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theorem in suprametric spaces, and study spectral properties of positive linear operators. Furthermore, we
show that operator equations involving some concave or convex operators satisfy a Geraghty contraction and
therefore have solutions. As an application, we prove a Perron-Frobenius theorem for a tensor eigenvalue
problem.
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1. Introduction

T he aim of this paper is to present alternative measurement tools in normed vector spaces ordered by
cones, such as the Hilbert projective metric [1] and the Thompson part metric [2], to study spectral

properties of homogeneous operators and the existence of solutions to a class of non-homogeneous operator
equations. Let E be normed vector space and θ its zero element. A nonempty closed subset K of E is called cone
if it satisfies three conditions: (i) K + K = K; (ii) λ K ⊆ K for all λ > 0; (iii) K ∩ (−K) = {θ}. Let K∗ := K \ {θ}
and a nonempty interior of K is denoted K̊. The notation x ≤ y means that y − x ∈ K. Two elements x, y ∈ K∗

are said comparable and denoted x ∼ y if there exist real numbers α, β > 0 such that αx ≤ y ≤ βx, which is
indeed an equivalence relation. Hilbert’s projective metric is defined on K∗ by:

dH(x, y) = ln
M(x/y)
m(x/y)

, if x ∼ y,

where m(x/y) := sup{λ : λx ≤ y} and M(x/y) := inf{λ : x ≤ λy}, and dH(x, y) = ∞ if x and y are not
comparable.

The importance of this projective metric was highlighted by Birkhoff [3], when he provided an elegant
proof involving the Hilbert’s projective metric, and showed the existence of a positive eigenvector via the
Banach contraction principle. Note that the measure of the distance between two points of the same ray via
the Hilbert projective metric is null. This measure is non-null if we use another variant of distance, which was
introduced by Thompson,

dT(x, y) = ln(M(x/y) ∨ M(y/x)), if x ∼ y,

and dT(x, y) = ∞ if x and y are not comparable. Thompson’s distance function is indeed a genuine metric on
each part of the cone, where a part is a class of equivalence.

Both Hilbert and Thompson distance functions play important roles in solving linear and nonlinear
operator equations. For instance, Hilbert’s projective metric has been applied by Potter [4] to study a class of
Hammerstein integral equations. It was also used by Eveson [5] to prove the existence of a positive eigenvector
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associated with a positive eigenvalue for a linear operator. Hilbert’s projective metric even arises in more
complicated systems, as shown by Huang et al. [6] when studying a nonlinear elliptic problem or Reeb et
al. [7] in their work on quantum information theory. However, Thompson’s part metric is very effective to
solve nonlinear matrix equations as it is shown by Liao et al. [8]. Furthermore, it has been used by Chen
[9] and Herzog and Kunstmann [10] to study the stability of difference equations and semilinear equations,
respectively. Alternative distance functions, to the Thompson metric, have been introduced by the author in
[11]. Here we show how to construct projective suprametrics and part suprametrics connected to Hilbert and
Thompson distance functions.

In this paper, we introduce the concept of projective suprametrics and provide new part suprametrics
in normed vector spaces. We present their interconnections and mutual relations with the Hilbert and
Thompson distance functions, and furnish various examples. We study the link between the different notions
of convergences. As a byproduct, we get new inequalities for Hilbert’s and Thompson’s distances. We
provide some sufficient conditions for the completeness of certain subsets of the space. We prove a theorem of
Krein-Rutman for strongly positive operators via some existing fixed point theorems and involving projective
suprametrics. We further establish a Geraghty fixed point theorem in suprametric spaces and show that certain
classes of concave or convex operators satisfy the contraction of Geraghty type. As an application, we prove a
Perron-Frobenius theorem and show the existence of positive eigenvalue and eigenvector to a tensor spectral
problem.

The paper is organized as follows: §2 presents the pseudo-suprametric spaces. §3 introduces some
projective and genuine suprametrics. The convergence relationships are investigated in §4. §5 presents some
conditions for the completeness. In §6, we establish a new fixed point theorem of Geraghty type. §7 presents
some theorems of Krein-Rutman types. In §8, we study certain concave and convex operators. §9 is devoted
to the investigation of a problem of tensor eigenvalues.

2. Pseudo-suprametric spaces

In this section, we present the concept of pseudo-suprametric and provide an example of bounded
suprametric.

Definition 1. Let X be a nonempty set and ρ be a constant in [0,+∞). Let d : X × X → [0,+∞) be a function
and for all x, y, z ∈ X consider the following properties:

(d1) d(x, y) = 0 =⇒ x = y.
(d2) d(x, x) = 0.
(d3) d(x, y) = d(y, x).
(d4) d(x, y) ≤ d(x, z) + d(z, y) + ρ d(x, z)d(z, y).
A pair (X, d) is called suprametric space if X is a nonempty set and d satisfies (d1)–(d4), and it is called

pseudo-suprametric space if X is a nonempty set and d satisfies (d1)–(d4).

For examples of suprametrics, we refer the reader to [11]. We next provide an example of a suprametric
whose range is [0, 1).

Example 1. Let X = R and d : X × X → [0, 1) be the function given by

d(x, y) = 1 − e−|x−y|(|x−y|+1), for all x, y ∈ X.

Then d is a suprametric for ρ = 1. Precisely, (d1)–(d3) hold easily and (d4) comes from the following
technical lemma.

Lemma 1. For all s, t ≥ 0, es + et ≤ es+t + e−st.

Proof. Firstly, observe that if s = 0 or t = 0 the inequality becomes equality. We now show that the inequality
holds for t = s > 0, that is,

2es ≤ e2s + e−s2
, s > 0.
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By the monotonicity of the function s 7→ es + e−s−s2 − 2, we deduce that it is positive for s > 0, which
implies that es − 1 ≥ 1 − e−s−s2

=
(

es − e−s2
)

e−s or equivalently es (es − 1) + e−s2 ≥ es.
Without loss of generality, suppose now that s > t > 0. If t ≥ 1, then by the mean value theorem, it

follows that there exists a constant c ∈ (0, t) such that es (et − 1
)
+ e−st = tes+c + e−st ≥ et. Otherwise, if t < 1,

we will instead prove the following equivalent inequality

est+t − 1 ≤ est+s+t − est+s.

To this end, we apply twice [12, Lemma 2] (see also [13]), which asserts that for all x, y ∈ R such that
x ̸= y, we have

e
x+y

2 ≤ ex − ey

x − y
≤ 1

2
(ex + ey) .

Hence, since st + t ̸= 0 and st + s + t ̸= st + s, we get

est+t − 1 ≤ 1
2
(st + t)

(
est+t + 1

)
and test+s+ t

2 ≤ est+s+t − est+s.

We claim that 1
2 (st + t)(est+t + 1) ≤ test+s+ t

2 if 0 < t < s with t < 1. Observe first that if t ∈ (0, 1),(
t + ln

(
1−t
1+t

))′
= t2+1

t2−1 < 0, we deduce that 2t + 2 ln
(

1−t
1+t

)
< 0 or equivalently (1 − t)2 et < (1 + t)2 e−t

thus t 7→ et

1+t − cosh t
2 is increasing on (0, 1) since

(
et

1+t − cosh t
2

)′
= 1

4(1+t)2

(
(1 + t)2 e−t − (1 − t)2 et

)
+

1
2
(
sinh t − sinh t

2
)
, which implies that et

t+1 ≥ cosh t
2 , so by monotonicity of t 7→ et

1+t we deduce for s > t that

es

1 + s
≥ et

1 + t
≥ 1

2

(
e

t
2 + e−

t
2

)
≥ 1

2

(
e

t
2 + e−st− t

2

)
.

Hence, our claim follows easily from the following inequality

est+ t
2 es ≥ 1

2
est+ t

2 (1 + s)
(

e
t
2 + e−st− t

2

)
.

Let us now return to the proof of (d4) of Example 1. Note that from [11, Example 1.1], we have that
(x, y) 7→ |x − y| (|x − y|+ 1) is a suprametric with ρ = 1, then we deduce

d(x, y) ≤ 1 − e−s−t−st,

where s = |x − z| (|x − z|+ 1) and t = |z − y| (|z − y|+ 1). To show (d4) it suffice to show that

1 − e−s−t−st ≤
(
1 − e−s)+ (1 − e−t)+ (1 − e−s) (1 − e−t)

= 3 − 2e−s − 2e−t + e−s−t,

or equivalently
2es+t − 2es − 2et + e−st + 1 ≥ 0,

which follows easily from the previous lemma. However, it is worthy to note that d is not a metric, since
d(x, y) > d(x, z) + d(z, y) when 10z= 20x = 5y= 1.

At the end of this section recall that the concepts of convergence and completeness are similar to that in
metric spaces.

3. Suprametrics in vector spaces

In what follows we will adopt the following notations. Let E be a real normed vector space and K its cone.
K is called solid if K̊ is nonempty. The order interval [x, y] := (x + K) ∩ (y − K). The notation x < y means that
y − x ∈ K̊ whenever K is solid. Moreover if K is solid, an operator A : E → E is called strictly (strongly) positive
if A

(
K̊
)

⊆ K̊ (A (K∗) ⊆ K̊). A positive operator A is said increasing (resp. decreasing) whenever Ax ≤ Ay
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(resp. Ax ≥ Ay) if x ≤ y. If K is solid, a strongly positive operator A is said strongly increasing whenever
Ax < Ay if x ≤ y with x ̸= y. A positive operator A is called p-homogeneous on S ⊆ K if A (λx) = λp Ax
for all λ > 0 and x ∈ S, where p ∈ [0, ∞) is constant. If E is equipped with a norm ∥ · ∥, K is called normal
if there exists a constant of normality cN > 0 such that x ≤ y implies ∥x∥ ≤ cN ∥y∥. The norm is said to
be monotone if x ≤ y implies ∥x∥ ≤ ∥y∥. Let r > 0, and define the set Sr := {x ∈ K: ∥x∥ = r} and if K
is solid, we define the set S̊r := {x ∈ K̊ : ∥x∥ = r}. The open ball of center z and of radius r is denoted by
B (z; r) := {x ∈ E : ∥x − z∥ < r}. An operator A : E → F is said compact if the image of bounded subsets of E
are relatively compact subsets of F. Now we recall a result of Bushell [14].

