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1. Introduction

L et H(C) be space entire functions on C. For f , g ∈ H(C), the Volterra type integral operator Vg, induced
by g, is

Vg f (z) :=
∫ z

0
f (w)g′(w)dw.

In recent decades, the study of Volterra type integral operators acting between different Fock-type spaces
has developed significantly. Inspired by earlier contributions of Aleman and Siskakis [1,2] on the Hardy and
Bergman spaces, Constantin [3] investigated various properties of the operator, particularly its boundedness
and compactness on Fock spaces. Subsequently, in joint work with Peláez [4], they extended this study to
weighted Fock spaces whose weight functions grow more rapidly than the standard Gaussian weight in
Fock spaces. Related problems on Fock–Sobolev spaces were later addressed by Mengestie in [5]. Despite
the progress on boundedness and compactness, there remains considerable interest in understanding the
dynamical and topological behavior of these operators on Fock spaces. The first author of this paper, in
collaboration with Bonet and Mengestie [6], studied several dynamical properties on Fock spaces endowed
with weight functions of the form |z|l , for l > 0. Moreover, topological properties such as path-connectedness,
connected components, and isolated points of the space of bounded Volterra-type integral operators were
studied in [7,8].

In [9], Chalmoukis introduced a new generalization of the Volterra type integral operator, referred to
as the generalized integration operator T n,m

g , defined as follows. For a nonnegative integers m and n with
0 ≤ m < n, and f , g ∈ H(C), the generalized integration operator, T n,m

g , is

T n,m
g f (z) :=

∫ z

0

∫ η1

0
· · ·

∫ ηn−1

0
f (m)(ηn)g(n−m)(ηn)dηn · · · dη1.

That is, T n,m
g is the n-th iterate of the integral operator

Vn,m
g f (z) :=

∫ z

0
f (m)(w)g(n−m)(w)dw,
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where f (m) denotes the m-th derivative of f and f (0) = f . In particular, for m = 0 and n = 1, the operator
T n,m

g reduces to the Volterra type integral operator. To guarantee the linearity and well-definedness of the
generalized integration operator T n,m

g , the constants of integration are fixed to be zero, namely Vn,m
g f (0) = 0.

Since f (m) and g(n−m) are entire functions, the integrals involved in T n,m
g are independent of the choice of

integration path.
Chalmoukis investigated certain properties of the generalized integration operator on Hardy spaces, and

his work motivated further interest in studying the operator on various other function spaces [10,11]. The main
goal of this paper is to characterize topological properties of T n,m

g on Fock spaces F α
p , including boundedness,

compactness, essential norm, as well as path-connected and the singleton of path-connected components of
space of bounded generalized integration operators.

For a real number α > 0 and 0 < p < ∞, Fock space F α
p is the space of all functions f in H(C) such that

f (z)e−
α
2 |z|

2
is in Lp(C, dA), that is,

∥ f ∥(p,α) :=
(∫

C
| f (z)|p e−

pα
2 |z|2 dA(z)

) 1
p
< ∞,

where dA is Euclidean area measure on the complex plane. And, for α > 0 and p = ∞, Fock space F α
∞ is the

space of all functions f in H(C) such that f (z)e−
α
2 |z|

2
is in L∞(C), that is,

∥ f ∥(∞,α) := sup
z∈C

| f (z)| e−
α
2 |z|

2
< ∞.

For f ∈ H(C) and 0 < p ≤ ∞, f ∈ F α
p if and only if the function f (m)(z)(1 + |z|)−me−

α
2 |z|

2
belongs to

Lp(C, dA) (see, Theorem 2.1 of [12], Theorem 1 of [13], and Lemma 2.10 of [14]). Moreover, ∥ f ∥(p,α) can be
estimated in terms of m-th derivative of f as follows;

∥ f ∥(p,α) ≍


m−1
∑

j=0

∣∣∣ f (j)(0)
∣∣∣+(∫C | f (m)(z)|p

(1+|z|)mp e−
pα
2 |z|2 dA(z)

) 1
p

, 0 < p < ∞

m−1
∑

j=0

∣∣∣ f (j)(0)
∣∣∣+ supz∈C

| f (m)(z)|e− α
2 |z|2

(1+|z|)m , p = ∞,
(1)

The notation ” ≍ ” in (1) above is to mean S(z) ⪯ T(z) and T(z) ⪯ S(z), where S(z) ⪯ T(z) (or
equivalently T(z) ⪰ S(z)) means that there is a constant C such that S(z) ≤ CT(z), for each z ∈ C.

In particular, for p = 2, F α
2 is a reproducing kernel Hilbert space with kernel function K(w,α)(z) := eαzw,

and normalized kernel function k(w,α)(z) := eαzw− α
2 |w|2 . The function k(w,α) belongs to every F α

p , for 0 < p ≤ ∞,
with ∥k(w,α)∥(p,α) = 1. Furthermore, Fock spaces satisfy a natural inclusion property: F α

p ⊆ F α
q whenever

p ≤ q ≤ ∞. For more information about Fock spaces, we refer to the book in [15].

2. Bounded and compact T n,m
g

In this section, we characterize the boundedness and compactness properties of the generalized
integration operator T n,m

g : F α
p → F β

q for later use. We first give a characterization of these properties in
terms of the function property of

M(αβ,g,nm)(z) :=

∣∣∣g(n−m)(z)
∣∣∣ e

α−β
2 |z|2

(1 + |z|)n−m ,

and then the simplified characterization will be given in the subsequent Corollaries.

Theorem 1.
(i) Let 0 < p ≤ q ≤ ∞ and g ∈ H(C). Then T n,m

g : F α
p → F β

q is bounded (respectively, compact) if and only if
M(αβ,g,nm) ∈ L∞(C) (respectively, lim|w|→∞ M(αβ,g,nm)(w) = 0).
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(ii) Let 0 < q < p ≤ ∞ and g ∈ H(C). Then T n,m
g : F α

p → F β
q is bounded or compact if and only if

M(αβ,g,nm) ∈ L
pq

p−q (C, dA) for p < ∞ and M(αβ,g,nm) ∈ Lq(C, dA) for p = ∞.

Proof. The proof follows arguments similar to those used in the proof of Theorem 1.3 in [16]; for the sake of
completeness, we include the details here.

(i) If the operator T n,m
g : F α

p → F β
q is bounded, then using the inclusion F β

q ⊆ F β
∞ for q ≤ ∞, and the

estimate (1),

∞ >
∥∥∥T n,m

g

∥∥∥ ≥
∥∥∥T n,m

g k(w,α)

∥∥∥
(q,β)

⪰ sup
z∈C

∣∣∣T n,m
g k(w,α)(z)

∣∣∣ e−
β
2 |z|

2

⪰
|αw|m

∣∣∣g(n−m)(z)
∣∣∣

(1 + |z|)n

∣∣∣∣eαzw− α|w|2
2

∣∣∣∣ e−
β
2 |z|

2

⪰
(1 + |w|)m

∣∣∣g(n−m)(z)
∣∣∣

(1 + |z|)n

∣∣∣∣eαzw− α|w|2
2

∣∣∣∣ e−
β
2 |z|

2
,

for all w ∈ C. Putting w = z, we obtain M(αβ,g,nm) ∈ L∞(C). On the other hand, if M(αβ,g,nm) is bounded over
C, for q < ∞,

∥∥∥T n,m
g f

∥∥∥q

(q,β)
≍
∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣g(n−m)(z)

∣∣∣q
(1 + |z|)nq e−

qβ
2 |z|2 dA(z)

≤
(

sup
z∈C

Mq
(αβ,g,nm)

(z)

) ∫
C

∣∣∣ f (m)(z)
∣∣∣q

(1 + |z|)mq e−
qα
2 |z|2 dA(z)

⪯
(

sup
z∈C

Mq
(αβ,g,nm)

(z)

)
∥ f ∥q

(q,α) ⪯
(

sup
z∈C

Mq
(αβ,g,nm)

(z)

)
∥ f ∥q

(p,α).

Thus,
∥∥T n,m

g
∥∥ ⪯ supz∈C M(αβ,g,nm)(z) and hence T n,m

g is bounded. The case q = ∞ is similar to the above,
which only needs to replace the integral in the above estimate by supremum, we omit it.

Next, if T n,m
g is compact, then using the fact that k(w,α) is uniformly bounded on F α

p and converges to zero
on a compact subsets of C as |w| goes to ∞,

lim
|w|→∞

M(αβ,g,nm)(w) ⪯ lim
|w|→∞

∥∥∥T n,m
g k(w,α)

∥∥∥
(q,β)

= 0.

