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1. Introduction

L et H(C) be space entire functions on C. For f, g € H(C), the Volterra type integral operator Vg, induced
by g, is

Vof(z) == /Ozf(w)g’(w)dw.

In recent decades, the study of Volterra type integral operators acting between different Fock-type spaces
has developed significantly. Inspired by earlier contributions of Aleman and Siskakis [1,2] on the Hardy and
Bergman spaces, Constantin [3] investigated various properties of the operator, particularly its boundedness
and compactness on Fock spaces. Subsequently, in joint work with Peldez [4], they extended this study to
weighted Fock spaces whose weight functions grow more rapidly than the standard Gaussian weight in
Fock spaces. Related problems on Fock-Sobolev spaces were later addressed by Mengestie in [5]. Despite
the progress on boundedness and compactness, there remains considerable interest in understanding the
dynamical and topological behavior of these operators on Fock spaces. The first author of this paper, in
collaboration with Bonet and Mengestie [6], studied several dynamical properties on Fock spaces endowed
with weight functions of the form |z|!, for I > 0. Moreover, topological properties such as path-connectedness,
connected components, and isolated points of the space of bounded Volterra-type integral operators were
studied in [7,8].

In [9], Chalmoukis introduced a new generalization of the Volterra type integral operator, referred to
as the generalized integration operator 7;"", defined as follows. For a nonnegative integers m and n with
0 <m < n,and f, g € H(C), the generalized integration operator, 7';1"” ,is

T o= L R g o

That is, 75" is the n-th iterate of the integral operator

Vs = [ 5 w)g ) )i,
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where f(") denotes the m-th derivative of f and f(©) = f. In particular, for m = 0 and n = 1, the operator
T reduces to the Volterra type integral operator. To guarantee the linearity and well-definedness of the
generalized integration operator 7", the constants of integration are fixed to be zero, namely Vg™ f(0) = 0.
Since f(") and ¢("~™) are entire functions, the integrals involved in 7™ are independent of the choice of
integration path.

Chalmoukis investigated certain properties of the generalized integration operator on Hardy spaces, and
his work motivated further interest in studying the operator on various other function spaces [10,11]. The main
goal of this paper is to characterize topological properties of 7" on Fock spaces F7, including boundedness,
compactness, essential norm, as well as path-connected and the singleton of path-connected components of
space of bounded generalized integration operators.

For a real number « > 0 and 0 < p < oo, Fock space F}, is the space of all functions f in #(C) such that

f(z)e 2l isin LP(C,dA), that is,

£llm = ( [, |f<z>|Pe-”z““dA<z>)’l’ <,

where dA is Euclidean area measure on the complex plane. And, for & > 0 and p = oo, Fock space F, is the
space of all functions f in H(C) such that f(z)e’%‘z‘2 isin L®(C), that is,

2
1f o) = sup | f(z)] e £ < co.
zeC

For f € #(C)and 0 < p < oo, f € Fj if and only if the function Fm(z)(1 + |z|)’me_%|z‘2 belongs to
LP(C,dA) (see, Theorem 2.1 of [12], Theorem 1 of [13], and Lemma 2.10 of [14]). Moreover, | f||(,) can be
estimated in terms of m-th derivative of f as follows;

1
m cv 4
Zo £9(0) ‘ (fc |{+\z\ € pzzsz(Z)) , 0<p<oo
j

Hf”(p,ac) = 1)

-1 i m)(z 6*%\2\2
Zo ‘f(l) (0)‘ +sup, ¢ 7f (1(+)\|z|)m , p=o09,
]:

The notation ” =< ” in (1) above is to mean S(z) =< T(z) and T(z) =< S(z), where S(z) = T(z) (or
equivalently T(z) > S(z)) means that there is a constant C such that S(z) < CT(z), for each z € C.

In particular, for p = 2, 74 is a reproducing kernel Hilbert space with kernel function Ky, 4)(z) := e,
and normalized kernel function k y, » (z) = =0~ 51l* The function k (w,2) belongs to every Fy, for 0 < p < oo,
with ||k 4)ll(pa) = 1. Furthermore, Fock spaces satisfy a natural inclusion property: 7 C Fi whenever

p < q < oo. For more information about Fock spaces, we refer to the book in [15].

2. Bounded and compact 7"

In this section, we characterize the boundedness and compactness properties of the generalized
integration operator 75" : Fp = ff for later use. We first give a characterization of these properties in
terms of the function property of

L 22

g (z) e
M(aﬁ,g,nm)(z) = (1 T |Z|)”_m ’

and then the simplified characterization will be given in the subsequent Corollaries.

Theorem 1.
() Let0 < p < g < ooand g € H(C). Then T : Fp — ff is bounded (respectively, compact) if and only if
Mg gnm) € L=(C) (respectively, imy| o0 M (up,g,nm)(w) = 0).
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(i) Let 0 < q < p < coand g € H(C). Then T : Fp = ]-"'S is bounded or compact if and only if
P9
M(uc/},g,nm) € Ly (C’ dA)fOT’ p < and M(zxﬁ,g,nm) € L1 ( )fOI’ p = oo.

Proof. The proof follows arguments similar to those used in the proof of Theorem 1.3 in [16]; for the sake of
completeness, we include the details here.

(i) If the operator ’7?”" : ]-'g — ]-'f is bounded, then using the inclusion ]:f - fﬁ, for g < oo, and the
estimate (1),

o> |72 2 78w

B2
= sup | Tk e 27l
) Zeg\ (wa)(2)|

o] [ (2)|

Il N
e N e
m | o(n—m) ‘
(1+|w|) ‘g (Z) azw_a\zé;\z e_§|z‘2,

S

for allw € C. Putting w = z, we obtain M, ¢ 4y € L(C). On the other hand, if M,
C, forg < oo,

ap,gnm) is bounded over

q
‘ 175 |z|2

dA(z)

—_ o g "(2)
T Ty el

q
‘f(m)(z)‘ e
S (SupM‘(]aﬁ,g,nm)(Z)> /(cwe 2|Z| dA(Z)

zeC

= (SUPM?mﬁ,g,nm)(ZO [ - (iggM?“ﬁ'g”m (z )) 17, 0

zeC

T¢""|| = sup,cc M(ap,gum)(2) and hence g™ is bounded. The case g = oo is similar to the above,
which only needs to replace the integral in the above estimate by supremum, we omit it.