Lemma 2. If x, y ∈ K∗ and M(x/y) is finite, then m(x/y)y ≤ x ≤ M(x/y)y. Moreover, 0 < m(x/y) ≤ M(x/y) <
∞ for all x, y ∈ K̊ when K is solid.

In the sequel, if K is solid, then for all x, y, z ∈ K̊ and all λ, µ > 0, we have

m(x/z)m(z/y) ≤ m(x/y), M(x/y) ≤ M(x/z)M(z/y). (1)

m(λx/µy) =
λ

µ
m(x/y), M(λx/µy) =

λ

µ
M(x/y). (2)

m(x/y)M(y/x) = 1. (3)

More properties are presented in [15,16]. From now on, we fix the constants κ ∈ [1,+∞) and τ ∈ [2,+∞), and
for all x, y ∈ K̊, we define

πm(x, y) := (m(x/y)m(y/x))κ , πM(x, y) := (M(x/y)M(y/x))κ ,

Λ(x, y) := (m(x/y) ∧ m(y/x))τ , V(x, y) := (M(x/y) ∨ M(y/x))τ .

Remark that for all x, y ∈ K̊, by (3) we have

πm(x, y) = πM(x, y)−1 and Λ(x, y) = V(x, y)−1. (4)

If the norm is monotone, then for all x, y∈ K̊ it follows from Lemma 2 that

0 < πm(x, y) ≤ m(x/y) ≤ 1 ≤ M(x/y) ≤ πM(x, y). (5)

For all x, y ∈ K̊, we easily obtain:
(p1) πm(x, y)x ≤ m(x/y)m(y/x)x ≤ m(x/y)y ≤ x.
(p2) x ≤ M(x/y)y ≤ M(x/y)M(y/x)x ≤ πM(x, y)x.
(p3) Λ(x, y)x ≤ m(x/y)m(y/x)x ≤ m(x/y)y ≤ x.
(p4) x ≤ M(x/y)y ≤ M(x/y)M(y/x)x ≤ V(x, y)x.
(p5) Λ(x, y)y ≤ (m(x/y) ∧ m(y/x)) y ≤ m(x/y)y ≤ x.
(p6) x ≤ M(x/y)y ≤ (M(x/y) ∨ M(y/x)) y ≤ V(x, y)y.
(p7) πm(x, y) ≤ m(x/y)m(y/x) ≤ 1 ≤ M(x/y)M(y/x) ≤ πM(x, y).
(p8) Λ(x, y) ≤ m(x/y)m(y/x) ≤ 1 ≤ M(x/y)M(y/x) ≤ V(x, y).
(p9) Λ(x, y) ≤ m(x/y) ≤ M(x/y) ≤ V(x, y).

Definition 2. Let dm : K∗ ×K∗ → [0, 1] be given by,

dm(x, y) =

{
1 − πm(x, y), if x ∼ y,
1, otherwise.

Let dM : K∗ ×K∗ → [0, ∞] be given by,

dM(x, y) =

{
πM(x, y)− 1, if x ∼ y,
∞, otherwise.
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The next proposition justifies the projective nomenclature of dm and dM.

Proposition 1. Let K be a solid cone. If d is either dm or dM then
(i) d(λx, µy) = d(x, y) for all x, y ∈ K̊ and λ, µ > 0.
(ii) d(x, y) = 0 for x, y ∈ K̊, then x = λy for all λ > 0.

Proof. From (2) follows immediately (i), and (ii) follows easily from Lemma 2, (i), (3), (p1), (p2) and the
respective definition of d.

Next, we show that a subset of K endowed with one of the projective suprametrics is a suprametric space.

Theorem 1. Let K be a solid cone. If d is equal to dm or dM, then (K̊, d) is a pseudo-suprametric space and (S̊r, d) is a
suprametric space.

Proof. Clearly, (d1) does not holds because of Proposition 1 except if x, y ∈ S̊r, however (d2) and (d3) follow
from the very definition of d. We now show that (d4) is satisfied for both dm and dM. By (1) and (p7), we have

dm(x, y) ≤ 1 − (m(x/z)m(z/y)m(y/z)m(z/x))κ

≤ 1 − πm(x, z)πm(z, y) + 2(1 − πm(x, z))(1 − πm(z, y))

= 3 − 2πm(x, z)− 2πm(z, y) + πm(x, z)πm(z, y)

= dm(x, z) + dm(y, z) + dm(x, z)dm(y, z).

dM(x, y) ≤ (M(x/z)M(z/y)M(y/z)M(z/x))κ − 1

= dM(x, z) + dM(y, z) + dM(x, z)dM(y, z).

Remark 1. Let K be a solid cone. It is worthy to note that on K̊ and by (4), we have

dm = dM
1+dM

and dM = dm
1−dm

.

Hilbert’s projective metric is related to dm and dM as following:

dm = 1 − e−κdH , dM = eκdH − 1,

dH = −κ−1 ln(1 − dm), dH = κ−1 ln(dM + 1).

Next we give examples of projective suprametrics.

Example 2. Let E := Rn, K := {(x1, . . . , xn) : xi ≥ 0, 1 ≤ i ≤ n} and K̊ = {(x1, . . . , xn) : xi > 0, 1 ≤ i ≤ n}.
By using m(x/y) = min1≤i≤n

xi
yi

and M(x/y) = max1≤i≤n
xi
yi

, we define the functions dm : K̊ × K̊ → [0, 1) and

dM : K̊ × K̊ → [0,+∞) by:

dm(x, y) = 1 −
(

min
1≤i,j≤n

xiyj

yixj

)κ

and dM(x, y) =

(
max

1≤i,j≤n

xiyj

yixj

)κ

− 1.

Example 3. Let E := C[0, 1] be a space of all real-valued continuous functions defined on [0, 1]. Let K := {x ∈
E : x(t) ≥ 0, 0 ≤ t ≤ 1} and K̊ := {x ∈ E : x(t) > 0, 0 ≤ t ≤ 1}. For all x, y ∈ K̊, we use m(x/y) = inft∈[0,1]

x(t)
y(t)

and M(x/y) = supt∈[0,1]
x(t)
y(t) , we then define the functions dm : K̊ × K̊ → [0, 1) and dM : K̊ × K̊ → [0,+∞) by:

dm(x, y) = 1 −
(

inf
s,t∈[0,1]

x(s)y(t)
y(s)x(t)

)κ

and dM(x, y) =

(
sup

s,t∈[0,1]

x(s)y(t)
y(s)x(t)

)κ

− 1.

Example 4. Let E be the set of positive definite matrices, K(n) be the cone of positive semi-definite matrices of
size n and K̊(n) its interior. If we denote by λM(S) and λm(S) respectively the greatest and the least eigenvalue
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of any matrix S ∈ K̊(n), so as in [17, Lemma 2.1] (see also [18]), then we define dm : K̊(n)×K̊(n) → [0, 1) and
dM : K̊(n)×K̊(n) → [0,+∞) by

dm(A, B) = 1 − λm(A−1B)κλm(B−1 A)κ and dM(A, B) = λM(A−1B)κλM(B−1 A)κ − 1.

Example 5. Let (E, ∥ · ∥) be a real (n + 1)-dimensional affine normed space. Let K ⊂ E be a solid a cone and
H ⊂ E be an n-dimensional affine hyperplane such that Ω := H ∩ K̊ is open, bounded, convex set. The line
joining two distinct points x and y of Ω intersects ∂Ω in x′ and y′ such that x is between x′ and y, and y is
between x and y′ (cf. Figure 1).

Ω

x′ x y y′

Figure 1. A convex set Ω where x, y ∈ Ω and x′, y′ ∈ ∂Ω

Define the functions δm : Ω × Ω → [0, 1) and δM : Ω × Ω → [0,+∞) by

δm(x, y) = 1 −
(
∥x − x′∥∥y − y′∥
∥y − x′∥∥x − y′∥

)κ

and δM(x, y) =
(
∥y − x′∥∥x − y′∥
∥x − x′∥∥y − y′∥

)κ

− 1,

for all x ̸= y in Ω, and δ(x, x) = 0 for all x ∈ Ω. Then using the same arguments as that of the proof of [19,
Theorem 2.2], we get

M(x/y) =
∥x − y′∥
∥y − y′∥ and M(y/x) =

∥y − x′∥
∥x − x′∥ ,

and the restriction of dm and dM to Ω coincide respectively with δm and δM.

We next present new part suprametrics.

Definition 3. Let dΛ : K∗ × K∗ → [0, 1] be given by

dΛ(x, y) =

{
1 − Λ(x, y), if x ∼ y,
1, otherwise.

Let dV : K∗ × K∗ → [0,+∞] be given by

dV(x, y) =

{
V(x, y)− 1, if x ∼ y,
∞, otherwise.

We need the following obvious lemma in the proof of suprametrics.

Lemma 3. (ab ∧ cd) ≥ (a ∧ c)(b ∧ d) and (ab ∨ cd) ≤ (a ∨ c)(b ∨ d), for all a, b, c, d ∈ [0,+∞).

Theorem 2. Let K be a solid cone. If d is either dΛ or dV , then (K̊, d) is a suprametric space.

Proof. If d= dΛ, then dΛ(x, y) = 0 implies that Λ(x, y) = 1. Without loss of generality, we assume that
m(x/y) = 1, so by (p9) and (4) it follows that m(y/x) = 1, which implies that x = y and (d1) holds. Similarly, if
d= dV we get dV(x, y) = 0 implies x = y and again (d1) holds. Now, (d2) and (d3) follows immediately from
the definition of d. We next show that (d4) is satisfied for dΛ and dV . By using (1), (p3), (p4) and Lemma 3, we
obtain

dΛ(x, y) ≤ 1 − (m(x/z)m(z/y) ∧ m(y/z)m(z/x))τ

≤ 1 − Λ(x, z)Λ(z, y) + 2(1 − Λ(x, z))(1 − Λ(z, y))
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= 3 − 2 Λ(x, z)− 2 Λ(z, y) + Λ(x, z)Λ(z, y)

= dΛ(x, z) + dΛ(y, z) + dΛ(x, z)dΛ(y, z).

dV(x, y) ≤ (M(x/z)M(z/y) ∨ M(y/z)M(z/x))τ − 1

≤ V(x, z)V(z, y)− 1

= dV(x, z) + dV(y, z) + dV(x, z)dV(y, z).