Therefore lim|w|→∞ M(αβ,g,nm)(w) = 0. For the other direction, we let fl to be bounded sequence in F α
p

that converges to 0 uniformly on a compact subsets of C as l → ∞. Then, for R > 0 and q < ∞, using (1),

∥∥∥T n,m
g fl

∥∥∥q

(q,β)
≍
∫
C

∣∣∣ f (m)
l (z)

∣∣∣q ∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e−
qβ
2 |z|2 dA(z)

=

(∫
|z|≤R

+
∫
|z|>R

) ∣∣∣ f (m)
l (z)

∣∣∣q ∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e−
qβ
2 |z|2 dA(z)

⪯ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q ∫
|z|≤R

∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e−
qβ
2 |z|2 dA(z)

+

(
sup
|z|>R

Mq
(αβ,g,nm)

(z)

) ∫
|z|>R

∣∣∣ f (m)
l (z)

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2 dA(z)

⪯ ∥T n,m
g zm∥q

(q,β) max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q + ∥ fl∥
q
(q,α)

(
sup
|z|>R

Mq
(αβ,g,nm)

(z)

)

⪯ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q + ∥ fl∥
q
(p,α)

(
sup
|z|>R

Mq
(αβ,g,nm)

(z)

)



Open J. Math. Sci. 2026, 10, 48-68 51

⪯ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q + sup
|z|>R

Mq
(αβ,g,nm)

(z).

Letting l → ∞ and then R → ∞, we get ∥∥∥T n,m
g fl

∥∥∥
(q,β)

→ 0,

and hence T n,m
g is compact. The case q = ∞ is very similar to the above. Thus, we omit it.

(ii) We first show that the integral conditions imply compactness of the operator. Let ( fl) be a uniformly
bounded sequence in F α

p and fl → 0 uniformly on compact subsets of C as l → ∞. Then, for R > 0

∥∥∥T n,m
g fl

∥∥∥q

(q,β)
≍
∫
C

∣∣∣ f (m)
l (z)

∣∣∣q ∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e−
qβ
2 |z|2 dA(z)

=

(∫
|z|≤R

+
∫
|z|>R

) ∣∣∣ f (m)
l (z)

∣∣∣q ∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e−
qβ
2 |z|2 dA(z)

⪯ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q ∫
|z|≤R

∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e−
qβ
2 |z|2 dA(z)

+
∫
|z|>R

(
Mq

(αβ,g,nm)
(z)
)

∣∣∣ f (m)
l (z)

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2

 dA(z)

⪯ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q + ∫
|z|>R

(
Mq

(αβ,g,nm)
(z)
)

∣∣∣ f (m)
l (z)

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2

 dA(z).

(2)

Now, for p < ∞, applying Hölder’s inequality, and then using (1), the integral in (2) is further estimated
as follows;

∫
|z|>R

(
Mq

(αβ,g,nm)
(z)
)

∣∣∣ f (m)
l (z)

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2

 dA(z)

≤

∫
|z|>R

∣∣∣ f (m)
l (z)

∣∣∣p
(1 + |z|)mp e−

pα
2 |z|2 dA(z)


q
p (∫

|z|>R
M

pq
p−q
(αβ,g,nm)

(z)dA(z)
) p−q

p

⪯ ∥ fl∥
q
(p,α)

(∫
|z|>R

M
pq

p−q
(αβ,g,nm)

(z)dA(z)
) p−q

p
⪯
(∫

|z|>R
M

pq
p−q
(αβ,g,nm)

(z)dA(z)
) p−q

p
,

and hence ∥∥∥T n,m
g fl

∥∥∥q

(q,β)
⪯ max

|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q +(∫
|z|>R

M
pq

p−q
(αβ,g,nm)

(z)dA(z)
) p−q

p
. (3)

Similarly, for p = ∞, from (2) we have

∥∥∥T n,m
g fl

∥∥∥q

(q,β)
⪯ max

|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q + ∫
|z|>R

(
Mq

(αβ,g,nm)
(z)
)

∣∣∣ f (m)
l (z)

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2

 dA(z)

≤ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q +
 sup

|z|>R

∣∣∣ f (m)
l (z)

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2

 ∫
|z|>R

Mq
(αβ,g,nm)

(z)dA(z)

⪯ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q + ∥ fl∥
q
(∞,α)

∫
|z|>R

Mq
(αβ,g,nm)

(z)dA(z)
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⪯ max
|z|≤R

∣∣∣ f (m)
l (z)

∣∣∣q + ∫
|z|>R

Mq
(αβ,g,nm)

(z)dA(z). (4)

Letting l → ∞, and then R → ∞, in (3) and (4),
∥∥T n,m

g fl
∥∥
(q,β) → 0 as l → ∞, which implies that T n,m

g is
compact.

Next, we show that boundedness of the operator implies the integral conditions. For this, using (1),∥∥∥T n,m
g

∥∥∥q
∥ f ∥p

(p,α) ≥
∥∥∥T n,m

g f
∥∥∥q

(q,β)

≍
∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣g(n−m)(z)

∣∣∣q
(1 + |z|)nq e−

qβ
2 |z|2 dA(z)

=
∫
C

(∣∣∣ f (m)(z)
∣∣∣q e−

qα
2 |z|2

) ∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e
(α−β)q

2 |z|2 dA(z)

=
∫
C

∣∣∣ f (m)(z)
∣∣∣q e−

qα
2 |z|2 dµ(αβ,g,nm,q)(z),

where

dµ(αβ,g,nm,q)(z) :=

∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e
(α−β)q

2 |z|2 dA(z).

Thus, if the operator T n,m
g is bounded, then the differential operator Dm f = f (m),

Dm : F α
p → Lq

w(C, dµ(αβ,g,nm,q)),

is bounded, where Lq
w(C, dµ(αβ,g,nm,q)) denote the space of all measure function f such that | f (z)| e−

qα
2 |z|2 ∈

Lp(C, dµ(αβ,g,nm,q)). By Theorem 3.3 and 3.4 of [14], Dm is bounded if and only if

µ̃(w) :=
∫
C
(1 + |z|)mqe−

αq
2 |z−w|2 dµ(αβ,g,nm,q)(z),

belongs to L
p

p−q (C, dA) for p < ∞, and belongs to L1(C, dA) for p = ∞. But,

µ̃(w) =
∫
C
(1 + |z|)mqe−

αq
2 |z−w|2 dµ(αβ,g,nm,q)(z)

=
∫
C
(1 + |z|)mqe−

αq
2 |z−w|2

∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)nq e
(α−β)q

2 |z|2 dA(z)

≥
∫

D(w,1)
e−

αq
2 |z−w|2

∣∣∣g(n−m)(z)
∣∣∣q

(1 + |z|)(n−m)q
e
(α−β)q

2 |z|2 dA(z)

⪰

∣∣∣g(n−m)(w)
∣∣∣q

(1 + |w|)(n−m)q
e
(α−β)q

2 |w|2 = Mq
(αβ,g,nm)

(w).

Therefore, M(αβ,g,nm) belongs to L
pq

p−q (C, dA) for p < ∞, and belongs to Lq(C, dA) for p = ∞.

Next, we investigate how the modulating constants α and β in the Fock spaces affect the boundedness and
compactness of T n,m

g . Accordingly, we consider different cases for α and β to obtain the following consequences
of the above theorem.

Corollary 1. Let 0 < p, q ≤ ∞, α > β and g ∈ H(C). Then T n,m
g : F α

p → F β
q is bounded or compact if and only if g

is a polynomial of degree at most (n − m)− 1. i.e T n,m
g is a zero operator.
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Proof. If T n,m
g : F α

p → F β
q is bounded, then, by Theorem 1, M(αβ,g,nm) is uniformly bounded over C, and hence

there exists a positive real number N such that

M(αβ,g,nm)(z) =

∣∣∣g(n−m)(z)
∣∣∣ e

α−β
2 |z|2

(1 + |z|)n−m ≤ N,

which implies that ∣∣∣g(n−m)(z)
∣∣∣ ≤ N(1 + |z|)n−m

e
α−β

2 |z|2
.

The right hand side of the above inequality goes to zero as |z| → ∞. Thus, g(n−m) is identically zero
function, and hence g is a polynomial of degree at most (n − m)− 1. On the other hand, if g is a polynomial
of degree at most (n − m)− 1, then clearly M(αβ,g,nm)(z) goes to zero, and by Theorem 1, T n,m

g : F α
p → F β

q is
compact. Since compactness of the operator implies boundedness, we have the desired equivalence.

The above corollary shows that when α > β, the operator T n,m
g is bounded or compact if and only if it

is the zero operator. As the zero operator trivially satisfies many topological and dynamical properties, we
restrict our attention to the case α ≤ β, and in the special case when α = β, we have the following.

