
Thus
Cllpn = psall < Cllpn = pells
which is the required result (30). O

Theorem 4. Let H be a finite dimensional space and all the assumptions of Theorem 3 hold. Then the sequence { i, }
given by Algorithm 5 converges to the exact solution yu € Q) of (1).

oo
0

Proof. Let u € Q) be a solution of (1). From (30), it follows that the sequence { || — u»||} is nonincreasing and
consequently {u,} is bounded. Furthermore, we have

¢ 2 Mnr = pall < Zllpn = el
n=0
which implies that
Jim [ g1 = pal = 0. (35)

Let 1 be the limit point of {1, }; ; whose subsequence { Jin; 3 of {pn };c converges to jI € Q). Replacing w;,
by pin; in (29), taking the limit 71; — co and using (35), we have

{o(p) +g(@) —h(p),h(0) —g(p)) =20,  VveQ,
which implies that i solves the problem (1) and

s — pll < |lpn — pl)-
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Thus, it follows from the above inequality that {y, }T has exactly one limit point 7 and

lim (py) = fi.

n—oo

Which is the required result. [

Remark 2. For different and suitable choice of the parameters p,#,a, operators g,h, M and convex sets,
one can recover new and known iterative methods for solving inverse variational inequalities, inverse
complementarity problems and related optimization problems. Using the technique and ideas of Theorem
3 and Theorem 4, one can analyze the convergence of Algorithm 5 and its special case.

5. Dynamical systems technique

In this section, we consider the dynamical systems technique for solving the inverse variational
inequalities. The projected dynamical systems associated with variational inequalities were considered by
Dupuis and Nagurney [15]. It is worth mentioning that the dynamical system is a first order initial value
problem. Consequently, variational inequalities and nonlinear problems arising in various branches in pure
and applied sciences can now be studied via the differential equations. It has been shown that the dynamical
systems are useful in developing some efficient numerical techniques for solving variational inequalities and
related optimization problems. For more details, see [3,10,14,15,23,30,34-36,36,47,48]. We consider some new
iterative methods for solving the inverse extended general variational inequalities.

We now define the residue vector R(y) by the relation

R(p) = g(pu) — Halh(p) — p()]- (36)

Invoking Lemma 2, one can easily conclude that p € ) is a solution of the problem (1), if and only if,
u € Q) is a zero of the equation
R(p) =0. (37)

We now consider a dynamical system associated with the inverse variational inequalities. Using the fixed
point formulation (8), we suggest a class of projection dynamical systems as

iT}: = MIalh(p) —p(W)] —g(w)}, (o) =a, (38)

where A is a parameter. The system of type (38) is called the projection dynamical system associated with
the problem (1). Here the right hand is related to the projection and is discontinuous on the boundary. From
the definition, it is clear that the solution of the dynamical system always stays in #. This implies that the
qualitative results such as the existence, uniqueness and continuous dependence of the solution of (1) can be
studied.

The equilibrium point of the dynamical system (38) is defined as follows:

Definition 3. An element u € (), is an equilibrium point of the dynamical system (38), if, % =0.

Thus it is clear that y € ) is a solution of the inverse quasi variational inequality (1), if and only if, u € O
is an equilibrium point.

This implies that u € () is a solution of the inverse extended general variational inequality (1), if and only
if, u € Q) is an equilibrium point.
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Definition 4. [15] The dynamical system is said to converge to the solution set S* of (38), if , irrespective of
the initial point, the trajectory of the dynamical system satisfies

lim dist(p(t),S*) =0, 39)

t—o0

where
dist(p, S*) = infyes+ || — v||.

It is easy to see, if the set S* has a unique point p*, then (39) implies that

lim pu(t) = p*.

t—oc0

If the dynamical system is still stable at #* in the Lyapunov sense, then the dynamical system is globally
asymptotically stable at u*.

Definition 5. The dynamical system is said to be globally exponentially stable with degree # at u*, if,
irrespective of the initial point, the trajectory of the system satisfies

[1(8) = Wl < url[p(to) — p*llexp(=n(t —to)), 'Vt = to,

where 11 and # are positive constants independent of the initial point.

It is clear that the globally exponentially stability is necessarily globally asymptotically stable and the
dynamical system converges arbitrarily fast.