Remark 2. Let K be a solid cone. It is worthy to note that on K̊ and by (4), we have

dΛ =
dV

1 + dV
and dV =

dΛ

1 − dΛ
.

Thompson’s metric dT is related to dΛ and dV as following:

dΛ = 1 − e−τdT , dV = eτdT − 1,

dT = −τ−1 ln(1 − dΛ), dT = τ−1 ln(dV + 1).

Example 6. Under the hypotheses of Example 2, we define the functions dΛ : K̊× K̊ → [0, 1) and dV : K̊× K̊ →
[0,+∞) by:

dΛ(x, y) = 1 −
(

min
1≤i≤n

(
xi
yi

)
∧ min

1≤i≤n

(
yi
xi

))τ

and dV(x, y) =
(

max
1≤i≤n

(
xi
yi

)
∨ max

1≤i≤n

(
yi
xi

))τ

− 1.

Example 7. Under the hypotheses of Example 3, we define the functions dΛ : K̊× K̊ → [0, 1) and dV : K̊× K̊ →
[0,+∞) by:

dΛ(x, y) = 1 −
(

inf
t∈[0,1]

x(t)
y(t) ∧ inf

t∈[0,1]

y(t)
x(t)

)τ

and dV(x, y) =

(
sup

t∈[0,1]

x(t)
y(t) ∨ sup

t∈[0,1]

y(t)
x(t)

)τ

− 1.

Example 8. Under the hypotheses of Example 4, we define the functions dΛ : K̊× K̊ → [0, 1) and dV : K̊× K̊ →
[0,+∞) by:

dΛ(A, B) = 1 −
(

λm(A−1B) ∧ λm(B−1 A)
)τ

and dV(A, B) =
(

λM(A−1B) ∨ λM(B−1 A)
)τ

− 1.

Example 9. Under the hypotheses of Example 5, we define the functions δΛ : Ω×Ω → [0, 1) and δV : Ω×Ω →
[0,+∞) by:

δΛ(x, y) = 1 −
(
∥y − y′∥
∥x − y′∥ ∧ ∥x − x′∥

∥y − x′∥

)τ

and δV(x, y) =
(
∥x − y′∥
∥y − y′∥ ∨ ∥y − x′∥

∥x − x′∥

)τ

− 1.

The restriction of dΛ and dV to Ω coincide respectively with δΛ and δV .

4. The convergence relationships

In this section we show the links between convergence in suprametrics and that in the underlying norm
of vector space.

Proposition 2. Let K be a normal solid cone in normed vector space (E, ∥ · ∥1) such that ∥ · ∥1 is monotone. Then, for
all x, y ∈ S̊r,

∥x − y∥1 ≤ 2rdM(x, y) = 2r
dm(x, y)

1 − dm(x, y)
,

∥x − y∥1 ≤ 2rdV(x, y) = 2r
dΛ(x, y)

1 − dΛ(x, y)
.
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Proof. From Lemma 2 it follows that

θ ≤ x − m(x/y)y ≤ (M(x/y)− m(x/y)) y.

Using the normality of K and (5), we obtain

∥x − m(x/y)y∥1 ≤ (M(x/y)− m(x/y)) ∥y∥1 = r(M(x/y)− m(x/y)).

Using (5), (p1) and Remark 1, we deduce

∥x − y∥1 ≤ ∥x − m(x/y)y∥1 + ∥(m(x/y)− 1)y∥1

≤ r (M(x/y)− m(x/y)) + r (1 − m(x/y))

≤ 2r (M(x/y)− m(x/y))

≤ 2r m(x/y) (M(x/y)M(y/x)− 1)

≤ 2r (πM(x, y)− 1)

≤ 2rdM(x, y) = 2r
dm(x, y)

1 − dm(x, y)
,

and by (p8), we obtain

∥x − y∥1 ≤ 2r m(x/y) (M(x/y)M(y/x)− 1)

≤ 2r (V(x, y)− 1)

≤ 2rdV(x, y) = 2r
dΛ(x, y)

1 − dΛ(x, y)
.

Proposition 3. Let K be a normal solid cone in a normed vector space (E, ∥·∥). Then, for all x ∈ K̊ and y ∈ S̊r,

∥x − y∥ ≤ 2cNr
(2 + dM(x, y))dM(x, y)

1 + dM(x, y)
= 2cNr

(2 − dm(x, y))dm(x, y)
1 − dm(x, y)

,

∥x − y∥ ≤ 2cNr
(2 + dV(x, y))dV(x, y)

1 + dV(x, y)
= 2cNr

(2 − dΛ(x, y))dΛ(x, y)
1 − dΛ(x, y)

.

Proof. From (p7) it follows that

θ ≤ x − m(x/y)m(y/x)y ≤ (M(x/y)M(y/x)− m(x/y)m(y/x)) y.

Hence, by normality of K, we obtain

∥x − m(x/y)m(y/x)y∥ ≤ cN (M(x/y)M(y/x)− m(x/y)m(y/x)) ∥y∥
= cNr (M(x/y)M(y/x)− m(x/y)m(y/x)) .

Using (5), (p1) and Remark 1, we deduce

∥x − y∥ ≤ ∥x − m(x/y)m(y/x)y∥+ ∥(m(x/y)m(y/x)− 1)y∥
≤ 2cNr (M(x/y)M(y/x)− m(x/y)m(y/x))

≤ 2cNr (M(x/y)M(y/x)− 1) + 2cNr (1 − m(x/y)m(y/x))

≤ 2cNr(dM(x, y) + dm(x, y)),

and by (p8), we obtain

∥x − y∥ ≤ 2cNr(dV(x, y) + dΛ(x, y)),

and the results follows from Remarks 1 and 2.
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For (κ, τ) = (1, 2) we easily obtain the following inequalities, from the previous proposition and
Remarks 1, 2.

Remark 3. For the Hilbert’s projective metric, we have

∥x − y∥ ≤ 4cNr sinh (dH(x, y)) for all x ∈ K̊ and y ∈ S̊r.

For the Thompson’s metric, we have

∥x − y∥ ≤ 4cNr sinh (2dT(x, y)) for all x ∈ K̊ and y ∈ S̊r.

Some converse inequalities are given in the following proposition.

Proposition 4. Assume B(y; r) ⊂ K for some y ∈ K̊. Then, for all x ∈ B(y; r),

dm(x, y) ≤ 1 −
(

r − ∥x − y∥
r + ∥x − y∥

)κ

, dM(x, y) ≤
(

r + ∥x − y∥
r − ∥x − y∥

)κ

− 1,

dΛ(x, y) ≤ 1 −
(

r
r + ∥y − x∥

)τ

, dV(x, y) ≤
(

r
r − ∥y − x∥

)τ

− 1.

Proof. Following the proof [16, (1.21)], we obtain m(y/x) ≥ r
r+∥y−x∥ and M(y/x) ≤ r

r−∥y−x∥ , for all x ∈ B(y; r)
for x ̸= y, which give the desired results.

We next show that equivalence between convergences occur in S̊r. We recall first some known facts in the
literature. Let e ∈ E such that e > θ and

Ee :=
{

x ∈ E: there exists λ > 0 such that − λe ≤ x ≤ λe
}

.

Take a norm ∥x∥e on Ee, which is given by ∥x∥e := inf{λ > 0 : − λe ≤ x ≤ λe}. Then the pair (Ee, ∥ · ∥e) is
a normed linear space and ∥ · ∥e is called the e-norm. It is known [20] that if K is normal, then the pair (Ee, ∥ · ∥e)

becomes a Banach space, and there exists a constant ω > 0 such that ∥x∥ ≤ ω∥x∥e. Moreover, Ke := K ∩ Ee is
a normal solid cone of Ee. If in addition K is solid and e ∈ K̊, then Ee = E and the e-norm is equivalent to the
norm of E. In the remainder of this section, we consider that K is normal and solid cone.

Proposition 5. Let K be a normal solid cone. Let x∗ ∈ S̊r and {xn} ⊂ S̊r. If d is either dm or dM, then

lim
n→∞

d(xn, x∗) = 0 ⇐⇒ lim
n→∞

∥xn − x∗∥ = 0.

Proof. We next discuss the cases d = dm and d = dM.
• Case of d = dm.
Let x∗ ∈ S̊r and {xn} ⊂ S̊r, and assume that we have limn→∞ dm(xn, x∗) = 0. Thus, by definition of

dm, limn→∞ πm(x∗, xn) = 1, and by (p7) we get x∗ ≥ m(x∗/xn)m(xn/x∗)xn ≥ πm(x∗, xn)x∗. Hence, we have
θ ≤ x∗ − m(x∗/xn)m(xn/x∗)xn ≤ (1 − πm(xn, x∗))x∗, since ∥x∗∥ = r, we deduce by the normality of K
and ∥xn∥ = ∥x∗∥ = r that we have limn→∞ ∥m(x∗/xn)m(xn/x∗)xn − x∗∥ = 0. Now, by using the triangle
inequality, we obtain

∥xn − x∗∥ ≤
∥∥xn −m(x∗/xn)m(xn/x∗)xn

∥∥+ ∥∥m(x∗/xn)m(xn/x∗)xn − x∗
∥∥

≤ r(1−m(x∗/xn)m(xn/x∗)) +
∥∥m(x∗/xn)m(xn/x∗)xn − x∗

∥∥
≤ 2r(1−πm(x∗, xn)),

which tends to zero as n tends to infinity.
• Case of d = dM.
Let x∗ ∈ S̊r and {xn} ⊂ S̊r, and assume that we have limn→∞ dM(xn, x∗) = 0. So, by definition of

dM, limn→∞ πM(x∗, xn) = 1, and by (p7) we get x∗ ≤ M(x∗/xn)M(xn/x∗)xn ≤ πM(x∗, xn)x∗, thus θ ≤
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M(x∗/xn)M(xn/x∗)xn − x∗ ≤ (πM(x∗, xn)− 1)x∗. So from the normality of K and ∥xn∥ = ∥x∗∥ = r follows
lim

n→∞

∥∥M(x∗/xn)M(xn/x∗)xn − x∗
∥∥= 0. We conclude that

∥xn − x∗∥ ≤
∥∥xn−M(x∗/xn)M(xn/x∗)xn

∥∥+∥∥M(x∗/xn)M(xn/x∗)xn−x∗
∥∥

≤ r(M(x∗/xn)M(xn/x∗)− 1) +
∥∥M(x∗/xn)M(xn/x∗)xn − x∗

∥∥
≤ 2r(πM(x∗, xn)− 1),

which tends to zero as n tends to infinity.
Conversely, assume that limn→∞ ∥xn − x∗∥ = 0. Let e ∈ K̊, so Ee = E and the e-norm is equivalent to the

norm of E, which implies that for εn := ∥xn − x∗∥e, we have limn→∞ εn = 0, and we have

−εne ≤ (xn − x) ≤ εne and − εne ≤ (x − xn) ≤ εne.