Corollary 2. (i) Let 0 < p ≤ q ≤ ∞, α = β and g ∈ H(C). Then T n,m
g : F α

p → F β
q is bounded (respectively,

compact) if and only if g is a polynomial of degree at most 2(n − m) (respectively, g is a polynomial of degree at most
2(n − m)− 1).

(ii) Let 0 < q < p ≤ ∞, α = β and g ∈ H(C). Then T n,m
g : F α

p → F β
q is bounded or compact if and only if

q >

{
2p

p+2 , p < ∞
2, p = ∞

and g is a polynomial of degree at most 2(n − m)− 1.

Proof. (i) Suppose T n,m
g : F α

p → F β
q is bounded. Then, by Theorem 1, there exists a positive real number N

such that ∣∣∣g(n−m)(z)
∣∣∣ ≤ N(1 + |z|)n−m,

which by Liouville’s Theorem gives that g(n−m) is a polynomial of degree at most n − m, and hence g is a
polynomial of degree at most 2(n − m). On the other hand, if g is a polynomial of degree at most 2(n − m),
then M(αβ,g,nm) is clearly uniformly bounded over C, and by Theorem 1, T n,m

g : F α
p → F β

q is bounded. The
compactness case also follows from similar arguments.

(ii) By Theorem 1, boundedness or compactness of the operator is equivalent with M(αβ,g,nm) ∈ Lr(C, dA),
where r = pq

p−q for p < ∞ and r = q for p = ∞. That is, the operator is bounded or compact if and only if there
exists a real number N such that ∫

C


∣∣∣g(n−m)(z)

∣∣∣
(1 + |z|)n−m

r

dA(z) ≤ N,

from which the restriction on exponents p and q, and g follows.

The corollary shows that, in the case α = β, the form of the function g that generates a bounded or
compact operator T n,m

g : F α
p → F β

q is independent of the modulating constants α and β of the spaces. We next

consider the case α < β, and T n,m
g : F α

p → F β
q , 0 < p, q ≤ ∞. In this case, we characterize the boundedness and

compactness of the operator in terms of the order and type of the inducing function g associated with T n,m
g .

Recall that, the order ρ( f ) of an entire function f is defined as

ρ( f ) := lim
r→∞

sup
log(log M f (r))

log r
,

where M f (r) = max{| f (z)| : |z| = r}, and if f is of finite order ρ, its type σ( f ) is defined to be
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σ( f ) := lim
r→∞

sup
log M f (r)

rρ( f )
.

Proposition 1.
(i) Let 0 < p ≤ q ≤ ∞, α < β and g ∈ H(C). Then

(a) T n,m
g : F α

p → F β
q is bounded if and only if ρ(g) < 2 or ρ(g) = 2 and σ(g) ≤ β−α

2 .

(b) T n,m
g : F α

p → F β
q is compact if and only if ρ(g) < 2 or ρ(g) = 2 and σ(g) < β−α

2 .

(ii) Let 0 < q < p ≤ ∞, α < β and g ∈ H(C). Then T n,m
g : F α

p → F β
q is bounded or compact if and only if

ρ(g) < 2 or ρ(g) = 2 and σ(g) < β−α
2 .

Proof. The proof follows arguments similar to those used in the proof of Proposition 1.5 of [16], with the only
modification being the replacement of the function g′ there by g(n−m).

In particular, if we assume that the symbol function g is zero-free, we obtain the following corollary, which
can be proved by following arguments similar to those used in the proof of Theorem 1.6 in [16]. We include
the proof here for completeness.

Corollary 3. (i) Let 0 < p ≤ q ≤ ∞, α < β and g be non vanishing function in H(C). Then T n,m
g : F α

p → F β
q is

(a) bounded if and only if g has the form

g(z) = ebz+az2
, (5)

for some a, b ∈ C with |a| < β−α
2 , or |a| = β−α

2 and either b = 0 or a = − (β−α)b2

2|b|2 .

(b) compact if and only if g has the form in (5) and |a| < β−α
2 .

(ii) Let 0 < q < p ≤ ∞, α < β and g be non vanishing function in H(C). Then T n,m
g : F α

p → F β
q is bounded or

compact if and only if g has the form in (5) and |a| < β−α
2 .

Proof. (i) (a) First we assume the operator is bounded. Since by Proposition 1, ρ(g) ≤ 2 and g is zero-free
on C, Hadamard’s product formula gives g(z) = ebz+az2

for some a, b ∈ C. Thus, we only show that the
restrictions on a and b hold. If a = 0, then clearly |a| < β−α

2 . Assume a ̸= 0, then ρ(g) = 2 and by Proposition
1, σ(g) = |a| ≤ β−α

2 . In particular, if |a| = β−α
2 , then using Faá di Bruno’s formula,

g(n−m)(z) = ebz+az2
∑

m1,m2

(n − m)!
m1!m2!

(2az + b)m1 am2 , (6)

where m1 and m2 are nonnegative integers such that 1m1 + 2m2 = n−m and the sum is over all such a partition
(m1, m2) of n − m, we obtain

M(αβ,g,nm)(z) =

∣∣∣g(n−m)(z)
∣∣∣ e

α−β
2 |z|2

(1 + |z|)n−m

=

∣∣∣∣ebz+az2
∑

m1,m2

(n−m)!
m1!m2! (2az + b)m1 am2

∣∣∣∣
(1 + |z|)n−m e−

(β−α)
2 |z|2

=

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2! (2az + b)m1 am2

∣∣∣∣
(1 + |z|)n−m eℜ(bz)+ℜ(az2)− (β−α)

2 |z|2 ,

for all z ̸= 0. setting a = |a|e−2iθ = (β−α)
2 e−2iθ , 0 ≤ θ < π, and replacing z by eiθw in the above equation, we

obtain

M(αβ,g,nm)(weiθ) =

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2! (2aweiθ + b)m1 am2

∣∣∣∣
(1 + |w|)n−m eℜ(bweiθ)+

(β−α)
2 (ℜ(w2)−|w|2),
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for all w ∈ C. Particularly, for a real number w, we get

M(αβ,g,nm)(weiθ) =

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2! (2aweiθ + b)m1 am2

∣∣∣∣
(1 + |w|)n−m ewℜ(beiθ). (7)

Since T n,m
g : F α

p → F β
q is bounded, by Theorem 1, the function M(αβ,g,nm)(weiθ) above is uniformly

bounded, which implies that ℜ(beiθ) = 0. Thus, either b = 0 or e−iθ = ± ib
|b| . Therefore, either b = 0 or

a = (β−α)
2 e−2iθ = − (β−α)b2

2|b|2 .

Conversely, if g has the form in (5) with the given restrictions |a| < β−α
2 , or |a| = β−α

2 and either b = 0 or

a = − (β−α)b2

2|b|2 , then

sup
z∈C

M(αβ,g,nm)(z) = sup
z∈C

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2! (2az + b)m1 am2

∣∣∣∣
(1 + |z|)n−m eℜ(bz)+ℜ(az2)− (β−α)

2 |z|2

≤

sup
z∈C

∑
m1,m2

(n−m)!
m1!m2! (2|a||z|+ |b|)m1 |a|m2

(1 + |z|)n−m

(sup
z∈C

eℜ(bz)+ℜ(az2)− (β−α)
2 |z|2

)

⪯ sup
z∈C

eℜ(bz)+ℜ(az2)− (β−α)
2 |z|2 . (8)

Now, if |a| < β−α
2 , then

sup
z∈C

eℜ(bz)+ℜ(az2)− (β−α)
2 |z|2 ≤ sup

z∈C
e|b||z|)−(

(β−α)
2 −|a|)|z|2 < ∞.

If |a| = β−α
2 and b = 0, then supz∈C eℜ(bz)+ℜ(az2)− (β−α)

2 |z|2 ≤ 1. If |a| = β−α
2 and a = − (β−α)b2

2|b|2 , then

sup
z∈C

eℜ(bz)+ℜ(az2)− (β−α)
2 |z|2 = sup

z∈C
e
ℜ(bz)− (β−α)

2|b|2
ℜ((bz)2)− (β−α)

2 |z|2

= sup
z∈C

e
ℜ(bz)− (β−α)

2|b|2
((ℜ(bz))2−(ℑ(bz))2)− (β−α)

2 |z|2

= sup
z∈C

e
ℜ(bz)− (β−α)

2|b|2 ((ℜ(bz))2−(ℑ(bz))2)− (β−α)
2 |z|2

⪯ sup
z∈C

e
(β−α)

2|b|2
(ℑ(bz))2− (β−α)

2 |z|2 ≤ 1.