Next, if 75" is compact, then using the fact that k(w,a) is uniformly bounded on F; and converges to zero
on a compact subsets of C as |w| goes to oo,

=0.

lim M(aﬁ,g,nm)(w) = lim HEmmk(w’a) (2.8)

|w|—o00 |w|—o00

Therefore lim|| 00 M(ap,g,um) (w) = 0. For the other direction, we let f; to be bounded sequence in 7
that converges to 0 uniformly on a compact subsets of C as I — co. Then, for R > 0 and q < oo, using (1),

i g z)
sl = [ Ol e

2 @ g
(/IZ<R /Z>R) ‘ : 1“"‘;)’” ‘ e_Tﬁ‘ | dA(z)

9

(nfm)(z)‘
(m) |1 ’g — P
~<m
_\zlg)ﬁ‘fl (Z)‘ /\z\SR A+ [z FA)

( )
sup M/ (z) / ’ ’ ’ e 717 dA
(apigmm) 2l>R (14 [z[)™

|z]>R

}q

~BlzPy

A(z)

(2)

m q
=732y max | @)+ il (fuP M?“ﬁ,g,nm)<z>>
z|>R

lz[<

) AT o e 7
<
=< rng;;‘fl (Z)‘ Hfill () <§|“>% Miap,g,nm) (Z)>
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(m)
= M! :
N \Izrfg?z ‘fl (Z)‘ + |S‘u>% (ap,gnm) (2)

Letting [ — co and then R — co, we get
n,m
|75 gy = ©

and hence 7" is compact. The case g = o is very similar to the above. Thus, we omit it.
(ii) We first show that the integral conditions imply compactness of the operator. Let (f;) be a uniformly
bounded sequence in 7} and f; — 0 uniformly on compact subsets of C as | — co. Then, for R > 0

f ) i
725l = I i 1ng|)m, e dA(2)
i gl () X
</|Z<R /z>R> ‘ l 1‘+’Iz|) ‘ e FEPAA(2)
o ’ (n— m)(z)’q g

@
+/|ZI>R (M?“ﬁ'gfnm>(z)) (‘1l+|z|)lwe2| " dAG)

@

(m) q q IR
< ma 1@+ [ Mg @) | Ty £ | 4462

Now, for p < oo, applying Holder’s inequality, and then using (1), the integral in (2) is further estimated
as follows;

f(m)(z)q .
/IZ\>R (M?“ﬁrgr"m)<z)> (’114-|z|)”’”f€ZZ dA(z)

el e Y "
/|Z>R(’11+|Z|)’ aae) ( \>RM(0¢I3 z

_\
Q
\_//—\
\—/
[
S
—
SN—
N———
=|

p—

= ill7 0 (/| . {p;" (2 )dA(z)>p =< </|Z>RM<’£2’gnm)(z)dA(z)>p,

Q
Iy
4

and hence

el < mos 50+ ([ @40 ®

|z <R

Similarly, for p = oo, from (2) we have

(m) (|1
fl(m) (Z) ' + /|z|>R (M?aﬁ,g,nm)(z)) me_?hz dA(Z)

nm
757l = 28
m
() (" W—W/ :
s max|fi " (@)| + P or Mlap gm (IIAR)

m q
= max [ @)+ il |

|z|>R M[Z“ﬁrg,nm) (z)dA(z)
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(m) (|7 / 9
= .
= max A @[+ o Mg gy (IAC) (4)
Letting | — o0, and then R — oo, in (3) and (4),
compact.
Next, we show that boundedness of the operator implies the integral conditions. For this, using (1),

Te" fi H(q,ﬁ) — 0as | — oo, which implies that 7" is

H,Tgn,qu ||f‘|€7p,lx) > H@n'me?q,ﬁ)

Fm )| |gtn=m(z)
= . ’ <1Uz|w

"7
e*%Z‘ZdA(z)

IEROENT
= /(C (‘f(m)(z)‘qe*%‘z‘z) ‘fi " ;T)Zn)l e%‘z‘sz(Z)

q _gqxp,2
= /(C ’f(m)(z)’ e 2 | d;"l(vzﬁ,g,nm,q)(z)/

where

(n—m) q

‘g (2)‘ (=Bl |, p2
d‘u(a‘B,g,nm,q)(z) = We 2 |z dA(Z).

Thus, if the operator 7, is bounded, then the differential operator D" f = f (m)

D" : Fy = L(C,dp (ap g umq))r

is bounded, where L{,(C, d‘u(“ﬁ,g,nm,q)) denote the space of all measure function f such that |f(z)| =

LP(C, dp (ap,4,1m,q))- By Theorem 3.3 and 3.4 of [14], D™ is bounded if and only if

_ 8, 2
) = [ )" g (2),
belongs to L7 (C,dA) for p < 0, and belongs to L!(C,dA) for p = co. But,

ﬁ(ZU) = ./(C(l + |Z‘)mqe_‘)%q'Z_w‘de(aﬁ,g,nm,q) (Z)

_ q
g(n m) (Z)‘ e(aaﬁ)q|Z|ZdA
(1+[z])m

(n=m) ()]
g (Z)‘ e(zv;ﬁ)q‘z‘sz

(2)

aq 2
_ 14|z mq ,— 7 |z—w|
JACERED

] 2

> Sl 12 1

~ JD(w1) ‘ (1 + |z|)(n=m)a =)

(n=m) ()|
g @)
D B lw|* _ am

- (1+ Iw\)(”—mwe i = Mg gm) (©):

Therefore, My, nm) belongs to L7 (C,dA) for p < oo, and belongs to L1(C,dA) for p = co. [

Next, we investigate how the modulating constants « and  in the Fock spaces affect the boundedness and
compactness of 75", Accordingly, we consider different cases for a and  to obtain the following consequences
of the above theorem.