We then take a small real number α > 0 such that x ≥ αe, since x ∈ K̊. Hence,

(1 − εn
α )x ≤ x − εne ≤ xn ≤ x + εne ≤ (1 + εn

α )x,

(1 − εn
α )xn ≤ xn − εne ≤ x ≤ xn + εne ≤ (1 + εn

α )xn,

which implies that

(1 − εn
α ) ≤ m(xn/x) ≤ M(xn/x) ≤ (1 + εn

α ),

(1 − εn
α ) ≤ m(x/xn) ≤ M(x/xn) ≤ (1 + εn

α ),

from which we deduce that

(1 − εn
α )2 ≤ m(x/xn)m(xn/x) and M(x/xn)M(xn/x) ≤ (1 + εn

α )2.

We conclude that

dm(xn, x) = 1 − πm(xn, x) ≤ 1 − (1 − εn
α )2κ ,

dM(xn, x) = πM(xn, x)− 1 ≤ (1 + εn
β )

2κ − 1,

and this proves that dm(xn, x) and dM(xn, x) tend to zero as n → ∞.

Remark 4. Note that Proposition 5 implies that the continuity of an operator on S̊r with respect to the norm or
d are equivalent.

Proposition 6. Let x∗ ∈ K̊ and {xn} ⊂ K̊. If d is either dm or dM, then

lim
n→∞

∥xn − x∗∥ = 0 ⇐⇒ lim
n→∞

d(xn, x∗) = lim
n→∞

∥xn∥ − ∥x∗∥ = 0.

Proof. Assume that lim
n→∞

∥xn − x∗∥ = 0, then clearly lim
n→∞

∥xn∥ − ∥x∗∥ = 0 and limn→∞

∥∥∥ xn
∥xn∥ − x∗

∥x∗∥

∥∥∥ = 0.

Now, using that rxn
∥xn∥ , rx∗

∥x∗∥ ∈ S̊r it follows from Proposition 5 that limn→∞ d
(

rxn
∥xn∥ , rx∗

∥x∗∥

)
= 0 with d is either dm

or dM. Since d
(

rxn
∥xn∥ , rx∗

∥x∗∥

)
= d(xn, x∗), we conclude that limn→∞ d(xn, x∗) = 0.

Conversely, assume that limn→∞ d(xn, x∗) = limn→∞ ∥xn∥ − ∥x∗∥ = 0, then we get

lim
n→∞

d(xn, x∗) = lim
n→∞

d
(

rxn

∥xn∥
,

rx∗
∥x∗∥

)
= 0.

Using Proposition 5, we get limn→∞

∥∥∥ xn
∥xn∥ −

x∗
∥x∗∥

∥∥∥ = 0, and by using the triangle inequality of the norm,
we obtain
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∥xn − x∗∥ = ∥xn∥
∥∥∥∥ xn

∥xn∥
− x∗

∥xn∥

∥∥∥∥
≤ ∥xn∥

(∥∥∥∥ xn

∥xn∥
− x∗

∥x∗∥

∥∥∥∥+ ∥∥∥∥ x∗
∥x∗∥

− x∗
∥xn∥

∥∥∥∥) ,

which tends to zero since ∥xn∥ tends to ∥x∗∥ as n tends to infinity.

Proposition 7. Let {xn} ⊂ K̊ and z ∈ K̊. If d is either dΛ or dV , then

lim
n→∞

d(xn, z) = 0 ⇐⇒ lim
n→∞

∥xn − z∥ = 0.

Proof. Let d be either dΛ or dV .
Assume first that limn→∞ d(xn, z) = 0. Then {xn} is a Cauchy sequence and thus limn,m→∞ d(xn, xm) = 0.

As in the proof of Proposition 10, we deduce that there exists y ∈ K̊ such that limn→∞ ∥xn − y∥ = 0 and that
limn→∞ d(xn, y) = 0. Hence, by [11, Proposition 1.4] follows that y = z and by consequence limn→∞ ∥xn − y∥ =

0.
Conversely, assume that limn→∞ ∥xn − z∥ = 0 and take e ∈ K̊. Then, there exists r > 0 such that B(e, r) :=

{x ∈ E : ∥x − e∥ < r} ⊂ K̊. As z ∈ K̊ one can choose a sufficiently small number λ ∈ (0, r) such that z ≥ λe.
Observe that for x ̸= z, we have e − r

∥x−z∥ (x − z) ∈ K, which implies x ≤ ∥x−z∥
r e + z. Thus, we deduce that

xn ≤ ( ∥z−xn∥
λr + 1)z, and therefore

M(xn/z) ≤ ∥z − xn∥
λr

. (6)

Moreover, observe that for x ̸= z, we have e + r
∥x−z∥ (x − z) ∈ K, which implies z ≤ ∥x−z∥

r e + x. Next,

since there exists an integer N such that for all n ≥ N, ∥xn − z∥ < λ, we obtain z ≤
(

1 − ∥z−xn∥
λr

)−1
xn, so we

deduce

M(z/xn) ≤
(

1 − ∥z − xn∥
λr

)−1

− 1, for all n > N. (7)

Thus from (6) and (7), we conclude that limn→∞ d(xn, z) = 0, where d is one of the suprametrics dΛ or
dV .

After having shown the link between the convergence in norm and in d either it is dm or dM, we present
an example highlighting some advantages of the convergence in projective suprametrics.

Example 10. Consider E = C[0, 1] the set of all continuous real function on [0, 1]. Let K := { f ∈ E : f (t) ≥
0, t ∈ [0, 1]} and K̊ := { f ∈ E : f (t) > 0, t ∈ [0, 1]}. It is well knows that E is a Banach space with respect to the
norm ∥ · ∥ induced from the distance d∞, that is, ∥ f − g∥ = d∞( f , g) where

d∞( f , g) = sup
t∈[0,1]

| f (t)− g(t)|.

Clearly, (S̊r, d∞) is not complete. Note that it may occur that lim
n→∞

d∞( fn, f∗) ̸= 0 while lim
n→∞

d( fn, f∗) = 0

where d is either dm or dM. For instance, take f∗(t) = r and { fn} the sequence given by fn(t) = 2r n−t
n , t ∈ [0, 1].

We have
lim

n→∞
d∞( fn, f∗) = lim

n→∞
sup

t∈[0,1]
|2r

n − t
n

− r| ̸= 0.

Nevertheless, the suprametrics of Example 3 satisfy

lim
n→∞

dm( fn, f∗) = lim
n→∞

dm

(
1
2r

fn,
1
r

f∗

)
= lim

n→∞
1 −

(
inf

s,t∈[0,1]

n − t
n − s

)κ

= 0,

lim
n→∞

dM( fn, f∗) = lim
n→∞

dM

(
1
2r

fn,
1
r

f∗

)
= lim

n→∞

(
sup

s,t∈[0,1]

n − t
n − s

)κ

− 1 = 0.
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5. Completeness criteria

Let E be a normed vector space. We describe her when completeness holds.

Proposition 8. Let K be a normal solid cone in E endowed with a monotone norm ∥ · ∥1. If d is either dm or dM, (S̊r, d)
is a complete suprametric space.

Proof. Assume that {xn} is a Cauchy sequence in (S̊r, d). Hence, we have limp,q→∞ d(xp, xq) = 0. We deduce
from (5) that,

lim
p,q→∞

M(xp/xq) = 1 and lim
p,q→∞

m(xp/xq) = 1, (8)

which implies by Proposition 2 that limp,q→∞ ∥xp − xq∥1 = 0, and by completeness of E it follows that there
exists some x∗ ∈ E such that limn→∞ ∥xn − x∗∥1 = 0. Note that x∗ ∈ Sr, so ∥x∗∥1 = r.

• Assume that d = dm. Thus, for any ε > 0, there is εm ∈ (0, 1) such that 1 −
(

1−εm
1+εm

)κ
< ε. By (8), we

deduce that there exists nm such that

(1 − εm) < m(xp/xq) ≤ 1 and 1 ≤ M(xp/xq) < (1 + εm),

for all p, q > nm, thus xp ∈ Im where Im := [(1 − εm)xq, (1 + εm)xq] for all p, q > nm. Since K is closed, then
so is the order interval Im, thus by letting p tends to infinity for a fixed q in the previous inequality, we obtain
x∗ ∈ Im for q > nm, which implies x∗ ∈ S̊r and

m(x∗/xq) ≥ (1 − εm) and M(x∗/xq) ≤ (1 + εm), q > nm.

We conclude that

dm(x∗, xq) = 1 − πm(x∗, xq) ≤ 1 −
(

1 − εm

1 + εm

)κ

< ε,

for q > nm, which proves that dm(x∗, xq) tends to zero as q tends to infinity.

• Assume now that d = dM. Thus, for any ε > 0, there is εM ∈ (0, 1) such that
(

1+εM
1−εM

)κ
− 1 < ε. By (8),

we deduce that there exists nM such that

(1 − εM) < m(xp/xq) ≤ 1 and 1 ≤ M(xp/xq) < (1 + εM),

for p, q > nM thus xp ∈ IM where IM := [(1− εM)xq, (1+ εM)xq] for all p, q > nm. By letting p tends to infinity
for a fixed q in the previous inequality, we obtain x∗ ∈ IM for q > nM, so x∗ ∈ S̊r with

m(x∗/xq) ≥ (1 − εM) and M(x∗/xq) ≤ (1 + εM), q > nM.