From the above estimates and (8), we have M(αβ,g,nm) is uniformly bounded over C. Thus, by Theorem 1,

T n,m
g : F α

p → F β
q is bounded.

(b) Suppose T n,m
g : F α

p → F β
q is compact. Then, it is bounded and by (a) above |a| ≤ β−α

2 . If |a| = β−α
2 ,

then since T n,m
g is compact, by Theorem 1, (7) must goes to zero as w → ∞. But, eℜ(beiθ) = 0 and

M(αβ,g,nm)(weiθ) =

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2! (2aweiθ + b)m1 am2

∣∣∣∣
(1 + |w|)n−m ≍ 1,

which is a contradiction. Thus, |a| < β−α
2 . On the other hand, if g has the form in (5) with the given conditions,

then

M(αβ,g,nm)(z) =

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2! (2az + b)m1 am2

∣∣∣∣
(1 + |z|)n−m eℜ(bz)+ℜ(az2)− (β−α)

2 |z|2 → 0,
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as |z| → ∞, and by Theorem 1, the operator is compact.
(ii) Suppose g has the form in (5) with |a| < β−α

2 , then clearly the function M(αβ,g,nm) belongs to Lr(C, dA),
where r = pq

p−q for p < ∞ and r = q for p = ∞. Hence, by Theorem 1, the operator is bounded (compact).

Now, suppose T n,m
g : F α

p → F β
q is bounded (compact). Then by Proposition 1 and what we have shown in (i)

above, g has the form in 5 and σ(g) = |a| < β−α
2 .

3. Essential norm of T n,m
g

For two Banach spaces X and Y, the essential norm of a bounded operator T : X → Y is

∥T∥e := inf
C
∥T − C∥,

where the infimum is taken over all compact operators C : X → Y. That is, essential norm of a bounded
operator is the distance between the operator and the set of all compact operators. Thus, the essential norm of
a compact operator is zero. Following similar procedures as in Proposition 2.4 of [16] we have the following
theorem for the essential norm of generalized integration operator T n,m

g .

Theorem 2. Let 1 ≤ p ≤ q ≤ ∞, α ≤ β and T n,m
g : F α

p → F β
q is bounded. Then∥∥∥T n,m

g

∥∥∥
e
≍ lim sup

|z|→∞
M(αβ,g,nm)(z).

Proof. To prove the lower estimate, let C : F α
p → F β

q be a compact operator. Then, since k(w,α) weakly
converges to zero on F α

p , we have

∥T n,m
g − C∥ ≥ lim sup

|w|→∞

∥∥∥T n,m
g k(w,α) − Ck(w,α)

∥∥∥
(q,β)

≥ lim sup
|w|→∞

∥∥∥T n,m
g k(w,α)

∥∥∥
(q,β)

−
∥∥∥Ck(w,α)

∥∥∥
(q,β)

= lim sup
|w|→∞

∥∥∥T n,m
g k(w,α)

∥∥∥
(q,β)

⪰ lim sup
|w|→∞

M(αβ,g,nm)(w).

For the upper estimate, we consider a sequence Φi(z) = i
i+1 z for each i ∈ N. Since i

i+1 < 1, by Corollary
3.5 of [17], the composition operator CΦi is compact. Using the estimate in (1), for some fixed positive number
R > 0 and q < ∞,∥∥∥T n,m

g

∥∥∥
e
≤
∥∥∥T n,m

g − T n,m
g ◦ CΦi

∥∥∥ ≤ sup
∥ f ∥(p,α)≤1

∥∥∥(T n,m
g − T n,m

g ◦ CΦi ) f
∥∥∥
(q,β)

≍ sup
∥ f ∥(p,α)≤1

∫
C

∣∣∣g(n−m)(z)
∣∣∣q ∣∣∣ f (m)(z)−

(
i

i+1

)m
f (m)(Φi(z))

∣∣∣q
(1 + |z|)nq e−

qβ
2 |z|2 dA(z)


1
q

≤ sup
∥ f ∥(p,α)≤1

∫
|z|≤R

∣∣∣g(n−m)(z)
∣∣∣q ∣∣∣ f (m)(z)−

(
i

i+1

)m
f (m)(Φi(z))

∣∣∣q
(1 + |z|)nq e−

qβ
2 |z|2 dA(z)


1
q

+ sup
∥ f ∥(p,α)≤1

∫
|z|>R

∣∣∣g(n−m)(z)
∣∣∣q ∣∣∣ f (m)(z)−

(
i

i+1

)m
f (m)(Φi(z))

∣∣∣q
(1 + |z|)nq e−

qβ
2 |z|2 dA(z)


1
q

:= Int1 + Int2.

We now estimate each integrals above separately. Using the estimate in (1), Int2 is bounded from above
by
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sup
|z|>R

M(αβ,g,nm)(z) sup
∥ f ∥(p,α)≤1

∫
|z|>R

∣∣∣ f (m)(z)−
(

i
i+1

)m
f (m)(Φi(z))

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2 dA(z)


1
q

≍ sup
|z|>R

M(αβ,g,nm)(z) sup
∥ f ∥(p,α)≤1

∥ f − f (Φi)∥(q,α)

⪯ sup
|z|>R

M(αβ,g,nm)(z)

 sup
∥ f ∥(p,α)≤1

∥ f ∥(q,α) + sup
∥ f ∥(p,α)≤1

∥CΦi f ∥(q,α)


⪯ sup

|z|>R
M(αβ,g,nm)(z),

(9)

where the last in equality is by boundedness of composition operator CΦi : F α
p → F α

q and the inclusion
F α

p ⊆ F α
q for p ≤ q. On the other hand,

Int1 ⪯ sup
|z|≤R

M(αβ,g,nm)(z) sup
∥ f ∥(p,α)≤1

∫
|z|≤R

∣∣∣ f (m)(z)−
(

i
i+1

)m
f (m)(Φi(z))

∣∣∣q
(1 + |z|)mq e−

qα
2 |z|2 dA(z)


1
q

≤ sup
|z|≤R

M(αβ,g,nm)(z)

(∫
|z|≤R

e−
qβ
2 |z|2

(1 + |z|)mq dA(z)

) 1
q

×

 sup
∥ f ∥(p,α)≤1

sup
|z|≤R

∣∣∣∣ f (m)(z)−
(

i
i + 1

)m
f (m)(Φi(z))

∣∣∣∣


⪯ sup
z∈C

M(αβ,g,nm)(z) sup
∥ f ∥(p,α)≤1

sup
|z|≤R

∣∣∣∣ f (m)(z)−
(

i
i + 1

)m
f (m)(Φi(z))

∣∣∣∣
⪯ sup

∥ f ∥(p,α)≤1
sup
|z|≤R

∣∣∣∣ f (m)(z)−
(

i
i + 1

)m
f (m)(Φi(z))

∣∣∣∣ (10)

Integrating the function f (m+1) along the radial segment [ iz
i+1 z, z], we get

∣∣∣ f (m)(z)− f (m)(Φi(z))
∣∣∣ ≤ |z|

∣∣∣ f (m+1)(z∗)
∣∣∣

i + 1
, (11)

for some z∗ in the segment [ iz
i+1 z, z]. Using Cauchy’s estimate for f (m+1), we also have

∣∣∣ f (m+1)(z∗)
∣∣∣ ≤ 1

R
max
|z|=2R

∣∣∣ f (m)(z)
∣∣∣ . (12)

From inequalities (11) and (12), and using the estimate∣∣∣ f (m)(z)
∣∣∣ ⪯ (1 + |z|)me

α
2 |z|

2∥ f ∥(p,α), (13)

which follows from (1) (see also, Lemma 2.2 of [14]), we get∣∣∣∣ f (m)(z)−
(

i
i + 1

)m
f (m)(Φi(z))

∣∣∣∣ = ( i
i + 1

)m ∣∣∣∣( (i + 1)m

in

)
f (m)(z)− f (m)(Φi(z))

∣∣∣∣
⪯

∣∣∣ f (m)(z)
∣∣∣

(i + 1)m +
∣∣∣ f (m)(z)− f (m)(Φi(z))

∣∣∣
≤

∣∣∣ f (m)(z)
∣∣∣

(i + 1)m +
|z|

R(i + 1)
max
|z|=2R

∣∣∣ f (m)(z)
∣∣∣

⪯
(
(1 + |z|)me

α
2 |z|

2

(i + 1)m +
2(1 + 2R)me2αR2

i + 1

)
∥ f ∥(p,α).
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Using the above estimate, inequality (10) is bounded from above by

sup
∥ f ∥(p,α)≤1

sup
|z|≤R

∣∣∣∣ f (m)(z)−
(

i
i + 1

)m
f (m)(Φi(z))

∣∣∣∣ ⪯ (1 + |z|)me
α
2 |z|

2

(i + 1)m +
2(1 + 2R)me2αR2

i + 1
. (14)

Therefore, from (10) and (14), we have

Int1 ⪯ (1 + |z|)me
α
2 |z|

2

(i + 1)m +
2(1 + 2R)me2αR2

i + 1
.