Corollary 1. Let 0 < p,q < 0o, & > Band g € H(C). Then Tg"™ : Fy = ]-'},B is bounded or compact if and only if g
is a polynomial of degree at most (n —m) — 1. i.e Tg"" is a zero operator.
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Proof. If 7;“" . F r‘f — ]-'5 is bounded, then, by Theorem 1, M(,X B,gmn) is uniformly bounded over C, and hence
there exists a positive real number N such that

g o] 47
M(zxﬁ,g,nm)(z) = 1+ [z <N,
which implies that
_ N(1+ [z])*™
‘g(n m)(z)’ < W’

The right hand side of the above inequality goes to zero as |z| — co. Thus, g"~™) is identically zero
function, and hence g is a polynomial of degree at most (1 — m) — 1. On the other hand, if g is a polynomial
of degree at most (n — m) — 1, then clearly M4 ¢ »)(2) goes to zero, and by Theorem 1, 7" : Fjy — fqﬁ is
compact. Since compactness of the operator implies boundedness, we have the desired equivalence. [

The above corollary shows that when a > B, the operator 75" is bounded or compact if and only if it
is the zero operator. As the zero operator trivially satisfies many topological and dynamical properties, we
restrict our attention to the case « < 8, and in the special case when « = 8, we have the following.

Corollary 2. (i) Let0 < p < q < oo, = Band g € H(C). Then Tg"" : Fp = ]-'f is bounded (respectively,
compact) if and only if g is a polynomial of degree at most 2(n — m) (respectively, g is a polynomial of degree at most
2(n—m) —1).

(i) Let 0 < g < p < oo, = Band g € H(C). Then Tg"™ : Fp = ]-'f is bounded or compact if and only if

q> £’+2' and g is a polynomial of degree at most 2(n — m) — 1.
, p=o
Proof. (i) Suppose 75" : Fp = ]:},B is bounded. Then, by Theorem 1, there exists a positive real number N
such that
g @) < N+l

which by Liouville’s Theorem gives that ¢("~™) is a polynomial of degree at most n — m, and hence g is a
polynomial of degree at most 2(n — m). On the other hand, if g is a polynomial of degree at most 2(n — m),
then M,g,¢ um) is clearly uniformly bounded over C, and by Theorem 1, T Fp — ]-",f is bounded. The
compactness case also follows from similar arguments.

(ii) By Theorem 1, boundedness or compactness of the operator is equivalent with Mg ¢ ) € L"(C,dA),

where r = pp—jq for p < co and r = g for p = co. That is, the operator is bounded or compact if and only if there

exists a real number N such that .
g (2)|
/ ————— | dA(z) <N,
c \ (T+[z[)r—m

from which the restriction on exponents p and g, and g follows. O

The corollary shows that, in the case & = B, the form of the function g that generates a bounded or
compact operator 7" : Fp — ]-'f is independent of the modulating constants « and f of the spaces. We next
consider the case a < 8, and 7;,””” : ]—";;‘ — ]—"f ,0 < p,q < co. In this case, we characterize the boundedness and
compactness of the operator in terms of the order and type of the inducing function g associated with 7"
Recall that, the order p(f) of an entire function f is defined as

o(f) = Tim sup 28108 Mr (1)

r—00 log r

where M¢(r) = max{|f(z)| : |z| = r}, and if f is of finite order p, its type ¢ (f) is defined to be
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o log M (r)

Proposition 1.
(@) Let0<p<g<ooa<pandgec H(C). Then
@ Ty Fpy — fqﬁ is bounded if and only if p(g) < 2 or p(g) =2and o (g) < ’32;“
(b) T« Fpy — ]—"f is compact if and only if p(g) < 2 0r p(g) =2and 0(g) < 52;“
(i) Let 0 < g < p < oo < Bandg € H(C). Then Ty : Fy — ff is bounded or compact if and only if
p(g) < 20rp(g) =2and o(g) < £5*.

Proof. The proof follows arguments similar to those used in the proof of Proposition 1.5 of [16], with the only
modification being the replacement of the function g’ there by ¢("~"). [J

In particular, if we assume that the symbol function g is zero-free, we obtain the following corollary, which
can be proved by following arguments similar to those used in the proof of Theorem 1.6 in [16]. We include
the proof here for completeness.

Corollary 3. (i) Let 0 < p < g < co, & < Band g be non vanishing function in H(C). Then Tg"" : Fjj — ]-"qﬁ is
(a) bounded if and only if ¢ has the form

g(Z) — ebz-i—azz, (5)

for some a,b € C with |a| < ’3—;“, or |a| = ﬁ%"‘ and either b = 0 or a = —%.

(b) compact if and only if g has the form in (5) and |a| < ﬁ; .
(i) Let 0 < q < p < 0o, & < B and g be non vanishing function in H(C). Then Tg"™ : Fp = ]-'qﬁ is bounded or
compact if and only if ¢ has the form in (5) and |a| < %

Proof. (i) (a) First we assume the operator is bounded. Since by Proposition 1, p(g) < 2 and g is zero-free
on C, Hadamard’s product formula gives g(z) = eb2+92 for some a,b € C. Thus, we only show that the
restrictions on a and b hold. If 2 = 0, then ;learly la| < @ Assume a # 0, then p(g) = 2 and by Proposition
=5

1,0(g) =lal < /32;“. In particular, if [a| = %5~, then using Faa di Bruno’s formula,

(n—m) _ bz+az? (n—m)! my iy
g (z) =e m;%z T (2az +b)"a™, (6)

where m; and m; are nonnegative integers such that 1m1 + 2my = n —m and the sum is over all such a partition
(my,my) of n — m, we obtain

g=m)(2)] PP
(1 [z[)rm

e

M(:xﬁ,g,nm) (Z) =

bz+az? (n—m)!
e mZ mylmy! (Zaz + b)mlam2
1,112

(1 [z[)m=m

_ (ﬁ;"‘) EE

Y %’;:2,‘ (2az + b)™q™
My,

R(b2)+R(az?)— £ 2

(1 [z])r=m

for all z # 0. setting a = |ale~2? = (ﬁ;“) e=2%,0 < 0 < 7, and replacing z by ¢’w in the above equation, we
obtain