We conclude that

dM(x∗, xq) = πM(x∗, xq)− 1 ≤
(

1 + εM
1 − εM

)κ

− 1 < ε,

for q > nM, thus dM(x∗, xq) tends to zero as q tends to infinity.

Proposition 9. Let K be a normal solid cone. If d is either dm or dM, then (S̊r, d) is a complete suprametric space.

Proof. Using [21, 1.7 Proposition], there exists a monotone norm denoted ∥ · ∥1 on E equivalent to the norm
∥ · ∥. Let Vr := {x ∈ K̊ : ∥x∥1 = r}, so it follows by Proposition 8 that (V1, d) is complete with d is either dm or
dM. We shall prove that (S̊r, d) is complete. Let {xn} be a Cauchy sequence in (S̊r, d), so limn,m→∞ d(xn, xm) =

0. Using that ∥xn∥ = 1 and the equivalence of the norms ∥ · ∥ and ∥ · ∥1, we deduce that there exist two positive
real constants b ≥ a such that a∥x∥ ≤ ∥x∥1 ≤ b∥x∥, x ∈ E. Thus, 0 < ar ≤ ∥xn∥1 ≤ br for all n ≥ 1. Take
zn = rxn

∥xn∥1
, then zn ∈ S̊r for all n ≥ 1. Hence, by Proposition 1, we obtain

d(zp, zq) = d
(

rxp

∥xp∥1
,

rxq

∥xq∥1

)
= d(xp, xq),
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which tends to zero as p, q tend to infinity. By virtue of completeness of (Vr, d), there is some z∗ ∈ Vr such that
limn→∞ d(zn, z∗) = 0. Now, since ∥z∗∥1 = r and a∥z∗∥ ≤ ∥z∗∥1 ≤ b∥z∗∥, we deduce that 0 < b−1r ≤ ∥z∗∥ ≤
a−1r. Now, let x∗ = r z∗

∥z∗∥ , then x∗ ∈ S̊r and

d(xn, x∗) = d
(
∥xn∥1

r
zn,

r
∥z∗∥1

z∗

)
= d(zn, x∗),

which tends to zero as n tends to infinity, and this implies that (S̊r, d) is complete, where d is equal to dm or
dM.

For the sake of completeness, we give the proof of the next proposition despite its resemblance to that of
Lemma [2].

Proposition 10. Let K be a normal solid cone. If d is either dΛ or dV , then (K̊, d) is a complete suprametric space.

Proof. The proof is divided into three steps:
Step 1. We show that every Cauchy sequence is bounded with respect to the norm. To see this, let {xn} be

a Cauchy sequence with respect to d, where d is either dΛ or dV . Then, there exists an integer N > 0 such that
d(xp, xq) < 1, for all p, q ≥ N. In particular, M(xp/xN) < 1, so xp ≤ (M(xp/xN) + 1)xN ≤ 2xN . Hence, by
normality of K, ∥xp∥ ≤ 2cN∥xN∥ for all p ≥ N. Therefore, {xn} is bounded by δ where

δ = max{∥x1∥, . . . , ∥xN∥, 2∥xN∥}.

Step 2. We show that {xn} is convergent in norm. The sequence {xn} is Cauchy, for all ε > 0 there exists Nε

such that d(xp, xq) < η, for all p, q ≥ Nε, where η := ε
δ(1+2cN)

, we obtain xp ≤ (M(xp/xq) + 1)xq ≤ (η + 1)xq

and xq ≤ (M(xq/xp) + 1)xp ≤ (η + 1)xp. Thus, using the last inequalities, the normality of the cone and
Step 1, we obtain

∥xp − xq∥ ≤ ∥xp − xq + (xq − xp + η xq)− (xq − xp + η xq)∥
≤ η ∥xq∥+ ∥(η + 1)xq − xp∥
≤ η δ + cN∥(η + 1)xq − xp + (η + 1)xp − xq∥
≤ η δ + cN η ∥xp + xq∥
≤ η δ(1 + 2cN) = ε.

Hence, {xn} is a Cauchy sequence in K with respect to the norm. The closeness of K with respect to the
norm implies that (K, ∥ · ∥) is complete, so there exists x∗ ∈ K such that

lim
n→∞

∥xn − x∗∥ = 0. (9)

Step 3. We show that {xn} converges to x∗ with respect to d. Since {xn} is Cauchy, there exists ε > 0 such
that for sufficiently large p and q we have d(xp, xq) < ε, which implies xp ≤ (ε + 1)xq and xq ≤ (ε + 1)xp.
From other hand, and by closeness of K, we deduce from (9) for sufficiently large p that xp ≤ (ε + 1)x∗ and
x∗ ≤ (ε + 1)xp. Thus x∗ ∈ K̊ and d(xp, x∗) ≤ ε for a large p, so {xn} converge to x∗ with respect to d.

6. Fixed point theorems

First recall some results from [11].

Theorem 3. Let (X, d) be a complete suprametric space. Assume there exists c ∈ [0, 1) such that a mapping f : X → X
satisfies:

d( f x, f y) ≤ c d(x, y), for all x, y ∈ X.

Then, f has a unique fixed point and the sequence { f nx} converges to this fixed point for all x ∈ X.
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Theorem 4. Let (X, d) be a suprametric space. Assume that a mapping f : X → X satisfies:

d( f x, f y) < d(x, y), for all x, y ∈ X such that x ̸= y.

If there exists x0 ∈ X such that the sequence { f kx0} has a convergent subsequence, then f has a unique fixed point
and the sequence { f nx} converges to this fixed point for all x ∈ X.

Proposition 11. Let (X, d) be a suprametric space. If a sequence {xn}n∈N ⊂ X has a limit, then it is unique.

The following example illustrates that a mapping can be a strict contraction with respect to a suprametric
d (with ρ > 0), even when d does not satisfy the ordinary triangle inequality (i.e., when ρ = 0).

Example 11. Let X = {A, B, C}. Define d : X × X → [0, ∞) by:

d(A, B) = 1, d(B, C) = 1, d(A, C) = 3,

and extend symmetrically (d(x, y) = d(y, x)) with d(x, x) = 0 for all x, y ∈ X.
Take ρ = 2. Then (X, d) is a suprametric space because the inequality

d(x, y) ≤ d(x, z) + d(z, y) + ρ d(x, z)d(z, y),

holds for all x, y, z ∈ X. Define f : X → X by f (A) = A, f (B) = A, f (C) = A. Then for any x ̸= y,

d( f (x), f (y)) = 0 < d(x, y),

so f is a strict contraction in the suprametric space (X, d).
However, if we try to view (X, d) as a metric space (i.e., take ρ = 0 in the axioms), then the usual triangle

inequality fails because
d(A, C) = 3 > 1 + 1 = d(A, B) + d(B, C).

Thus (X, d) with ρ = 0 is not a metric space, so f cannot be a strict contraction in “metric space (X, d)"
because such a metric space does not exist.

In order to establish a Geraghty fixed point theorem in suprametric spaces, we need the following
auxiliary lemma.

Lemma 4. Let (X, d) be a suprametric space and {xn}n∈N be a sequence in X such that

lim
n→∞

d(xn, xn+1) = 0. (10)

If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences {mk} and {nk} of positive integers
such that the sequences d(xmk , xnk ), d(xmk , xnk+1), d(xmk−1, xnk ) tend to ε as k tends to infinity.

Proof. For the sake of simplicity, we use the following notations:

dn,m := d(xn, xm) and dn := dn,n+1 with n, m ∈ N.

If {xn} is not a Cauchy sequence, , then there exist an ε > 0 and two sequences {mk} and {nk} of positive
integers such that

nk > mk > k, dmk ,nk−1 < ε, dmk ,nk ≥ ε,

for all k > 0. Hence

ε ≤ dmk ,nk ≤ dmk ,nk−1 + dnk−1 + ρdmk ,nk−1dnk−1 ≤ ε + (1 + ρε)dnk−1.
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Using (10), we deduce that
lim
k→∞

dmk ,nk = ε. (11)

Now, by using (d4), we get

dmk ,nk ≤ dmk ,nk+1 + dnk + ρdnk dmk ,nk+1

≤ dmk ,nk+1 + dnk + ρdnk

(
dmk ,nk + dnk + ρdmk ,nk dnk

)
,

or equivalently,
(
1 − ρdnk (1 + ρdnk )

)
dmk ,nk − dmk ,nk+1 ≤ (1 + ρdnk )dnk , so by using (10)-(11) it follows that

lim
k→∞

dmk ,nk+1 ≥ ε. Again, by using (d4), we get

dmk ,nk+1 ≤ dmk ,nk + dnk + ρdnk dmk ,nk

≤ dmk ,nk + dnk + ρdnk

(
dmk ,nk+1 + dnk + ρdmk ,nk+1dnk

)
,

or equivalently,
(
1 − ρdnk (1 + ρdnk )

)
dmk ,nk+1 − dmk ,nk ≤ (1 + ρdnk )dnk , thus by using (10)-(11) it follows that

limk→∞ dmk ,nk+1 ≤ ε. We conclude that limk→∞ dmk ,nk+1 = ε.
Similarly, using (d4), we get

dmk ,nk ≤ dmk−1+ dmk−1,nk+ ρdmk−1dmk−1,nk

≤ dmk−1+ dmk−1,nk+ ρdmk−1
(
dmk−1 + dmk ,nk+ ρdmk−1dmk ,nk

)
,

dmk−1,nk ≤ dmk−1+ dmk ,nk+ ρdmk−1dmk ,nk

≤ dmk−1+ dmk ,nk+ ρdmk−1
(
dmk−1+dmk−1,nk+ ρdmk−1dmk−1,nk

)
,

or equivalently, (
1 − ρdmk−1(1 + ρdmk−1)

)
dmk ,nk − dmk−1,nk ≤ (1 + ρdmk−1)dmk−1,(

1 − ρdmk−1(1 + ρdmk−1)
)

dmk−1,nk − dmk ,nk ≤ (1 + ρdmk−1)dmk−1.