Letting i goes to ∞ and then R → ∞ in the above estimate and estimate (9), we get∥∥∥T n,m
g

∥∥∥
e
⪯ lim sup

|z|→∞
M(αβ,g,nm)(z).

The case q = ∞ is very similar to the above proof, which only needs to replace the integral by
supremum.

Since essential norm of a compact operator is zero, our next corollary aims at simplifying the above
theorem for when our operator T n,m

g : F α
p → F β

q is noncompact bounded operator.

Corollary 4. (i) Let 1 ≤ p ≤ q ≤ ∞, α = β and T n,m
g : F α

p → F β
q is noncompact bounded operator, that is, g has the

form g(z) = a2(n−m)z2(n−m) + · · ·+ a0 with a2(n−m) ̸= 0. Then∥∥∥T n,m
g

∥∥∥
e
≍ |a2(n−m)|.

(ii) Let 1 ≤ p ≤ q ≤ ∞, α < β, g is non vanishing function in H(C) and T n,m
g : F α

p → F β
q is noncompact

bounded operator, that is, g(z) = ebz+az2
for some a, b ∈ C with |a| = β−α

2 and either b = 0 or a = − (β−α)b2

2|b|2 . Then∥∥∥T n,m
g

∥∥∥
e
≍ |a|n−m.

Proof. (i) From Theorem 2,

∥∥∥T n,m
g

∥∥∥
e
≍ lim sup

|z|→∞
M(αβ,g,nm)(z) = lim sup

|z|→∞

∣∣∣g(n−m)(z)
∣∣∣

(1 + |z|)n−m

= lim sup
|z|→∞

∣∣∣a2(n−m)

(
(2(n−m))!
(n−m)!

)
zn−m + ... + an−m(n − m)!

∣∣∣
(1 + |z|)n−m

≍ |a2(n−m)|.

(ii) Using Theorem 2 and the formula (6),

∥∥∥T n,m
g

∥∥∥
e
≍ lim sup

|z|→∞
M(αβ,g,nm)(z) = lim sup

|z|→∞

∣∣∣g(n−m)(z)
∣∣∣

(1 + |z|)n−m e−
(β−α)

2 |z|2

= lim sup
|z|→∞

∣∣∣∣ebz+az2
∑

m1,m2

(n−m)!
m1!m2! (2az + b)m1 am2

∣∣∣∣
(1 + |z|)n−m e−

(β−α)
2 |z|2

⪯ lim sup
|z|→∞

∑
m1,m2

(n−m)!
m1!m2! |2az + b|m1 |a|m2

(1 + |z|)n−m eℜ(bz)+ℜ(az2)− (β−α)
2 |z|2
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⪯ lim sup
|z|→∞

∑
m1,m2

(n−m)!
m1!m2! |2az + b|m1 |a|m2

(1 + |z|)n−m

≤ ∑
m1,m2

(n − m)!
m1!m2!

(
lim sup
|z|→∞

|2az + b|m1 |a|m2

(1 + |z|)n−m

)
≍ |a|n−m.

Similarly, from lower we have

∥∥∥T n,m
g

∥∥∥
e
≍ lim sup

|z|→∞

∣∣∣∣ebz+az2
∑

m1,m2

(n−m)!
m1!m2! (2az + b)m1 am2

∣∣∣∣
(1 + |z|)n−m e−

(β−α)
2 |z|2

⪰ lim sup
|z|→∞

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2! (2az + b)m1 am2

∣∣∣∣
(1 + |z|)n−m ≍ |a|n−m.

4. Path-connected components of T n,m(F α
p ,F β

q )

In this section, we identify path-connected components of space T n,m(F α
p ,F β

q ) of bounded generalized

integration operator T n,m
g : F α

p → F β
q equipped with operator norm topology. From Corollary 1, if 0 < p, q ≤

∞ and α > β, T n,m
g : F α

p → F β
q is bounded if and only if it is a zero operator, and hence the whole space

T n,m(F α
p ,F β

q ) : is path-connected. Thus, the interesting case is when α ≤ β. For this, we first show T n,m
g1(0)

and T n,m
g2(0)

are in the same path-connected component of T n,m(F α
p ,F β

q ), where T n,m
g1 and T n,m

g2 are compact
operators.

Proposition 2. Let 0 < p, q ≤ ∞, α ≤ β, and T n,m
g1 : F α

p → F β
q and T n,m

g2 : F α
p → F β

q are compact operators. Then

T n,m
g1(0)

and T n,m
g2(0)

are in the same path-connected component of T n,m(F α
p ,F β

q ).

Proof. For the proof of this proposition, we follow the same procedures as in [17]. If gn,m
1 (0) or gn,m

2 (0) is zero,
or gn,m

1 (0) = gn,m
2 (0), then trivially T n,m

g1(0)
and T n,m

g2(0)
are in the same path-connected components. Thus, we

assume
gn,m

1 (0) = λgn,m
2 (0),

where λ ∈ C\{0, 1}. Consider a continuous function γ : [0, 1] → C such that

γ(0) = 0, γ(1) = 1, γ(t) ̸= 1
1 − λ

,

for all t ∈ [0, 1]. Define a sequence of functions ht by

ht := (1 − γ(t))gn,m
1 (0) + γ(t)gn,m

2 (0) ̸= 0,

for all t ∈ [0, 1]. Define a map T n,m
ht

: [0, 1] → T n,m(F α
p ,F β

q ). Then, T n,m
h0

= T n,m
g1(0)

, T n,m
h1

= T n,m
g2(0)

and

T n,m
ht

: F α
p → F β

q are compact for all t ∈ [0, 1]. Since

lim
t→s

∥∥∥T n,m
ht

− T n,m
hs

∥∥∥ = lim
t→s

|γ(t)− γ(s)|
∥∥∥T n,m

(g2−g1)(0)

∥∥∥ = 0,

the map T n,m
ht

is continuous. This completes the proof.

Our next two theorems shows that T n,m
g and T n,m

g(0) are also in the same path-connected component of

T n,m(F α
p ,F β

q ), where T n,m
g is a compact operator.



Open J. Math. Sci. 2026, 10, 48-68 60

Theorem 3. Let 0 < p, q ≤ ∞, α = β and T n,m
g : F α

p → F β
q is compact operator. Then T n,m

g and T n,m
g(0) are in the same

path-connected component of T n,m(F α
p ,F β

q ).

Proof. Since T n,m
g is compact, by Corollary 2, for 0 < p ≤ q ≤ ∞, g is a polynomial of degree at most 2(n −

m)− 1, and for 0 < q < p ≤ ∞, g is a polynomial of degree at most 2(n − m)− 1 and q >

{
2p

p+2 , p < ∞
2, p = ∞

.

In both cases, g has the form
g(z) = alzl + al−1zl−1 + ... + a0,

where l = 2(n − m)− 1. If ak = 0 for all k ∈ [ l+1
2 , l], then T n,m

g = T n,m
g(0) are zero operators and the result holds

trivially. We assume ak ̸= 0 for some k ∈ [ l+1
2 , l]. Define functions gt : [0, 1] → C by

gt(z) = g(tz).

Consider a map T n,m
gt : [0, 1] → T n,m(F α

p ,F β
q ). Then, T n,m

g1 = T n,m
g , T n,m

g0 = T n,m
g(0) and T n,m

gt : F α
p → F β

q are
compact for all t. We claim that this map is continuous, that is,

lim
t→s

∥T n,m
gt − T n,m

gs ∥ = 0, (15)

for every s ∈ [0, 1].
Case 0 < p ≤ q < ∞ or 0 < q < p ≤ ∞.
For each f ∈ F α

p with ∥ f ∥(p,α) ≤ 1, an application of formula (1) to the F β
q norm of a function T n,m

gt−gs
f

gives

∥T n,m
gt f − T n,m

gs f ∥q
(q,β) ≍

∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣g(n−m)

t (z)− g(n−m)
s (z)

∣∣∣q e−
qβ
2 |z|2

(1 + |z|)nq dA(z)

= |t − s|q
∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣g(n−m)

(t,s) (z)
∣∣∣q e−

qβ
2 |z|2

(1 + |z|)nq dA(z),

(16)

where

g(n−m)
(t,s) (z) =

2(n−m)−1

∑
i=(n−m)+1

ai
i!