‘ v 5:1_,”’;12),' (2awe™ + b)™ g™
) (we) = =222

(1+ fw|)r=m

M R(bwe) +- 3 (R(w?)—[wf?)
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for all w € C. Particularly, for a real number w, we get

e Gawe® + bymane|
. Sy 1
(e = = e e 7

Map g nm

Since T¢"" : Fp — .7-',5 is bounded, by Theorem 1, the function Mg,¢ im) (we'®) above is uniformly

bounded, which implies that ?R(beif)) = 0. Thus, either b = 0 or e ¥ = + ‘lbb‘ Therefore, either b = 0 or
a4 = (5;") p—2i0 — (ﬁzi\b“\;bz

Conversely, if ¢ has the form in (5) with the given restrictions |a| < ﬁ%"(, or |a| = B¢ > and either b = 0 or

a=— (52_‘5“ %bz , then

Y (n—m)! - (2az + b)™a™2

sup M( )(Z) = sup my,my My ip! %(bz)+§}g(azz)_<ﬁ7;@‘z‘2
zeC ’X.Blg,ﬂm zeC (1 —+ |Z|)n7m
L Lt (2lallz] + [b])™ a2
< | sup my,nip sup e%(bz)+§ﬁ(azz) LMZ
- \=eC (1+ |z])m—m zeC
< sup R0 PR P, (®)
zeC

Now, if |a| < %, then

sup eR(b2) R~ B0l o g lbllz) (P52 —lal) P < o,

e zeC
If |a| = M2 +R(@2) = E a2 < 1 1f |g] = B anda = — (ﬁzlbl)2 then
i e%(szmazz)_@‘ZP =supe ?R(bz) z\b\z R((b2)2) - B30 |22
zeC et
= sup e?R(hz) (f\b\Z)((SR(bZ)) (g(bz))z%@mz
zeC
= supe §R(bz) 2\b\2 L((R(b2))2= (S (b2))?) — L2 |22
zeC
B (g =]
= supe 2PF (3(b2)) =557 22 <1
zeC

From the above estimates and (8), we have Mg ¢ ) is uniformly bounded over C. Thus, by Theorem 1,
T Fy = .7-"5’ is bounded.
(b) Suppose Tg"" : Fjy — ]—',f is compact. Then, it is bounded and by (a) above la] < B3 1f |a| = B2

7

then since 7;"™ is compact, by Theorem 1, (7) must goes to zero as w — co. But, e R(be) = and

Y % (2awe™ + b)™ g
10 _ my,ny 172 — 1
apB,gnm) (we ) = (1_|_ |w|)”*’” ~ 1,

M

which is a contradiction. Thus, |a| < 132;“ On the other hand, if ¢ has the form in (5) with the given conditions,
then

Y (n':;,zz),' (2az + b)™qa™
my,my

= R(bz)+R(az? /5 z|?
M(ap g nm)(2) = (ENEIE R(b2)+R(a?)— B3 7| N
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as |z| — oo, and by Theorem 1, the operator is compact
(ii) Suppose g has the form in (5) with |a| < B2 then clearly the function M, ; ) belongs to L"(C,dA),
where r = ppj’q for p < ccand r = g for p = oo. Hence, by Theorem 1, the operator is bounded (compact).

Now, suppose 7¢"" : Fj — ]-"f is bounded (compact). Then by Proposition 1 and what we have shown in (i)
above, g has the form in 5 and 0(g) = |a] < @ O
3. Essential norm of 7,

For two Banach spaces X and Y, the essential norm of a bounded operator T : X — Y'is
ITlle = inf T .

where the infimum is taken over all compact operators C : X — Y. That is, essential norm of a bounded
operator is the distance between the operator and the set of all compact operators. Thus, the essential norm of
a compact operator is zero. Following similar procedures as in Proposition 2.4 of [16] we have the following
theorem for the essential norm of generalized integration operator 74"

Theorem 2. Let 1 < p < g < oo, a < Band Tg”’m o ]-]’,3 is bounded. Then

= lim sup M(ap gnm)(2)-

el

HTnm

Proof. To prove the lower estimate, let C : F) — .7-'; be a compact operator. Then, since k(,,) weakly
converges to zero on JF},, we have

| 7g =€l = limsup | 73"k 0 — CK(ua)

|w| 00 (q.8)
> limsup || 7"k — ||Ck
= oo 178 @l p) |k e (@6)

= limsup || 73"k (1,0 wf)

|w|—o0

= limsup Mg, ¢ i) (W)

|w]—o0

For the upper estimate, we consider a sequence ®;(z) = 1z for each i € N. Since /7 < 1, by Corollary
3.5 of [17], the composition operator Cg, is compact. Using the estimate in (1), for some flxed positive number
R>0andg < o0,

el <l T”’”ocq,H<|f”Sup H(?’m—?’mocq)fum,ﬁ)
" gt /C‘g( dik 1+|§)1) (Z»’qeqf'zsz(z) |
= Ui -/IZ\SR i "f(m)(u|Z<;,f;>mf(m(¢i(z))‘qe Raa(z) %
P e S NALETR |
= Inty + Ints.

We now estimate each integrals above separately. Using the estimate in (1), Int; is bounded from above



Open J. Math. Sci. 2026, 10, 48-68 57

. / @ - (i) @] e Y
sup Mg um)(2) sup “rENdA(z
R Pt \ SR (1+[z])m
= sup M(aﬁ,g,nm)<z> sup Hf_f(q)i)H(q,zx)
|z[>R 11l (pay <1 )

= sup M(zxﬁ,g,nm) (Z) sup ||f||(q,tx) + sup ||C¢)if||(q,rx)
|z|>R £l () <1 11l (pay <1

= sup M(a/},g,nm) <Z>/
|z|>R

where the last in equality is by boundedness of composition operator Ce, : F; — F7 and the inclusion
.7-";;‘ - .7-"}7" for p < g. On the other hand,

()" F @i(2))|' q
(1+ 2™

‘ F0m) ()
Int; X sup Mg enm)(2) sup /
z|<R (g Ifllpay <1 \ /IFI=R

|22 i

e~ L

< sup M (2) / ———dA(z) | X sup sup
sier P (lzlSR (1 [z[)™ 171 ) <1 2I<R

@) - () £ )

= sup M(aﬁ,g,nm) (Z) sup  sup
zeC

£l <1 I2I<R i+1
: m
= sup sup f(m) (z) — (i _:_ 1) f(m) (CDi(z))‘ o)