By letting k → ∞ and using (10)-(11) it follows that lim
k→∞

dmk−1,nk = ε.

In the sequel, we will denote by Φ1 (resp. Φ2) the family of functions ϕ : [0, 1) → [0, 1) (resp. ϕ : [0,+∞) →
[0, 1)) which satisfy

ϕ(tn) → 1 =⇒ tn → 0.

Next, we extends a Geraghty fixed point theorem of [22] in suprametric spaces.

Theorem 5. Let (X, d) be a complete suprametric space, where d : X × X → [0, 1) (resp. d : X × X → [0,+∞)) is a
suprametric, and let f : X → X be a given mapping. Suppose there exists ϕ ∈ Φ1 (resp. ϕ ∈ Φ2 ) such that

d( f x, f y) ≤ ϕ(d(x, y))d(x, y), for all x, y ∈ X with x ̸= y. (12)

Then f has a unique fixed point and the sequence { f nx} converges to this fixed point for all x ∈ X.

Proof. Let x ∈ X and xn = f nx, n ∈ N. For the sake of simplicity, we use the following notations:

dn,m := d(xn, xm) and dn := dn,n+1 with n, m ∈ N.

We next assume that dn ̸= 0, otherwise xn becomes a fixed point of f .
Claim 1. limn→∞ dn = 0. Using (12), it follows that the sequence {dn} is decreasing and since it is bounded

below, limn→∞ dn = ε ≥ 0. Assume that ε > 0, so by (12), we obtain dn+1
dn

≤ ϕ(dn), for n ∈ N, which implies
that 1 ≤ limn→∞ ϕ(dn), and since ϕ ∈ Φ1 (resp. ϕ ∈ Φ2), then ε = 0 and our claim holds.
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Claim 2. The sequence {xn} is Cauchy. Suppose the contrary, that is, {xn} is not a Cauchy sequence. Using
the first claim, and according to Lemma 4 there exist an ε > 0 and two sequences {mk} and {nk} of positive
integers such that the following sequences:

d(xmk , xnk ), d(xmk , xnk+1), d(xmk−1, xnk ),

tend to ε as k tends to infinity.
By putting x = xmk and y = xnk+1 in (12), we obtain from certain order N that for all k ≥ N, we have

dmk ,nk+1 ≤ ϕ(dmk−1,nk )dmk−1,nk .

Then, for all k ≥ N, we have
dmk ,nk+1
dmk−1,nk

≤ ϕ(dmk−1,nk ) ≤ 1, then by letting k → ∞, we deduce that

lim
k→∞

ϕ(dmk−1,nk ) = 1.

Since ϕ ∈ Φ1 (resp. ϕ ∈ Φ2), lim
k→∞

dmk−1,nk = 0, which a contradiction. Thus the claim holds.

Now, by completeness of (X, d) it follows that there exists x∗ ∈ X such that limn→∞ d(xn, x∗) = 0. Thus,
from (12), we have

d(xn+1, f x∗) ≤ ϕ(d(xn, x∗))d(xn, x∗),

so by using that ϕ ∈ Φ1 (resp. ϕ ∈ Φ2) (both functions are bounded) and Proposition 11, we deduce that x∗ is
a fixed point of f . Clearly, (12) ensures the uniqueness of such a fixed point.

7. Positive homogeneous operators

In this section, we provide a theorem of Krein-Rutman [23] type. Let E be an ordered vector space
equipped with a norm ∥ · ∥ and K be a solid cone in E, and define the set S̊1

r := {x ∈ K̊ : ∥x∥1 = r}, where ∥ · ∥1

is a monotone norm equivalent to ∥ · ∥, which exists if K is normal according to [21, 1.7 Proposition]. We recall
only two equivalent assertions that will be used later.

Proposition 12 ([21]). Let E be an ordered vector space equipped with a norm ∥ · ∥, and let K ⊂ E be the positive cone.
The following assertions are equivalent:

(i) K is normal for the topology generated by the norm ∥ · ∥.
(ii) There exists an equivalent monotone norm ∥ · ∥1 on E.

From now on, the notation ∥ · ∥1 stands for a montone norm equivalent to the norm of the ordered vector
space E. Next, we need the following elementary lemma.

Lemma 5. For all r ∈ [0,+∞), 1 − rp ≤ p(1 − r) for every constant p ∈ [1,+∞), and rp − 1 ≤ p(r − 1) for every
constant p ∈ [0, 1].

The following results provide, according to the values of p, some conditions to obtain the contraction of
Theorem 3.

Theorem 6. Let K be a cone and let A : E → E be a strongly positive, increasing and p-homogeneous operator on K∗. If
p ∈ [1,+∞), then

dm(Ax, Ay) ≤ pdm(x, y) for all x, y ∈ K∗,

Proof. (1)-(2): Let x, y ∈ K∗. By Lemma 2, the monotonicity and homogeneity of A, we obtain

m(x/y)p Ay ≤ Ax ≤ M(x/y)p Ay,

which implies
m(x/y)p ≤ m(Ax/Ay) ≤ M(Ax/Ay) ≤ M(x/y)p. (13)
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Now, we apply Lemma 5, we get

dm(Ax, Ay) ≤ 1 − (m(x/y)m(y/x))pκ ≤ pdm(x, y).

Theorem 7. Let K be a cone and let A : E → E be a strongly positive, increasing and p-homogeneous operator on K∗. If
p ∈ [0, 1], then

dM(Ax, Ay) ≤ pdM(x, y) for all x, y ∈ K∗, (14)

In addition, if p ̸= 1 and K is normal solid cone, then
(a) for all r > 0, there exists xr ∈ K̊, λr > 0 such that Axr = λrxr.
(b) A has a unique fixed point in x∗ ∈ K̊ and the sequence {Anx} converges to x∗ for all x ∈ K̊.

Proof. Let x, y ∈ K∗. As above, from (13), we get

dM(Ax, Ay) ≤ (M(x/y)M(y/x))pκ − 1 ≤ pdM(x, y), if p ∈ [0, 1].

Let p ∈ [0, 1) and K a solid cone. Recall that A is strongly positive, which means that A(K∗) ⊆ K̊, in
particular Ax ∈ K̊ for all x ∈ K̊. Since K is normal solid cone, then according to Proposition 12, the operator
Ar : K̊ → S̊1

r given by Arx = rAx
∥Ax∥1

is well defined. Then, we have:

(a) For all x, y ∈ K̊, dM(Arx, Ary) = dM( rAx
∥Ax∥1

, rAy
∥Ay∥1

) = dM(Ax, Ay) ≤ pdM(x, y). Hence, Ar is a

contraction on the complete suprametric space (S̊1
r , dM) according to Proposition 8. We deduce by Theorem 3

that Ar has a unique fixed point xr ∈ S̊1
r , so Arxr = xr =

rAxr
∥Axr∥1

. Let λr := ∥Axr∥1
r . Thus, λr > 0 and Axr = λrxr.

The proof of (b) is divided into several steps:

(b1) A fixed point of A in K̊ is given by x∗ = λ
1

1−p
r xr, since

Ax∗ = A(λ
1

1−p
r xr) = λ

p
1−p
r Axr = λ

p
1−p
r λrxr = λ

1
1−p
r xr = x∗.

(b2) The fixed point of A is unique in K̊. Assume there exists y∗ ∈ K̊ a fixed point of A, then define

x1 =
rx∗

∥x∗∥1
and y1 =

ry∗
∥y∗∥1

.

We have x1, y1 ∈ S̊1
r , and from homogeneity of A we have

Ax1=A(
rx∗

∥x∗∥1
)=

rp

∥x∗∥p
1

Ax∗ and Ay1=A(
ry∗

∥y∗∥1
)=

rp

∥y∗∥p
1

Ay∗.

Thus

dM(x∗, y∗) = dM(Ax∗, Ay∗) = dM(
∥x∗∥p

1
rp Ax1,

∥y∗∥p
1

rp Ay1)

≤ pdM(x1, y1) = pdM(
rx∗

∥x∗∥1
,

ry∗
∥y∗∥1

) = pdM(x∗, y∗),

which is a contradiction. We conclude that x∗ = µy∗ and

x∗ = Ax∗ = A(µy∗) = µp Ay∗ = µpy∗ = µy∗,

so µ = 1 and x∗ = y∗.
(b3) Any sequence {Anx} converges to x∗ with respect to dM for all x ∈ K̊. To see this, observe first that by

induction we easily obtain An
r (

rx
∥x∥1

) = rAnx
∥Anx∥1

for all x ∈ K̊. By Theorem 3, the sequence {An
r (

rx
∥x∥1

)} converges
to xr, that is,

dM

(
An

r

(
rx

∥x∥1

)
, xr

)
= dM

(
An

r

(
rx

∥x∥1

)
, λ

1
p−1
r x∗

)
= dM

(
rAnx

∥Anx∥1
, x∗

)
= dM (Anx, x∗) ,
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tends to zero as n tends to infinity, we conclude that the sequence {Anx} converges to x∗ the unique fixed
point of A for all x ∈ K̊.

Theorem 8. Let K be a cone and A : E → E be a strongly positive, strongly increasing and 1-homogeneous operator. If
(1) dM(Ax, Ay) < dM(x, y), for all x, y ∈ S̊r such that x ̸= y,
(2) K is normal solid cone and the operator Ar : K̊→ S̊r given by Arx = rAx

∥Ax∥ is compact for some r > 0, then

(a) there exists xr ∈ K̊, λr > 0 such that Axr = λrxr.
(b) A has a unique positive eigenvalue with a positive eigenvector y∗ ∈ K̊.
(c) the equation Ax = λx for x ∈ K̊ implies that x = γy∗ for some real number γ > 0. Furthermore,

lim
k→∞

Aky
∥Aky∥

= y∗ and lim
k→∞

∥Ak+1y∥
∥Aky∥

= λ, for all y ∈ K̊. (15)

Proof. (1) Let x, y ∈ S̊r such that x ̸= y, which means m(x/y)y ̸= M(x/y)y otherwise m(x/y)y = x =

M(x/y)y, and since ∥x∥ = ∥y∥ = r it follows that m(x/y) = M(x/y) = 1, thus x = y which is a contradiction.
Assume, without loss of generality, that m(x/y)y ̸= x. Since A is strongly increasing and 1-homogeneous,
then

m(x/y)Ay = A(m(x/y)y) < Ax ≤ A(M(x/y)y) = M(x/y)Ay,

thus Ax − m(x/y)Ay ∈ K̊, so there exists α > 0 such that αAy ≤ Ax − m(x/y)Ay, and we have

(α + m(x/y))Ay ≤ Ax,

which means that
m(Ax/Ay) ≥ α + m(x/y) > m(x/y).