(i − (n − m))!
zi−(n−m)

i−1

∑
j=(n−m)

sj−(n−m)ti−1−j.

For s, t ∈ [0, 1] and a positive integer i with (n − m) + 1 ≤ i ≤ 2(n − m)− 1,

i−1

∑
j=(n−m)

sj−(n−m)ti−1−j ≤
i−1

∑
j=(n−m)

1 = i − (n − m).

Thus, |g(n−m)
(t,s) (z)| ≤ |h(n−m)(z)|, where

h(n−m)(z) :=
2(n−m)−1

∑
i=(n−m)+1

ai
i!

(i − (n − m)− 1)!
zi−(n−m).

Clearly, deg(h(n−m)) ≤ (n − m)− 1 and hence deg(h) ≤ 2(n − m)− 1. Moreover, we have a restriction

q >

{
2p

p+2 , p < ∞
2, p = ∞

for 0 < q < p ≤ ∞. By Corollary 2, the operator T n,m
h : F α

p → F β
q is bounded. Thus,

∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣g(n−m)

(t,s) (z)
∣∣∣q e−

qβ
2 |z|2

(1 + |z|)nq dA(z) ≤
∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣h(n−m)(z)

∣∣∣q e−
qβ
2 |z|2

(1 + |z|)nq dA(z)

≍ ∥T n,m
h f ∥q

(q,β) ≤ ∥T n,m
h ∥q∥ f ∥q

(p,α) < ∞.
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Using this and the estimate in (16), we obtain

∥T n,m
gt − T n,m

gs ∥ ⪯ |t − s|.

Letting t → s, (15) holds.
Case 0 < p ≤ q = ∞.
Similarly, for f ∈ F α

p with ∥ f ∥(p,α) ≤ 1, using formula (1) and above estimates,

∥T n,m
gt f − T n,m

gs f ∥(∞,β) ≍ sup
z∈C

∣∣∣ f (m)(z)
∣∣∣ ∣∣∣g(n−m)

t (z)− g(n−m)
s (z)

∣∣∣ e−
β
2 |z|

2

(1 + |z|)n

= |t − s|

sup
z∈C

∣∣∣ f (m)(z)
∣∣∣ ∣∣∣g(n−m)

(t,s) (z)
∣∣∣ e−

β
2 |z|

2

(1 + |z|)n


≤ |t − s|

sup
z∈C

∣∣∣ f (m)(z)
∣∣∣ ∣∣∣h(n−m)(z)

∣∣∣ e−
β
2 |z|

2

(1 + |z|)n


≍ |t − s|∥T n,m

h f ∥(∞,β) ≤ |t − s|∥T n,m
h ∥∥ f ∥(p,α).

Therefore, ∥T n,m
gt − T n,m

gs ∥ ⪯ |t − s|. From which, (15) holds.

Theorem 4. Let 0 < p, q ≤ ∞, α < β, g is non vanishing function in H(C) and T n,m
g : F α

p → F β
q is compact operator.

Then T n,m
g and T n,m

g(0) are in the same path-connected component of T n,m(F α
p ,F β

q ).

Proof. Since T n,m
g is compact, by Corollary 3, g has the form g(z) = ebz+az2

for some a, b ∈ C with |a| < β−α
2 .

If a = b = 0, then T n,m
g = T n,m

g(0) are zero operators and the result holds trivially. For the remaining cases, define

functions gt : [0, 1] → C by gt(z) = g(tz). Consider a map T n,m
gt : [0, 1] → T n,m(F α

p ,F β
q ). Then, T n,m

g1 = T n,m
g ,

T n,m
g0 = T n,m

g(0) and T n,m
gt : F α

p → F β
q are compact for all t. We need to show (15) holds, to conclude that T n,m

gt is
continuous.

Case a = 0 and b ̸= 0.
We first estimate |g(n−m)

t (z)− g(n−m)
s (z)|,

|g(n−m)
t (z)− g(n−m)

s (z)| ≍ |ebtz − ebsz| ≤
∞

∑
i=0

(|bz|)i|ti − si|
i!

≤ |t − s|
∞

∑
i=1

|bz|i
(i − 1)!

= |t − s||bz|e|bz|, ∀z ∈ C.

(17)

Depending on the exponents p and q, we consider the following cases.
(i) 0 < p ≤ q < ∞:
For f ∈ F α

p with ∥ f ∥(p,α) ≤ 1, using estimates (1) and (17), we obtain

∥T n,m
gt f−T n,m

gs f ∥q
(q,β) ≍

∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣g(n−m)

t (z)− g(n−m)
s (z)

∣∣∣q e−
qβ
2 |z|2

(1 + |z|)nq dA(z)

⪯ |t − s|q
∫
C

∣∣∣ f (m)(z)
∣∣∣q |bz|qeq|bz|e−

qβ
2 |z|2

(1 + |z|)nq dA(z)

= |t − s|q
∫
C


∣∣∣ f (m)(z)

∣∣∣q e−
qα
2 |z|2

(1 + |z|)mq


 |z|(1 + |z|)me|bz|− (β−α)

2 |z|2

(1 + |z|)n

q

dA(z).

(18)
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Using

sup
z∈C

|z|(1 + |z|)me|bz|− (β−α)
2 |z|2

(1 + |z|)n ≤ sup
z∈C

e|bz|− (β−α)
2 |z|2

(1 + |z|)n−m−1

≤ sup
z∈C

e|bz|− (β−α)
2 |z|2 < ∞,

(19)

the estimate in (1) and the inclusion F α
p ⊆ F α

q , for p ≤ q, we further estimate (18) from above as follows.

|t − s|q
∫
C


∣∣∣ f (m)(z)

∣∣∣q e−
qα
2 |z|2

(1 + |z|)mq


 |z|(1 + |z|)me|bz|− (β−α)

2 |z|2

(1 + |z|)n

q

dA(z)

⪯ |t − s|q
∫
C

∣∣∣ f (m)(z)
∣∣∣q e−

qα
2 |z|2

(1 + |z|)mq dA(z)

≍ |t − s|q∥ f ∥q
(q,α) ⪯ |t − s|q∥ f ∥q

(p,α).

Thus,
∥T n,m

gt − T n,m
gs ∥ ⪯ |t − s|,

from which (15) holds.
(ii) 0 < p ≤ q = ∞:
Similarly, for f ∈ F α

p with ∥ f ∥(p,α) ≤ 1, using estimates (1), (17) and (19),

∥T n,m
gt f − T n,m

gs f ∥(∞,β) ≍ sup
z∈C

∣∣∣ f (m)(z)
∣∣∣ ∣∣∣g(n−m)

t (z)− g(n−m)
s (z)

∣∣∣ e−
β
2 |z|

2

(1 + |z|)n

⪯ |t − s| sup
z∈C

∣∣∣ f (m)(z)
∣∣∣ |bz|e|bz|e−

β
2 |z|

2

(1 + |z|)n

= |t − s| sup
z∈C


∣∣∣ f (m)(z)

∣∣∣ e−
α
2 |z|

2

(1 + |z|)m

 |z|(1 + |z|)me|bz|− (β−α)
2 |z|2

(1 + |z|)n


⪯ |t − s| sup

z∈C


∣∣∣ f (m)(z)

∣∣∣ e−
α
2 |z|

2

(1 + |z|)m


≍ |t − s|∥ f ∥(∞,α) ⪯ |t − s|∥ f ∥(p,α).

The last estimate is by the inclusion F α
p ⊆ F α

∞, for p ≤ ∞. From the above estimate, (15) holds for this
case also.

(iii) 0 < q < p ≤ ∞:
Following similar procedures as those leading to (18) and using the estimate in (13) we obtain

∥T n,m
gt f − T n,m

gs f ∥q
(q,β) ⪯ |t − s|q

∫
C

∣∣∣ f (m)(z)
∣∣∣q |z|qeq|bz|e−

qβ
2 |z|2

(1 + |z|)nq dA(z)

⪯ |t − s|q∥ f ∥q
(p,α)

∫
C

(1 + |z|)mq|z|qeq|b||z|− q(β−α)
2 |z|2

(1 + |z|)nq dA(z)

⪯ |t − s|q∥ f ∥q
(p,α)

∫
C

eq|b||z|− q(β−α)
2 |z|2 dA(z).