[lfl(pay<1lzI<R

Integrating the function f("*+1) along the radial segment [ ; +1z z], we get

2] |0 2%)

i+1 ! (1)

£ (2) = £ (@i(2)) | <

for some z* in the segment [ii—zlz, z]. Using Cauchy’s estimate for f("*1), we also have

< 1 max ’f(m)(z)’. (12)

(m+1) (%
e < g max

From inequalities (11) and (12), and using the estimate

£ (@) = @+ [z "2 = £l (13)

which follows from (1) (see also, Lemma 2.2 of [14]), we get

@ - () e - ()
- ’(JZ—I-l

IO §
= ’(i+1)m’ + R(i|+|1) DR ’f( )(Z)’

14 [z])mesl2? 2(1 + 2R)me20R?
b (( ED L ) T

(140" poe)— o)

I F @) = ) (@(2)|

i+1)m it1
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Using the above estimate, inequality (10) is bounded from above by

. m m,%|z|? 2(1 + 2R)™ 20R?
myy (1 (m) (. (L+[z[)"e2 (L+2R)"e
sup_sup [/"(z) ~ (77 ) Smeua| = O R
1£ ) <1 2I<R i+1 l i+1)" i+1

Therefore, from (10) and (14), we have

(1+|z))mes®  2(1+ 2R)me2R?

Ii’lt1 j : T
(i+1)m i+1
Letting i goes to co and then R — o in the above estimate and estimate (9), we get
HT;”” . = limsup M(ug,¢ m) (2).
|z| =0

The case g = oo is very similar to the above proof, which only needs to replace the integral by

supremum. []
Since essential norm of a compact operator is zero, our next corollary aims at simplifying the above

theorem for when our operator 75" : Fp — ff is noncompact bounded operator.

Corollary 4. (i) Let1 < p < g <oco,a = pand Tg" : Fp — .7-',5 is noncompact bounded operator, that is, g has the
form g(z) = az(n_m)zz(”*m) + -+ -+ ag with ay(, ) # 0. Then

|72 = taagu-ml
(ii) Let 1 < p < q < oo, & < B, g is non vanishing function in H(C) and Tg"™ : Fp = ]-',f is noncompact
bounded operator, that is, g(z) = gbz+az? for some a,b € C with |a| = @ and either b = 0ora = — (ﬁzmlbz. Then

el =
Proof. (i) From Theorem 2,

g0 (2)|

n,m
|7 T+ D"

=< limsup Mug,¢,um)(2) = limsup
€ |z|—o00 |z| =00
’az(nfm) (%) 2 g (n — m)"

(1 [z[)r=

= limsup
|z| =00

= ‘a2(n—m) ‘
(ii) Using Theorem 2 and the formula (6),

5" @] e

|7 TR

=< limsup M(4g,¢ um)(2) = limsup
€ |z] =00 |z]—e0

ehz+uzz Y (n—'m)'! (2112 + b)m1 a2

mymy U2 (B=a) |2
= limsup 12 pr— e~z [l
12| o0 (14 |z))

y umlogg 4 bl jg|me

mqlmy!
iy T (R(b2)+R(az2) - EL 22

(1 [z])m=m

= limsup z
|z| =00
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Y (7,'111_,;:’2),' |2az + b|™1|a|™2
. my,my
=< limsup

|z|—o00

(1+ |z[)n—m

(mn—m)! [ |2az + b|"™1|a|™2 _
<y, — (1 | < e,
- my!my! 1msup (1+ |z|)n—m 2|

my,my |z|—o00

Similarly, from lower we have

bz +az? Y S;:;’i]:z): (2az 4 b)™a™2

(B=2) |12
THE™| =< limsu e 7 I
7], = timsup (T
Y %’1_,:112),' (2az + b)™a™
= lim sup — "2 = |a|™™,
= T A i

O

4. Path-connected components of 7" (F}, .7:5 )

In this section, we identify path-connected components of space 7" (7}, .7-',5 ) of bounded generalized
integration operator 7;"" : Fp = ff equipped with operator norm topology. From Corollary 1,if 0 < p,g <
coanda > B, T¢" + Fjf — ]-"Zf is bounded if and only if it is a zero operator, and hence the whole space

m

T”'m(f;‘,ff ) : is path-connected. Thus, the interesting case is when a < B. For this, we first show 7;(0)

and 7;';’("8) are in the same path-connected component of 7" (F7, .7:5 ), where Tg™ and Tg,™ are compact
operators.

Proposition 2. Let 0 < p,q < oo, & < B, and Tg™ : Fj — ]-"f and g™« Fy — .7-"5 are compact operators. Then

, m ; , B
7; ("8) and 7;; (0) are in the same path-connected component of T"™ (Fp  Fi)-

Proof. For the proof of this proposition, we follow the same procedures as in [17]. If g} (0) or g5 (0) is zero,
or g""(0) = g5 (0), then trivially 7;1’("01) and 7;[2’("5) are in the same path-connected components. Thus, we
assume

81" (0) = Agy™(0),
where A € C\{0,1}. Consider a continuous function v : [0,1] — C such that

7(0) =0,7(1) =1 7(t) # -1
for all t € [0, 1]. Define a sequence of functions h; by
he = (1= 7(£)81"(0) + 7(£)g5™(0) #0,

for all t € [0,1]. Define a map 7, : [0,1] — T”’m(f;‘,fqﬁ). Then, 7" = 7;?(76’), T = g’;’('g) and

7;17’"1 cFy = .7-",;5 are compact for all ¢ € [0, 1]. Since

lim
t—s

gm_ Jm
7" =T

t

= lim ) =76 | T 0| =0

the map 7% is continuous. This completes the proof. [
P /y, P P

Our next two theorems shows that 7" and 7" are also in the same path-connected component of
8 2(0) p p

T (Fy, f,f ), where T¢"™ is a compact operator.
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Theorem 3. Let0 < p,q < co,a = Band T{"" : Fjy — Ff is compact operator. Then Tg""™ and 7;%’)1 are in the same
path-connected component of T"" (Fy, ]-"E,ﬁ ).