We deduce that
m(x/y) < m(Ax/Ay) and M(Ax/Ay) ≤ M(x/y),

which is equivalent by (3) to

M(Ay/Ax) < M(y/x) and M(Ax/Ay) ≤ M(x/y),

thus we deduce
M(Ay/Ax)M(Ax/Ay) < M(x/y)M(y/x).

We conclude that
dM(Ax, Ay) < dM(x, y), for all x, y ∈ K̊ such that x ̸= y.

(2) Let r > 0 and Ar : K̊→ S̊r ba a compact operator given by Arx = rAx
∥Ax∥ . Note that Ar is contractive on

S̊r, that is,

dM(Arx, Ary) = dM

(
rAx
∥Ax∥ ,

rAy
∥Ay∥

)
= dM(Ax, Ay) < dM(x, y),

for all x, y ∈ S̊r such that x ̸= y. Hence Ar is continuous with respect to dM on S̊r, which implies by Remark 4
that Ar is also continuous with respect to the norm on S̊r.

Next, we claim that the sequence {Ak+1
r x} has a convergent subsequence to a point of S̊r with respect to

dM. Let y ∈ K̊, so Ay ∈ K̊ and ∥Ay∥ > 0. Let x = rAy
∥Ay∥ , it is clear that x ∈ S̊r. Using the homogeneousness of

A it is easy to obtain by induction that Ak
r x = rAkx

∥Akx∥ = Ak
r y ∈ S̊r, for all k ∈ N. Since S̊r is bounded and Ar is

compact it follows that {Ak
r x} has a convergent subsequence {Aki

r x} to a point z with respect to the norm, that
is,

lim
i→∞

∥Aki
r x − z∥ = 0.
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From the closeness of K and Sr and the fact that {Ak
r x} ⊂ S̊r, it follows that z ∈ K and ∥z∥ = r. Moreover,

by continuity of Ar on S̊r, we have
lim
i→∞

∥Aki+1
r x − Arz∥ = 0.

Since A is strongly increasing, z ≥ θ and z ̸= θ, then Az ∈ K̊. Let x∗ = Arz = rAz
∥Az∥ , so x∗ ∈ S̊r, which

implies that
lim
k→∞

∥Aki+1
r x − x∗∥ = 0.

Now, according to Proposition 9, (S̊r, dM) is a suprametric space. Hence, by (14) and Theorem 4, we
deduce that Ar has a unique fixed point xr ∈ S̊r and any sequence {Ak+1

r y} converges to it, that is,

Arxr =
rAxr

∥Axr∥
= xr, lim

k→∞
dM(Ak+1

r y, xr) = 0, for all y ∈ K̊.

Let x = rAy
∥Ay∥ for y ∈ K̊, then x ∈ S̊r. Since Ak

r x = rAky
∥Aky∥ and xr ∈ S̊r, then by Proposition 3, we obtain

lim
k→∞

∥Ak
r x − xr∥ = lim

k→∞

∥∥∥∥∥ rAky
∥Aky∥

− xr

∥∥∥∥∥ = 0, for all y ∈ K̊.

In particular, A1 has a unique fixed point x1 ∈ S̊1 such that

A1x1 =
Ax1

∥Ax1∥
= x1,

and from Proposition 3 it follows that

lim
k→∞

∥∥∥∥∥ Aky
∥Aky∥

− x1

∥∥∥∥∥ = 0, for all y ∈ K̊. (16)

Let y∗ = x1, λ = ∥Ay∗∥ and λr =
∥Axr∥

r . Then as above, we have

Arxr = λrxr and Ay∗ = λy∗. (17)

We shall show that λr = λ for all r > 0. Observe that we have

xr

r
∈ S̊1, A1

( xr

r

)
=

A( xr
r )

∥A( xr
r )∥

=
Axr

∥Axr∥
=

xr

r
.

Since y∗ = x1 is a unique fixed point of Ar in S̊1, then xr
r = y∗, that is, xr = ry∗. Further,

λr =
∥Axr∥

r
=

r∥Ay∗∥
r

= λ, for all r > 0,

thus Axr = λxr for every r > 0. Clearly, from (16) and (17) follows (15).

Let Rn be the n-dimensional Euclidean space with usual norm. The cone Rn
+ := {x ∈ Rn : x ≥ 0} is

normal and solid. Denote Rn
++ := {x ∈ Rn : x > 0}. Note that in finite-dimensional the compact condition

can be dropped.

Corollary 1. Let A : Rn → Rn be a strongly positive, strongly increasing and 1-homogeneous operator. Then
(a) A has a unique positive eigenvalue with an eigenvector y∗ ∈ Rn

++.
(b) the equation Ax = λx for x ∈ Rn

++ implies that x = γy∗ for some real number γ > 0. Furthermore,

lim
k→∞

Aky
∥Aky∥

= y∗ and lim
k→∞

∥Ak+1y∥
∥Aky∥

= λ, for all y ∈ Rn
++.
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A Perron-Frobenius theorem is derived easily from the previous corollary, since for a non-negative square
matrix M, if Ax = Mx, then A is 1-homogeneous, compact and strongly increasing.

Corollary 2. Let M be a non-negative square matrix. Then M has a unique positive eigenvalue with an eigenvector
y∗ ∈ Rn

++. The equation Mx = λx for x ∈ Rn
++ implies that x = γy∗ for some real number γ > 0. Furthermore,

lim
k→∞

Mky
∥Mky∥

= y∗ and lim
k→∞

∥Mk+1y∥
∥Mky∥

= λ, for all y ∈ Rn
++.

Remark 5. Theorem 8 answers [24, Problem 3] and shows that the norm does not need to be monotonic. It
is worthy to note that Theorem 8-(1) is equivalent to dH(Ax, Ay)< dH(x, y), for all x, y∈ S̊r such that x ̸= y.
However, it is not known whether dM of Theorem 7-(14) may be replaced by dH .

8. Concave and convex operators

We show here that some concave and convex operators indeed satisfy a Geraghty contraction.

Definition 4. Let K be a solid cone. We say that an operator A : K̊ → K̊ is σ-concave if there exists a function
σ : (0, 1] → [0,+∞) such that

A(t−1x) ≤ σ(t)A(x), or equivalently, A(x) ≤ σ(t)A(tx),

for all x ∈ K̊ and t ∈ (0, 1]. We say that an operator A : K̊ → K̊ is σ-convex if there exists a function σ : (0, 1] →
[0,+∞) such that

A(tx) ≤ σ(t)A(x), or equivalently, A(x) ≤ σ(t)A(t−1x),

for all x ∈ K̊ and t ∈ (0, 1].

Example 12. The α-concave (resp. α-convex) operators of [25, Definition 2.1] (α ∈ [0, 1]) are recovered by
taking σ(t) = t−α (resp. σ(t) = tα) in the definition of σ-concave (resp. σ-convex) operators.

We introduce the following functions to obtain a Geraghty contraction.

Definition 5. Define the functions σ1, σ̂1, σ2, σ̂2 : (0, 1] → [0,+∞) by

σ1(t) = (1 + (t − 1) ϕ1 (1 − t))−
1

2κ , σ̂1(t) = (1 + (t − 1) ϕ1 (1 − t))−
1
τ ,

σ2(t) =
(

1 +
(

t−1 − 1
)

ϕ2

(
t−1 − 1

)) 1
2κ , σ̂2(t) =

(
1 +

(
t−1 − 1

)
ϕ2

(
t−1 − 1

)) 1
τ

,

where κ ∈ [1,+∞), τ ∈ [2,+∞), ϕ1 : [0, 1) → [0, 1) and ϕ2 : [0,+∞) → [0, 1) are given functions.

To see the connextion of these functions with the Geraghty-type contraction observe the following
equivalent inequalities:

dm (Ax, Ay) ≤ ϕ1 (dm (x, y)) dm (x, y) ⇐⇒ πm(Ax, Ay)≥ 1 + (πm(x, y)−1) ϕ1 (1−πm(x, y)) .

⇐⇒ πm(Ax, Ay)1/κ ≥ σ1 (πm(x, y))−2 .

dM (Ax, Ay) ≤ ϕ2 (dM (x, y)) dM (x, y) ⇐⇒ πM(Ax, Ay)≤ 1 + (πM(x, y)− 1) ϕ2 (πM(x, y)− 1) .

⇐⇒ πM(Ax, Ay)1/κ ≤ σ2

(
πM(x, y)−1

)2
.

dΛ (Ax, Ay) ≤ ϕ1 (dΛ (x, y)) dΛ (x, y) ⇐⇒ Λ(Ax, Ay)≥ 1 + (Λ(x, y)− 1) ϕ1 (1 − Λ(x, y)) .

⇐⇒ Λ(Ax, Ay)1/τ ≥ σ̂1 (Λ(x, y))−1 .

dV (Ax, Ay) ≤ ϕ2 (dV (x, y)) dV (x, y) ⇐⇒ V(Ax, Ay)≤ 1 + (V(x, y)− 1) ϕ2 (V(x, y)− 1)

⇐⇒ V(Ax, Ay)1/τ ≤ σ̂2

(
V(x, y)−1

)
.
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Note also that we can recover the notions of α-concave/α-convex operators from these functions, for

instance if ϕ1 ≡ 1 and κ ≥ 1, σ1(t) = (1 + (t − 1) ϕ1 (1 − t))−
1

2κ = t−
1

2κ . The σ1-concave condition A
(
t−1x

)
≤

σ1 (t) A (x) becomes A
(
t−1x

)
≤ t−

1
2κ A (x) , ∀t ∈ (0, 1] , x ∈ K̊. Setting λ = t−1 ≥ 1 yields A (λx) ≤

λ
1

2κ A (x) , ∀λ ≥ 1, x ∈ K̊, which is exactly the definition of α-concavity with α = 1
2κ ∈

(
0, 1

2

]
. However, if

ϕ2 ≡ 1 and κ ≥ 1, σ2(t) =
(
1 +

(
t−1 − 1

)
ϕ2
(
t−1 − 1

)) 1
2κ = t

1
2κ . The σ2-convex condition A (tx) ≤ σ2 (t) A (x)

becomes A (tx) ≤ t
1

2κ A (x) , ∀t ∈ (0, 1] , x ∈ K̊, which is exactly the definition of α-convexity with α = 1
2κ ∈(

0, 1
2

]
.