Thus, the conclusion in (15) holds, if we show that∫
C

eq|b||z|− q(β−α)
2 |z|2 dA(z) < ∞.
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To show this, let R be a positive real number such that |b| < R(β−α)
2 and define a number γ :=

βR−αR−2|b|
2R < 0, then clearly ∫

|z|≤R
eq|b||z|− q(β−α)

2 |z|2 dA(z) < ∞,

and ∫
|z|>R

eq|b||z|− q(β−α)
2 |z|2 dA(z) ≤

∫
|z|>R

eq|z|2
(
|b|
|z|−

(β−α)
2

)
dA(z)

=
∫
|z|>R

e−qγ|z|2 dA(z) < ∞.

Hence, ∫
C

eq|b||z|− q(β−α)
2 |z|2 dA(z) =

(∫
|z|≤R

+
∫
|z|>R

)
eq|b||z|− q(β−α)

2 |z|2 dA(z) < ∞. (20)

Case a ̸= 0.
Using (6) and functions gt : [0, 1] → C defined above,

|g(n−m)
t (z)− g(n−m)

s (z)| ≍
∣∣∣∣∣ ∑

m1,m2

(n − m)!am2

m1!m2!

(
(2atz + b)m1 ebtz+a(tz)2 − (2asz + b)m1 ebsz+a(sz)2

) ∣∣∣∣∣
≤ ∑

m1,m2

(n − m)!|a|m2

m1!m2!

∣∣∣∣ ∞

∑
i=0

(2atz + b)m1(btz + at2z2)i − (2asz + b)m1(bsz + as2z2)i

i!

∣∣∣∣,
where in the last estimate we used the power series representations of ebtz+a(tz)2

and ebsz+a(sz)2
. Inserting the

binomial expansions of (2atz + b)m1 , (btz + at2z2)i, (2asz + b)m1 and (bsz + as2z2)i, the right hand side of the
above estimate is equal to;

∑
m1,m2

 (n − m)!|a|m2

m1!m2!

∣∣∣∣∣∣∣∣∣∣
∞

∑
i=0

(
m1
∑

l=0

i
∑

j=0

(
m1

l

)(
i
j

)
2m1−lam1+i−l−jbl+jzm1+2i−l−j(tm1+2i−l−j − sm1+2i−l−j)

)
i!

∣∣∣∣∣∣∣∣∣∣



≤ |t − s| ∑
m1,m2

 (n − m)!|a|m2

m1!m2!

∞

∑
i=0

( m1
∑

l=0

i
∑

j=0

(
m1

l

)(
i
j

)
2m1−l |a|m1+i−l−j|b|l+j|z|m1+2i−l−j(m1 + 2i − l − j)

)
i!


⪯ |t − s| ∑

m1,m2

(
(n − m)!|a|m2

m1!m2!

∞

∑
i=0

(2|a||z|+ |b|)m1(|b||z|+ |a||z|2)i

(i − 1)!

)

= |t − s| ∑
m1,m2

(
(n − m)!|a|m2(2|a||z|+ |b|)m1(|b||z|+ |a||z|2)e|b||z|+|a||z|2

m1!m2!

)
≍ |t − s|(|b||z|+ |a||z|2)e|b||z|+|a||z|2 ∑

m1,m2

(
|a|m2(2|a||z|+ |b|)m1

m1!m2!

)
.

Therefore, we have

|g(n−m)
t (z)− g(n−m)

s (z)| ⪯ |t − s|(|b||z|+ |a||z|2)e|b||z|+|a||z|2 ∑
m1,m2

(
|a|m2(2|a||z|+ |b|)m1

m1!m2!

)
. (21)

(i) 0 < p ≤ q < ∞ or 0 < q < p ≤ ∞.
Using (21), the estimate in (1) and (13), we obtain

∥T n,m
gt f − T n,m

gs f ∥q
(q,β) ≍

∫
C

∣∣∣ f (m)(z)
∣∣∣q ∣∣∣g(n−m)

t (z)− g(n−m)
s (z)

∣∣∣q e−
qβ
2 |z|2

(1 + |z|)nq dA(z)
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⪯ |t − s|q
∫
C

( ∣∣∣ f (m)(z)
∣∣∣q e−

qα
2 |z|2

(
∑

m1,m2

|a|m2(2|a||z|+ |b|)m1

m1!m2!(1 + |z|)n

)q

(|b||z|+ |a||z|2)qeq|b||z|+q|a||z|2− q(β−α)
2 |z|2

)
dA(z)

⪯ |t − s|q
∫
C

∣∣∣ f (m)(z)
∣∣∣q e−

qα
2 |z|2(|b||z|+ |a||z|2)qeq|b||z|+q|a||z|2− q(β−α)

2 |z|2 dA(z)

⪯ |t − s|q∥ f ∥q
(p,α)

∫
C
(1 + |z|)mq(|b||z|+ |a||z|2)qeq|b||z|+q|a||z|2− q(β−α)

2 |z|2 dA(z),

for f ∈ F α
p with ∥ f ∥(p,α) ≤ 1. The limit in (15) holds true, if we show that

∫
C
(1 + |z|)mq(|b||z|+ |a||z|2)qeq|b||z|+q|a||z|2− q(β−α)

2 |z|2 dA(z) < ∞.

But, since |a| < β−α
2 , similar procedures as those leading to (20) shows that the integral is finite. Therefore,

T n,m
gt is continuous.

(ii) 0 < p ≤ q = ∞.
Similarly, using (21), for f ∈ F α

p with ∥ f ∥(p,α) ≤ 1,

∥T n,m
gt f − T n,m

gs f ∥(∞,β)

≍ sup
z∈C

∣∣∣ f (m)(z)
∣∣∣ ∣∣∣g(n−m)

t (z)− g(n−m)
s (z)

∣∣∣ e−
β
2 |z|

2

(1 + |z|)n

⪯ |t − s| sup
z∈C

( ∣∣∣ f (m)(z)
∣∣∣ e−

α
2 |z|

2

(
∑

m1,m2

|a|m2(2|a||z|+ |b|)m1

m1!m2!(1 + |z|)n

)
(|b||z|+ |a||z|2)e|b||z|+|a||z|2− (β−α)

2 |z|2
)

⪯ |t − s| sup
z∈C

∣∣∣ f (m)(z)
∣∣∣ e−

α
2 |z|

2
(|b||z|+ |a||z|2)e|b||z|+|a||z|2− (β−α)

2 |z|2

⪯ |t − s|∥ f ∥(p,α) sup
z∈C

(
(1 + |z|)m(|b||z|+ |a||z|2)e|b||z|+|a||z|2− (β−α)

2 |z|2
)

.

Since

sup
z∈C

(
(1 + |z|)m(|b||z|+ |a||z|2)e|b||z|+|a||z|2− (β−α)

2 |z|2
)
< ∞,

we get
∥T n,m

gt − T n,m
gs ∥ ⪯ |t − s|.

Letting t goes to s, the conclusion follows.

Proposition 3. Let 0 < p, q ≤ ∞ and α = β. Then
(i) the set of all compact operators T n,m

g : F α
p → F β

q forms a path-connected component of T n,m(F α
p ,F β

q ).

(ii) for 0 < q < p ≤ ∞, the whole space T n,m(F α
p ,F β

q ) is path-connected.

Proof. (i) Let T n,m
g1 and T n,m

g2 be two compact operators in T n,m(F α
p ,F β

q ). We need to show that T n,m
g1 and

T n,m
g2 belong to the same path-connected component. First, by Theorem 3, T n,m

g1 and T n,m
g1(0)

belong to the same

path-connected component, and T n,m
g2 and T n,m

g2(0)
also belong to the same path-connected component. But, by

Proposition 2, T n,m
g1(0)

and T n,m
g2(0)

belong to the same path-connected component. Hence, T n,m
g1 and T n,m

g2 belong

to the same path-connected component of T n,m(F α
p ,F β

q ).
(ii) Follows from (i) and Corollary 2.

Similarly, for α < β, the following proposition hold. Its proof follows from similar arguments as in the
proof of Proposition 3, and using Theorem 3, Proposition 2 and Corollary 3.



Open J. Math. Sci. 2026, 10, 48-68 65

Proposition 4. Let 0 < p, q ≤ ∞, α < β and g is non vanishing function in H(C). Then
(i) the set of all compact operators T n,m

g : F α
p → F β

q forms a path-connected component of T n,m(F α
p ,F β

q ).

(ii) for 0 < q < p ≤ ∞, the whole space T n,m(F α
p ,F β

q ) is path-connected.

5. Singleton of Path-connected components

Following Propositions 3 and 4, this section aims to investigate whether noncompact operators are
singleton in the path-connected components obtained in the above section. Our next two results show that
a noncompact operator is in fact singleton.

Theorem 5. Let 0 < p ≤ q ≤ ∞, α = β and T n,m
g : F α

p → F β
q be a bounded operator. Then T n,m

g is singleton in the
path-connected component in Proposition 3 if and only if g is a polynomial of degree 2(n − m).