Proof. Since 75" is compact, by Corollary 2, for 0 < p < q < oo, g is a polynomial of degree at most 2(1n —

2p
m) —1,and for 0 < q < p < oo, g is a polynomial of degree at most 2(n —m) — 1 and q > { 5+2' pse
,  p=o0

In both cases, g has the form
g(z) = a2 +a;_127 1+ .+ ay,

where ! = 2(n —m) — 1. If ap = 0 for all k € [55L,1], then T = 7;%;’ are zero operators and the result holds
trivially. We assume a; # 0 for some k € [HTl, I]. Define functions g; : [0,1] — C by

81(z) = g(t2).

Consider a map Tg,™ : [0,1] — T”'m(f;‘,ff). Then, 74" = Tg"", Tg™ = 7;?'0’” and Ty : Fy — ]:‘53 are
compact for all £. We claim that this map is continuous, that is,

fm 7 = T =0 a9

for every s € [0,1].
Case0<p<g<ooor0<g<p<oco,
. For each f € Fj with [|f]/(,,4) < 1, an application of formula (1) to the }',f norm of a function 7" f
gives

— q _aB,2
F @) [of" ™ () - gz EE
1 Tg™ f = Tgr / (1+|z|)”'7 dA(z)
T (16)
q ’f ’ ’g )’ ¢ | dA
sl . ERE =),
where
(1) z(anm:)fl it () ii () i1
S (2) = aj -z g/—\nmmp =]
(t5) i=(n—m)+1 (li(nim))! j=(n—m)

Fors,t € [0,1] and a positive integer i with (n —m) +1 <i <2(n—m) —1,

-1 o i1
Yy, il < Y 1=i— (n—m).
j=(n—m) j=(n—m)

Thus, [g(" (2)] < [h"=")(2)|, where

Zif(nfm)

i=(n—m)+1 '(Z - (” - ) — 1)!

Clearly, deg(i("~™)) < (n — m) — 1 and hence deg (/) < 2(n — m) — 1. Moreover, we have a restriction

2
q > 5*2' P foro< q < p < oo. By Corollary 2, the operator 7,"" : Fff — .7-"; is bounded. Thus,
, p=0
‘f (Vl m)(z)‘qe—%\zlz ‘f ‘ ’h n—m) )’qe—%lz\z
) < A
/ 1+ B / R dA(z)

= IT" ey < IT 11 W <
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Using this and the estimate in (16), we obtain
7™ =T ™ | = |t = sl.

Letting t — s, (15) holds.
Case 0 < p < q = oo
Similarly, for f € F; with [|f|[(,«) < 1, using formula (1) and above estimates,

- - _B
T2 F — Tm g ‘f(m)<z)‘ ’ggn m)(z) _ggn m)(z)‘e Blz2
Te, " f = Tg 00,g) X SU
¢ & (cop) ze(l:i) (1+|z|)"

o g0
= — S su
o T+ [z

‘ Fm) (Z)‘ ‘ j(n—m) (Z)‘ e bz
<|t—s su
< lt=sl | sup CERE)E

< 1t = SIIT" Fll oy < 1= STy

Therefore, || 7g™ — Tg ™ || < [t — s|. From which, (15) holds. [J

Theorem 4. Let0 < p,q < oo, a < B, g is non vanishing function in H(C) and Tg"™ Fp — ]-'f is compact operator.
Then Tg"™ and ’7;261)1 are in the same path-connected component of T"™ (Fy, ]-"f ).

Proof. Since 7" is compact by Corollary 3, g has the form g(z) = eb2152 for some a,b € C with |a] < B2
Ifa="b=0,then 7" =7 " 2(0) are zero operators and the result holds trivially. For the remaining cases, deflne
functions g; : [0,1] — C by g(z) = g(tz). Consider a map Tg,™ : [0,1] — T”'m(f;’,‘,ff). Then, Tg," = Tg"",
gO'm = 7;;61)1 and gt’m : .7-";;‘ — ]—"f are compact for all f. We need to show (15) holds, to conclude that 7}':"" is
continuous.
Casea = 0and b # 0.
We first estimate |gtn_m)( z) — gﬁ” m)(z)|,

_ s bZ i ti _ Si
|g£n m)(z) (H ) ( )| - |ebtz bsz‘ < Z | |)l|' |
. |bz|l: (17)
<|t—s |Z = |t —s]|bz|e!?l, vz € C.
Depending on the exponents p and g, we consider the following cases.
Ho<p<g<oo
For f € Fj with || f||(,a) < 1, using estimates (1) and (17), we obtain
(2 (n=m) [T~ )22
£ ’ ’gtn "(z) — g (z)] e 2
g qnmed ’
1T =T ) = | <1+ e 4A(z)
‘f ‘ |bz‘Qe‘7|hZ|@ QIS‘Z‘Z
q
~l / 1+ EDE dA(z) (18)

PO EEN a4 apymee- e
sl / 1+\z| )i ( FENEIE 4A ().



Open J. Math. Sci. 2026, 10, 48-68 62

Using
2 2
|z| (1 + |z])™ e\bZ\ B elbzl— B
sup < SUp T T
e A+ D" U (T 19)
< sup el =P < oo,
zeC

the estimate in (1) and the inclusion F5 C F%, for p < g, we further estimate (18) from above as follows.
p q P=q

@[ T EN (a4 oyt R
A R e ( AR e

Fim
s [
& S‘/ 1—|—|z

= [ —sPI£17, ) < \t—SIQHfII?,,,,X)

dA(z)

Thus,
T = T = I,
from which (15) holds.
(ii)0<p<g=co:
Similarly, for f € F; with ||f[|(,«) < 1, using estimates (1), (17) and (19),

£ @) s 2) - gl 2) | e

7™ f = Tge™ fll (cop) = sUP

2€C (1+ [z)"
£ )| bzlelvzle— 212
< |t —s|su
= [ slsup =

| W A e
=|f5|§gg< 1+ |z])™ (1+z[)

’ Flm) <z>’ e3P
< |t—s -
S l=sle | s

=1t = sl fll oy = 16 =11l

The last estimate is by the inclusion ]:;;‘ C F%, for p < oo. From the above estimate, (15) holds for this
case also.