Lemma 3 (Gronwall Lemma [15]). Let ji and 0 be real-valued nonnegative continuous functions with domain {t : t <
to} and let a(t) = ag(|t — to|), where ag is a monotone increasing function. If, for t > t,

p<a®)+ [ ps)s)ds,

then
as) < a(t)exp{/t:ﬁ(s)ds}.

One can establish that the trajectory of the solution of the projection dynamical system (38) converges to
the unique solution of the inverse variational inequality (1) following the techniques and ideas of Noor [3,30]
and Xia and Wang [47,48]. We state the main results without proof.

Theorem 5. Let the operator g, h : H — H be Lipschitz continuous with constants { > 0,01 IFA{({+p+01)} <1,
then, for each pg € Q, there exists a unique continuous solution p(t) of the dynamical system (38) with u(to) = po over

[tOr OO)

We use the dynamical system (38) to suggest some iterative for solving the inverse variational inequalities

(D).
For simplicity, we take A = 1. Thus the dynamical system(38) becomes

% +8(n) =Ha[h(u) —p()], n(to) =a, (40)

which is a initial value problem.
The forward difference scheme is used to construct the implicit iterative method. Discretizing (40), we
have

P‘n%l—ﬂn + g(pn) = [h(pn) — p(pns1)], @)
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where h; is the step size.
Now, we can suggest the following implicit iterative method for solving the inverse variational inequality

).
Algorithm 6. For a given g, compute p,, 41 by the iterative scheme

puss =t = §(pr) + Ty | (gin) = (i) = P52,

This is an implicit method, which is equivalent to the following two-step method.

Algorithm 7. For a given p, compute y,, 11 by the iterative scheme

W =pn — §(pn) + T [h(pn) — p(kn)],

w p—
poet =pon = &) + Taa[hjin) = pleon) = =],

We now introduce the second order dynamical system associated with the inverse extended general
variational inequality (1). To be more precise, we consider the problem of finding u € () such that

2
B ATl — ()]~ 80}, @) =a, () =P, @)

where ¥ > 0,A > 0 and p > 0 are constants. We would like to emphasize that the problem (42) is indeed a
second order boundary vale problem. In a similar way, we can define the second order initial value problem
associated with the dynamical system.

The equilibrium point of the dynamical system (42) is defined as follows:
Definition 6. An element y € (), is an equilibrium point of the dynamical system (42), if, 72272 + Z—Z =

Thus it is clear that u € () is a solution of the inverse variational inequality (1), if and only if, y € Q) is an
equilibrium point.

We can rewrite (42) as follows:

2y d
g(u) = Ha[h(p) —p(n) +77£+£] (43)

For A = 1, the problem (42) is equivalent to finding y € ) such that

2
PB4 M g0 = Palh(n) —p(w)], (@) =a p() = p. (44

The problem (44) is called the second dynamical system, which is in fact a second order boundary value
problem. This interlink among various areas is fruitful from numerical analysis in developing implementable
numerical methods for finding the approximate solutions of the variational inequalities. Consequently, we can
explore the ideas and techniques of the differential equations to suggest and propose hybrid proximal point
methods for solving the inverse extended general variational inequalities and related optimization problems.

We discretize the second-order dynamical systems (44) using central finite difference and backward
difference schemes to have

+ B B g ) = Tl = ppaa), (45)

i1 — 2Un + Pn—1
Y 12
1

where & is the step size.
If y =1,h; =1, then, from Eq. (45) we have
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Algorithm 8. For a given p(, compute y,,11 by the iterative scheme

Pt = pin+ & (pn) + o h(pn) = p(pnsa)],
which is the extragradient method, which is equivalent to:
Algorithm 9. For given p, 11, compute yi,, 11 by the iterative scheme

Yo =(1=0n)pin + Onppyn—1, n=12,...
1 =tn — §(pn) + Halh(pn) — p(yn)],

is called the two-step inertial iterative method, where 6,, € [0,1] is a constant.
We discretize the second-order dynamical systems (38) using central finite difference and backward
difference schemes to suggest the following an iterative method for solving the inverse extended general

variational inequalities (1).