Proof. The forward implication follows from Proposition 3. We will prove the backward implication. Suppose
g is a polynomial of degree 2(n − m), that is,

g(z) = a2(n−m)z
2(n−m) + a2(n−m)−1z2(n−m)−1 + ... + a1z + a0,

and a2(n−m) ̸= 0. It is enough to show there exists a positive number µ such that

∥T n,m
g − T n,m

g1
∥ ⪰ µ,

for all T n,m
g1 ∈ T n,m(F α

p ,F β
q ) such that T n,m

g1 ̸= T n,m
g , that is, g1 has the form

g1(z) = b2(n−m)z
2(n−m) + b2(n−m)−1z2(n−m)−1 + ... + b1z + b0,

with bk ̸= ak for some positive integer k, n − m ≤ k ≤ 2(n − m). Thus, applying T n,m
g − T n,m

g1 to the function

k(w,α)(z) in F α
p , using (1) and the inclusion F β

q ⊆ F β
∞, 0 < q ≤ ∞, we obtain

∥T n,m
g − T n,m

g1
∥ ≥ ∥T n,m

g k(w,α) − T n,m
g1

k(w,α)∥(q,β) ⪰ ∥T n,m
g k(w,α) − T n,m

g1
k(w,α)∥(∞,β)

≍ sup
z∈C

∣∣∣k(m)
(w,α)(z)

∣∣∣ ∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣
(1 + |z|)n e−

β
2 |z|

2

⪰
|w|m

∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣
(1 + |z|)n e−

β
2 |w−z|2

≥
|(a2(n−m) − b2(n−m))

(
(2(n−m))!
(n−m)!

)
zn−m + ... + (an−m − bn−m)(n − m)!|

(1 + |z|)n−m ,

(22)

where the last inequality is obtained by putting z = w. If an−m ̸= bn−m, then we set z = 0 in the above estimate
to obtain

∥T n,m
g − T n,m

g1
∥ ⪰ µ = |an−m − bn−m| ̸= 0.

If an−m = bn−m, then there exists some k, n − m < k ≤ 2(n − m), such that ak ̸= bk. Let i be the smallest of
such k. Then, from (22),∣∣∣(a2(n−m) − b2(n−m))

(
(2(n−m))!
(n−m)!

)
zn−m + ... + (an−m − bn−m)(n − m)!

∣∣∣
(1 + |z|)n−m

= |z|i
∣∣∣(a2(n−m) − b2(n−m))

(
(2(n−m))!
(n−m)!

)
zn−m−i + ... + (ai − bi)

(
i!

(2(n−m)−i)!

)∣∣∣
(1 + |z|)n−m

≥

∣∣∣(a2(n−m) − b2(n−m))
(
(2(n−m))!
(n−m)!

)
zn−m−i + ... + (ai − bi)

(
i!

(2(n−m)−i)!

)∣∣∣
(1 + |z|)n−m−i .
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Setting z = 0, we similarly obtain

∥T n,m
g − T n,m

g1
∥ ⪰ µ = |ai − bi| ̸= 0.

This completes the proof.

Theorem 6. Let 0 < p ≤ q ≤ ∞, α < β, g is non vanishing function in H(C) and T n,m
g : F α

p → F β
q be a bounded

operator. Then T n,m
g is singleton in the path-connected component in Proposition 4 if and only if g(z) = ebz+az2

for some

a, b ∈ C with |a| = β−α
2 and either b = 0 or a = − (β−α)b2

2|b|2 .

Proof. Similarly the forward implication follows from Proposition 4. Let g(z) = ebz+az2
for some a, b ∈ C with

|a| = β−α
2 and either b = 0 or a = − (β−α)b2

2|b|2 . Consider T n,m
g1 ∈ T n,m(F α

p ,F β
q ) such that T n,m

g1 ̸= T n,m
g , that

is, g1 has the form g1(z) = eb1z+a1z2
for some a1, b1 ∈ C with |a1| < β−α

2 or |a1| = β−α
2 and either b1 = 0 or

a1 = − (β−α)b2
1

2|b1|2
, with a1 ̸= a or b1 ̸= b.

(i) 0 < p ≤ q < ∞.
Applying T n,m

g − T n,m
g1 to the normalized kernel function, using (1), the estimate 1 + |z| ≍ 1 + |w| for

z ∈ D(w, 1), subharmonicity of |g(n−m) − g(n−m)
1 |q and the formula in (6),

∥T n,m
g − T n,m

g1
∥q ⪰

∫
C

∣∣∣k(m)
(w,α)(z)

∣∣∣q ∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣q
(1 + |z|)nq e−

βq
2 |z|2 dA(z)

=
∫
C

|w|mq
∣∣eαzw

∣∣q ∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣q
(1 + |z|)nq e−

βq
2 |z|2− αq

2 |w|2 dA(z)

≥
∫

D(w,1)

|w|mq
∣∣∣g(n−m)(z)− g(n−m)

1 (z)
∣∣∣q e−

(β−α)q
2 |z|2

(1 + |z|)nq e−
αq
2 |w−z|2 dA(z)

⪰ 1
(1 + |w|)(n−m)q

∫
D(w,1)

∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣q e−
(β−α)q

2 |z|2 dA(z)

⪰

∣∣∣g(n−m)(w)− g(n−m)
1 (w)

∣∣∣q
(1 + |w|)(n−m)q

e−
(β−α)q

2 |w|2

=


∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2!

(
ebw+aw2

(2aw + b)m1 am2 − eb1w+a1w2
(2a1w + b1)

m1 am2
1

)∣∣∣∣q
(1 + |w|)(n−m)q

 e−
(β−α)q

2 |w|2 ,

for all w ∈ C. After putting w = 0 and since a ̸= a1 or b ̸= b1, we obtain

∥T n,m
g − T n,m

g1
∥ ⪰ µ =

∣∣∣∣∣ ∑
m1,m2

(n − m)!
m1!m2!

(bm1 am2 − bm1
1 am2

1 )

∣∣∣∣∣ ̸= 0.

(ii) 0 < p ≤ q = ∞:
Similarly, for this case we have

∥T n,m
g − T n,m

g1
∥ ⪰ sup

z∈C

∣∣∣k(m)
(w,α)(z)

∣∣∣ ∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣
(1 + |z|)n e−

β
2 |z|

2

= sup
z∈C

|w|m
∣∣eαzw

∣∣ ∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣
(1 + |z|)n e−

β
2 |z|

2− α
2 |w|2

≥
|w|m

∣∣∣g(n−m)(z)− g(n−m)
1 (z)

∣∣∣ e−
(β−α)

2 |z|2

(1 + |z|)n e−
α
2 |w−z|2
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⪰

∣∣∣g(n−m)(w)− g(n−m)
1 (w)

∣∣∣
(1 + |w|)(n−m)

e−
(β−α)

2 |w|2 ,

where the last estimate is obtained by putting w = z. Using the formula in (6), the right hand side of the above
estimate is further equal to;

∣∣∣∣ ∑
m1,m2

(n−m)!
m1!m2!

(
ebw+aw2

(2aw + b)m1 am2 − eb1w+a1w2
(2a1w + b1)

m1 am2
1

)∣∣∣∣
(1 + |w|)(n−m)

 e−
(β−α)

2 |w|2 ,

for all w ∈ C. Putting w = 0 and since a ̸= a1 or b ̸= b1, we obtain

∥T n,m
g − T n,m

g1
∥ ⪰ µ =

∣∣∣∣∣ ∑
m1,m2

(n − m)!
m1!m2!

(bm1 am2 − bm1
1 am2

1 )

∣∣∣∣∣ ̸= 0.

6. Conclusion

In this paper, we have investigated several topological properties, in particular, boundedness,
compactness, essential norm and path-connected components, of generalized integration operator, T n,m

g ,

acting between Fock spaces F α
p and F β

q , with modulators α and β. The operator generalizes the well-known
Volterra-type integral operator, Vg.

We remark that, boundedness and compactness of Vg : F α
p → F β

q is studied in [16], and essential norm

and path-connected component of space of bounded Vg : F α
p → F β

q , for when α = β = 1, is studied in [7]. Our
results in this manuscript generalizes the results in [7,16] in terms the operator or working space or both.

The results presented in this paper suggest directions for future research. One natural problem is
to investigate whether there are another path-connected components of T n,m(F α

p ,F β
q ), and to characterize

isolated points of T n,m(F α
p ,F β

q ). Another direction is to study analogous results on the Hardy and Bergman
spaces.

Acknowledgments: The authors are very thankful to the referee for the careful reading of our paper and many suggestions
which corrected and improved our manuscript.
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