()0 <g < p <L oo

Following similar procedures as those leading to (18) and using the estimate in (13) we obtain

‘ |z|qeq‘bz‘g |Z|2

fom
mye  gnm9 o ‘
T =Ty = 1=l [ A

1+ ‘Z| mﬂzwgq‘bllz‘ 18w ‘2‘2

< It sP£I ) [ (ER 4A(z)
z q Z2
<= s 0y [etE A ).

Thus, the conclusion in (15) holds, if we show that

pAlbl12l— 1B 2 5 4
Le (2) <
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To show this, let R be a positive real number such that [b| < M and define a number v :=

51{%1;*2\“ < 0, then clearly

pAlbllzl = 122 5 4
/|z|<R (&) <o

and

[ et < 2P (-5 g4 (2)
\z\>R |z|>R

N \z|>Re_W‘2dA(Z) < .

|b]|z|— 2B |22 ' [b]|z|— €72 |22
/(Ceq dA(z) = (/Z§R+ Z>R) g dA(z) < oo, (20)

Case a # 0.
Using (6) and functions g : [0,1] — C defined above,

Hence,

— Igm
|g£n— ( ) gs(n m)(z)‘ - E (71 m)'a z ((2atz+b)mlehtz+u(tz)2 _ (2asz+b)mlehsz+a(sz)z)

My ml!mz!
<y (n—m)!|a|™ i (2atz 4 b)™ (btz + at?z2)! — (2asz + b)™ (bsz + as®z?)!
T oty malmy! = il ’

where in the last estimate we used the power series representations of ebtz+altz)? gng ebszta(sz)?, Inserting the
binomial expansions of (2atz + b)™, (btz + at?z?)!, (2asz +b)"™ and (bsz + as?z?)!, the right hand side of the
above estimate is equal to;

'E i my l D=l g ==l g 420l (g + 20— gy 211
(n —m)!|a|™ i =0j=0 \ ! ]
. i!

)3

I,
My, mqnip:

my 1

(n—m)!|a|™ & IZO Zo( 11 ) (; >2”1lu|’”1+ilf|b|l+f|z|”11+2ilf(m1 2i —1 ]))
m)!|a Z —0j=
il

i=0

<|t—s| ).

mo!
iy, My mqinmp:

m)!la|™ & (2|a||2|+bl)’"l(lb||2|+|a||2|2)i>

< |t —s| Z( 1y 'y ?;0 (i—1)!

mq,mo
—=sf 3 ({mml Clae+ o) e+ |a||z|2>eblz+allzz)
My mllmz!

. b 2
= [t = s|(|bllz] + [a] |z|)el R 57

my,my

<|ﬂ|’"2(2aIIZI + |b|)m1>.

mq!lmy!

Therefore, we have

8" (@) =" @) 2 |t = s|(Jbllz| + lal z2)elt =l Y ('”' T ) @)

11115
My myimyp:

Ho0<p<g<ooor 0<g<p<Loo.
Using (21), the estimate in (1) and (13), we obtain

n-— M) (n=m) AT~z
[T T / ’f ’ ‘gt (1+|Z|532q (Z)’ e 2 1A)
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(2 a|™(2|al|z e !
5|t—s|ﬂ/(c<]f('”)(2)]qequ (Z | L;ilfigl('l':Ilb)")i )

my,my

(|b]2| + |a||z|?)9ebl=lalallzF*~ e Z|2> dA(z)

‘2 q(B—a) |Z\2

dA(z)

\ZIZdA( ),

<le=slt [|fm @[ e FE (oll] + falf2yrentlet el

IZ‘I

= 1t=slIfIIT, [C(l + [20)"(|bl|z] + [a] 2|l = Halell
for f € Fj with || f]|(0) < 1. The limit in (15) holds true, if we show that
/cu el 91l 2|+ a2 el 252 4 ) < oo

But, since |a] < B% similar procedures as those leading to (20) shows that the integral is finite. Therefore,
Tg™ is continuous.

([({0<p<g=oo

Similarly, using (21), for f € Fp with [|f|[(,a) < 1,

7™ f = T fll (oo

e Hg(" "(z) - g" " (z)] e EEF
- ilel(IC) (14 |z])"

m 2 a|"™2(2]al|z| + |b])™ allz2— 22
j|ts|sug<\f< )(2)] 2 (2 sP2lollel + 1) )(|b||z+|az| )l )
ze

e, mlma!(1+|z))
< |t = sl sup | ) 2) [ e 24P bl 2| + )11 1P~ 5
ze

2_ 2
¢ =5l ) sp (1 )" Bl + o el 5 F )
ze

Since
ﬁ o)
sup ( (14 )" (2| + 221214 P 55 ) <o,

zeC
we get

[ Tgy™ = T 2 1t = sl

Letting t goes to s, the conclusion follows. [

Proposition 3. Let 0 < p,q < coand o = B. Then
(i) the set of all compact operators Tg"" Fp — ]—'qﬁ forms a path-connected component of T"™(Fy, ]—"f ).
(i) for 0 < q < p < oo, the whole space T"™ (Fy, ]-",f ) is path-connected.

Proof. (i) Let 7/ and 7Tg,™" be two compact operators in 7" (Fp, F{f ). We need to show that 7, and
" belong to the same path-connected component. First, by Theorem 3, 7g/"™" and T"’(m belong to the same

path -connected component, and 7,,”" and T” s also belong to the same path-connected component. But, by
Proposition 2, 7;’ (o) and 7;; ) belong to the same path-connected component. Hence, 7™ and 7g,"™ belong

to the same path-connected component of 7" (F7, ]:f )-
(ii) Follows from (i) and Corollary 2. [

Similarly, for « < f, the following proposition hold. Its proof follows from similar arguments as in the
proof of Proposition 3, and using Theorem 3, Proposition 2 and Corollary 3.



Open J. Math. Sci. 2026, 10, 48-68 65

Proposition 4. Let 0 < p,q < oo, & < B and g is non vanishing function in H(C). Then
(i) the set of all compact operators Tg"" Fp — ]—",f forms a path-connected component of T"™(Fy, .Fqﬁ ).
(if) for 0 < g < p < oo, the whole space T”'m(fﬁ‘,}f ) is path-connected.

5. Singleton of Path-connected components

Following Propositions 3 and 4, this section aims to investigate whether noncompact operators are
singleton in the path-connected components obtained in the above section. Our next two results show that
a noncompact operator is in fact singleton.