Algorithm 10. For given y, p11, compute y,, 11 by the iterative scheme

— 2y + Yy — Hn—
ot = i = 8(pinsn) + T [b(jinsn) = plunsn) —y =Gt Bo Bty =,
1

Algorithm 10 is called the hybrid inertial proximal method for solving the inverse extended general
variational inequalities and related optimization problems. This is a new proposed method.

We now consider the third order dynamical systems associated with the inverse extended general
variational inequalities of the type (1). To be more precise, we consider the problem of finding u € (), such
that

du d*u du . .
g5 toge o T8 =Malh(u) —e(w)],  ula) =a i(a) = p,j(b) =0, (46)
where ¥ > 0,7, ¢ and p > 0 are constants. Problem (46) is called third order dynamical system associated with
inverse extended general variational inequalities (1).
The equilibrium point of the dynamical system (46) is defined as follows:

Definition 7. An element u € H, is an equilibrium point of the dynamical system (42), if,

d3;¢
LT] +

dzy

dy _
7 T8¢ =0

Thus it is clear that u € () is a solution of the inverse extended general variational inequality (1), if and

only if, y € Q) is an equilibrium point.
Consequently, the problem (38) can be equivalent written as

Ep L dp | dp
g(u) =Tlq h(l‘)_P(V)‘f"YW +€ﬁ+§ﬁ . (47)

We discretize the third-order dynamical systems (46) using central finite difference and backward
difference schemes to have

Hnt2 = 2Mn1 + 2Un—1 — Pn—2 | o Hnt1 — 2Hn + Pn—1 | 3Hn — 4pp—1 + Pn—2
g T +¢ 2 +¢ o +8(pn)
= Il [h(l/‘n) - P(Vnﬂﬂr (48)

where / is the step size.
Ify=1,h =1, =1,¢ =1, then, from Eq. (48) after adjustment, we have:
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Algorithm 11. For given yo, pt1, compute y,, 11 by the iterative scheme

2ty + 1 — 3
ts1 =n = g(ptn) + o [B(gin) = p(pn41) + T FA =0 =12,

which is an inertial type hybrid iterative methods for solving the inverse extended general variational
inequalities (1).

Uisng the predictor-corrector techniuqe, we now suggest multi step inertial iterative method for solving
the inverse extended general variational inequalities (1).

Algorithm 12. For a given i, y#1, compute ;41 by the iterative scheme
Zn :Vn_en(ﬂn_ﬂn—ﬂ/ n=12,...,
== 1)z {20 = gl + b))

t

=

—(1= By + Bud = () + ) = pla)| |,
wy =(1— )ty +§n{tn —g(ts) + {h(tn) - p(tn):| }
a1 =(1 — an)wn +zxn{wn —8g(pn) + {h(l/‘n) —p(wn)] }

where ay, Bn, Yn,Cn, 00 € [0,1], Vn > 1.

These algorithms contain Noor (three step) iterations, Ishikawa (two step) intrations, Mann iteration and
modified Noor iterations as special cases.

Remark 3. For appropriate and suitable choice of the operators g, h, convex set, parameters and the spaces,
one can suggest a wide class of implicit, explicit and inertial type methods for solving inverse variational
inequalities and related optimization problems. Using the techniques and ideas of Noor et al [36-38], one can
discuss the convergence analysis of the proposed methods.

6. Conclusion

In this paper, we have used the equivalence between the inverse variational inequalities and fixed point
problems to suggest some new multi step multi-step iterative methods for solving the inverse variational
inequalities. These new methods include extragradient methods, modified double projection methods and
multi step inertial methods, which are suggested using the techniques of projection method, auxiliary
techniques and dynamical systems. Convergence analysis of the proposed method is discussed for suitable
weaker conditions. It is an open problem to compare these proposed methods with other methods. Applying
the technique and ideas discussed in [5,6,12,20,41], can one explore the Julia set and Mandelbrot set in Noor
orbit using the Noor (three step) iterations in the fixed point theory. It is an open interesting problem to
discuss the applications of the inverse variational inequality and its variant forms in the fuzzy set theory,
stochastic, quantum calculus, fractal, fractional, random traffic equilibrium, artificial intelligence, computer
science, control engineering, management science and operations research.
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