Example 13. Let K̊= (0, ∞) and A1, A2 : K̊ → K̊ be operators given by A1(x) = 3x+2
x+1 and A2(x) = 4(x+1)

3x+2 . It is
not difficult to see that if ϕ1(t) = t+1

2t+1 , t∈ [0, 1), A1 is increasing σ1-concave for κ = 1 (σ̂1-concave for τ = 2).
Moreover, if ϕ2(t) = t+1

3t+2 , t∈ [0,+∞), A2 is decreasing σ2-convex for κ = 1 (σ̂2-convex for τ = 2).

In the rest of this section, the distances dm, dM, dV , and dΛ are defined in Definitions 2 and 3, and the
functions ϕ1 and ϕ2 are chosen from the classes Φ1 and Φ2, respectively.

Theorem 9. Let K be a solid cone in a vector space E endowed with a monotone norm. Let A be an increasing σ1-concave
(resp. a decreasing σ1-convex) operator. Then for all x, y ∈ K̊,

dm (Ax, Ay) ≤ ϕ1 (dm (x, y)) dm (x, y) .

Proof. Let x, y ∈ K̊. If A is increasing and σ1-concave, we obtain by (5),

σ1 (πm(x, y))−1 Ay ≤ A (πm(x, y)y) ≤ A (m(x/y)y) ≤ Ax,

σ1 (πm(x, y))−1 Ax ≤ A (πm(x, y)x) ≤ A (m(x/y)x) ≤ Ay.

Respectively, if A is decreasing and σ1-convex, we get

Ax ≤ A (m(x/y)y) ≤ A (πm(x, y)y) ≤ σ1 (πm(x, y)) Ay,

Ay ≤ A (m(x/y)x) ≤ A (πm(x, y)x) ≤ σ1 (πm(x, y)) Ax.

In both cases we deduce that m(Ax/Ay)m(Ay/Ax) ≥ σ1 (πm(x, y))−2, which implies by definition of σ1

that
πm(Ax, Ay) ≥ 1 + (πm(x, y)− 1) ϕ1 (1 − πm(x, y)) ,

which gives the desired conclusion.

Theorem 10. Let K be a solid cone in a vector space E endowed with a monotone norm. Let A be a σ2-concave increasing
operator (resp. σ2-convex decreasing operator). Then for all x, y ∈ K,

dM(Ax, Ay) ≤ ϕ2(dM(x, y))dM(x, y).

Proof. Let x, y ∈ K̊. If A is increasing and σ2-concave, we obtain by (5),

Ax ≤ A(M(x/y)y) ≤ A(πM(x, y)y) ≤ σ2(πM(x, y)−1)Ay,

Ay ≤ A(M(x/y)x) ≤ A(πM(x, y)x) ≤ σ2(πM(x, y)−1)Ax.

However, if A is decreasing and σκ
2 -convex, we get

σ2(πM(x, y)−1)−1 Ay ≤ A(πM(x, y)y) ≤ A(M(x/y)y) ≤ Ax,

σ2(πM(x, y)−1)−1 Ax ≤ A(πM(x, y)x) ≤ A(M(x/y)x) ≤ Ay.
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In both cases, we have M(Ax/Ay)M(Ay/Ax) ≤ σ2(πM(x, y)−1)2, thus

πM(Ax, Ay) ≤ 1 + (πM(x, y)− 1)ϕ2(πM(x, y)− 1),

which gives the desired conclusion.

Theorem 11. Let K be a solid cone. Let A be a σ̂1-concave increasing operator (resp. σ̂1-convex decreasing operator).
Then for all x, y ∈ K̊,

dΛ(Ax, Ay) ≤ ϕ1(dΛ(x, y))dΛ(x, y).

Proof. Let x, y ∈ K̊. If A is increasing and σ′
1-concave, by (p9) we get

σ̂1(Λ(x, y))−1 Ay ≤ A(Λ(x, y)y) ≤ A(m(x/y)y) ≤ Ax,

σ̂1(Λ(x, y))−1 Ax ≤ A(Λ(x, y)x) ≤ A(m(x/y)x) ≤ Ay.

However, if A is decreasing and σ1-convex, we get by (p9),

Ax ≤ A(m(x/y)y) ≤ A(Λ(x, y)y) ≤ σ̂1(V(x, y))Ay,

Ay ≤ A(m(x/y)x) ≤ A(Λ(x, y)x) ≤ σ̂1(V(x, y))Ax.

In both cases we deduce that

m(Ax/Ay) ∧ m(Ay/Ax) ≥ σ̂1(Λ(x, y))−1,

and by using the definition of σ̂1 the desired result follows from

Λ(Ax, Ay) ≥ 1 + (Λ(x, y)− 1)ϕ1(1 − Λ(x, y)).

Theorem 12. Let K be a solid cone in a vector space E endowed with a monotone norm. Let A be a σ̂2-concave increasing
operator (resp. σ̂2-convex decreasing operator). Then for all x, y ∈ K̊,

dV(Ax, Ay) ≤ ϕ2(dV(x, y))dV(x, y).

Proof. Let x, y ∈ K̊. Then using (p9), the monotonicity and homogeneity of A, we obtain

Ax ≤ A(M(x/y)y) ≤ A(V(x, y)y) ≤ σ̂2(V(x, y)−1)Ay,

Ay ≤ A(M(x/y)x) ≤ A(V(x, y)x) ≤ σ̂2(V(x, y)−1)Ax.

Respectively, by monotonicity and homogeneity of A, we obtain

σ̂2(V(x, y)−1)−1 Ay ≤ A(V(x, y)y) ≤ A(M(x/y)y) ≤ Ax,

σ̂2(V(x, y)−1)−1 Ax ≤ A(V(x, y)x) ≤ A(M(x/y)x) ≤ Ay.

In both cases, we have
M(Ax/Ay) ∨ M(Ay/Ax) ≤ σ̂2(V(x, y)−1),

and by using the definition of σ̂2 the desired result follows from

V(Ax, Ay) ≤ 1 + (V(x, y)− 1)ϕ2(V(x, y)− 1).

Corollary 3. Let E be a real normed vector space. Let K be a solid cone of E and A : K̊ → K̊ be an increasing operator. If

A(tx) ≥
(

t
3
+

2
3

)
A(x) for all t ∈ (0, 1] and x ∈ K̊,

then A has a unique fixed point in K̊ and {Anx} converges to this fixed point for all x ∈ K̊.
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Proof. Observe first that
( t

3 + 2
3
)
≥ σ̂−1

1 (t) =
(

t4−t2−1
2t2−3

) 1
2 for all t ∈ (0, 1]. Hence for all x, y ∈ K̊, A is a

σ̂1-concave, where ϕ(t) = t+1
2t+1 . Then A satisfies the contraction of Theorem 11. Moreover, by Proposition 10

we have that (K̊, dΛ) is complete and since ϕ ∈ Φ1, we conclude by Theorem 5.

Example 14. Let K̊= (0, ∞). The operator A1 of Example 13 satisfies all the hypotheses of Corollary 3, hence
it has a unique fixed point in K̊ and {An

1 x} converges to this fixed point for all x ∈ K̊.

9. Application to tensor eigenvalue problems

The eigenvalue problem for tensors is nonlinear and involves finding nontrivial solutions of multivariate
polynomial systems, see for instance [26]. Let us recall the essential facts concerning this problem. Let C be an
m-order n-dimensional tensor, which consists of nm entries in R:

C = (ci1 ...im), ci1 ...im ∈ R, 1 ≤ i1, . . . , im ≤ n.

Given a real or complex n-vector x = (x1, . . . , xn), define an n-vector by

Cxm−1 :=

(
n

∑
i2 ...im=1

cii2 ...im xi2 . . . xin

)
1≤i≤n

.

Suppose that Cxm−1 ̸= 0. A scalar λ ∈ C is called an H-eigenvalue of C [27] if there exists x ∈ Cn \ {0}
called an eigenvector of C associated to λ such that

Cxm−1 = λx[m−1],

where x[m−1] = (xm−1
1 , . . . , xm−1

n ).
Define the nonlinear mapping associated to the tensor C,

ACx = (Cxm−1)
1

m−1 .

The following result extends the Perron-Frobenius theorem of nonnegative matrix to the higher-order
nonnegative tensors.

Theorem 13. Let C be a nonnegative tensor and let AC be strongly positive and strongly increasing mapping. Then
(a) C has a unique positive eigenvalue λm−1 with a positive eigenvector y∗ ∈ Rn

++.
(b) if x ∈ Rn

++ is an eigenvector associated to λm−1, then x = γy∗ for some real number γ > 0. Furthermore,

lim
k→∞

Ak
Cy

∥Ak
Cy∥

= y∗ and lim
k→∞

∥Ak+1
C y∥

∥Ak
Cy∥

= λ, for all y ∈ Rn
++,

where ∥ · ∥ denotes the standard Euclidean norm on Rn.

Proof. We first shall show that Theorem 8-(1) holds. It is known that AC is 1-homogeneous (see for instance
[28]) and it is strongly positive by hypothesis. By Corollary 1, there exists a unique λ > 0 and an eigenvector
y∗ ∈ Rn

++ such that

ACy∗ = (Cym−1
∗ )

1
m−1 = λy∗.

In addition, we have

lim
k→∞

Ak
Cy

∥Ak
Cy∥

= y∗ and lim
k→∞

∥Ak+1
C y∥

∥Ak
Cy∥

= λ, for all y ∈ Rn
++.

Take µ = λm−1 > 0, we get
Cym−1

∗ = λm−1y[m−1]
∗ = µy[m−1]

∗ .
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