Theorem 5. Let 0 < p < g < oo, = Band Ty : Fff — ]-',f be a bounded operator. Then Tg"™ is singleton in the
path-connected component in Proposition 3 if and only if g is a polynomial of degree 2(n — m).

Proof. The forward implication follows from Proposition 3. We will prove the backward implication. Suppose
g is a polynomial of degree 2(n — m), that is,

8(z) = a2(n7m)22(n_m) + a2(nfm)flzz(n_m)_l + .t a1z +ao,
and ay(,,_,,) 7 0. Itis enough to show there exists a positive number y such that
T3 = T = g
for all Tg;™ € T"™(F, .7-"5' ) such that 7g™ # Tg"", that s, g1 has the form
81 (Z) = bZ(nfm)Z2(nim) + bZ(nfm)flzz(nim)il + ...+ b1z + by,

with by # ay for some positive integer k, n —m < k < 2(n — m). Thus, applying Tg"" — T¢™ to the function
k(w)(z) in Fj, using (1) and the inclusion .Fqﬁ - ]:ﬁ, 0 < g < oo, we obtain

[T =T8N = N T " kwa) — T k) l@,8) = 1T kwa) = T " Kiw,m)ll (c0,8)
[k @) [g" ™ @) =& @)
4 e 2|Z‘

= sup

zeC (1+|Z‘)n
m | o(n—m) _ o (n—m) 22
el s e @] ()
- 1+ 2"
gy = baguy) (G ) 2 4 o+ @ — b 01— )1
- (L+ [z[)r=m '

where the last inequality is obtained by putting z = w. If 4, # by, then we set z = 0 in the above estimate
to obtain

1T = T = i = V- = b 0.

If ay—y = by—_m, then there exists some k, n — m < k < 2(n — m), such that a; # by. Let i be the smallest of
such k. Then, from (22),

’(az(n_m) — by (%) 2 (g — by (1 — m)!‘
(L+[z[)m—m

. ’(a2(n7m) = b2(n—m)) ((2((,;1__%)1)!> 2 Lt (4= by) ((z(n_li,;)_l).) ‘

(L+ [z[)r—m

@ty = ) (FEE) 2 e+ 0= ) ()|

- (1 + |z])n—m=i '
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Setting z = 0, we similarly obtain

17" = Te™ | = w = lai = bi| # 0.

This completes the proof. [

Theorem 6. Let 0 < p < q < oo, a < B, g is non vanishing function in H(C) and T3 Fp = ]-'f be a bounded
operator. Then Tg"™ is singleton in the path-connected component in Proposition 4 if and only if g(z) = eb2+02 for some

a,b € Cuwith |a| = ﬁ andeztherb—Oora——(ﬁz_‘;‘;bz.

Proof. Similarly the forward implication follows from Proposition 4. Let g(z) = eP212 for some a,b € C with

la] = ﬁ%“ and either b = Oora = — (ﬁ2|b|)2 Consider T € T"’m(f"‘ .7:’5) such that 75" # Tg"", that
is, g1 has the form g1(z) = 1707 for some a1, by € Cwith |a| < 2% or |ay| = 2 £ and either b; = 0 or
a = _(ﬁ2|b ‘)2 ,withay # aorb; #b.

Ho<p<g<oo.
Applying 73" — Tg™ to the normalized kernel function, using (1), the estimate 1 + |z| < 1+ |w| for

z € D(w, 1), subharmonicity of |g("~") — g§”7m) |7 and the formula in (6),

k@) g - g )|
n,m n,m (w,u) 1 _Bay,2
7 =T = | T Y1 (z)
m q
0l =2 [0 — g @ e g
_/ (1—|—|z|)”‘1 e 2 2% dA(z)
w|ma (n—m) 2 — (n—m) 5 ‘76_(/5*2“)»”2‘2 )
. ][5 () - g""(2)] T
~ JD(w,1) (14 |z|)"a
1 _ (nfm) q _(B=®)q,2
= Tl Jogu |87 @ = e aac)

m - q
" @) —gi" @) gy

(1+ [w)ma ¢

Y

q
—m)! 2 ?
v % (ebw—‘raw (Zaw + b)ml a2 — phrw+mw (2a1w + b1)m1gT2>
W — (B2
B e 2 ’

(L )t

for all w € C. After putting w = 0 and since a # a; or b # b;, we obtain

— |
T =T = = | R gy 2o,

()0 <p<g=co:
Similarly, for this case we have

(n— m) (n—m) 2
HT Tan = sup w”‘ ‘ ‘g (z) - 81 ( )‘efg\zlz

zeC (1+ [z])"
ol™ =] ’g(nmz) - ggn_m)(z)‘ —51zP—§ P
= su e
s A+ 2"
o [gm ) g M) B
> 2|w z|

- (14 |z[)"
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$" @) =g @)
A+ oo ’

where the last estimate is obtained by putting w = z. Using the formula in (6), the right hand side of the above
estimate is further equal to;

—m)! 2 my ,m 8 201w +
Y (n 'm)'. (ebw+aw (2aw+b) 1gM2 _ ebiwtaiw ( 1 bl) llﬂl 2)
L ! MW‘Z

mym e 2 ’

L+ [0

for all w € C. Putting w = 0 and since a # a1 or b # bj, we obtain

— |
e e D e R

O

6. Conclusion

In this paper, we have investigated several topological properties, in particular, boundedness,
compactness, essential norm and path-connected components, of generalized integration operator, 75",

acting between Fock spaces F) and F; p , with modulators « and . The operator generalizes the well-known
Volterra-type integral operator, V.

We remark that, boundedness and compactness of V; : ]-"}‘;‘ — ff is studied in [16], and essential norm

and path-connected component of space of bounded Vg : F — F, P for when a = B =1, is studied in [7]. Our
results in this manuscript generalizes the results in [7,16] in terms the operator or working space or both.
The results presented in this paper suggest directions for future research. One natural problem is

to investigate whether there are another path-connected components of T"'m(]:l’;‘,]:f ), and to characterize
isolated points of 7" (Fp, }'f ). Another direction is to study analogous results on the Hardy and Bergman
spaces.
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