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normed vector space ordered by a cone. We then examine how the convergence of the underlying norm
relates to that of the projective and given suprametrics, and we establish sufficient conditions for the
completeness of certain subsets. Moreover, we prove a version of Krein-Rutman theorem via a fixed point
theorem in suprametric spaces, and study spectral properties of positive linear operators. Furthermore, we
show that operator equations involving some concave or convex operators satisfy a Geraghty contraction and
therefore have solutions. As an application, we prove a Perron-Frobenius theorem for a tensor eigenvalue
problem.

Keywords: projective suprametric, fixed point theorem, positive operator, eigenvalue problem

MSC: 54A05, 47H10, 47H07, 47]10.

1. Introduction

T he aim of this paper is to present alternative measurement tools in normed vector spaces ordered by
cones, such as the Hilbert projective metric [1] and the Thompson part metric [2], to study spectral

properties of homogeneous operators and the existence of solutions to a class of non-homogeneous operator
equations. Let E be normed vector space and 0 its zero element. A nonempty closed subset K of E is called cone
if it satisfies three conditions: (i) K+ K = K; (i) AK C K for all A > 0; (iii) KN (—K) = {0}. Let K* := K\ {0}
and a nonempty interior of K is denoted K. The notation x < y means that y — x € K. Two elements x,y € K*
are said comparable and denoted x ~ y if there exist real numbers «, B > 0 such that ax < y < Bx, which is
indeed an equivalence relation. Hilbert’s projective metric is defined on K* by:

M(x/y)
m(x/y)

du(x,y) =1In ,ifx ~y,
where m(x/y) := sup{A: Ax < y} and M(x/y) := inf{A: x < Ay}, and dy(x,y) = oo if x and y are not
comparable.

The importance of this projective metric was highlighted by Birkhoff [3], when he provided an elegant
proof involving the Hilbert’s projective metric, and showed the existence of a positive eigenvector via the
Banach contraction principle. Note that the measure of the distance between two points of the same ray via
the Hilbert projective metric is null. This measure is non-null if we use another variant of distance, which was
introduced by Thompson,

dr(x,y) = In(M(x/y) V M(y/x)), ifx ~y,

and dr(x,y) = oo if x and y are not comparable. Thompson’s distance function is indeed a genuine metric on
each part of the cone, where a part is a class of equivalence.

Both Hilbert and Thompson distance functions play important roles in solving linear and nonlinear
operator equations. For instance, Hilbert’s projective metric has been applied by Potter [4] to study a class of
Hammerstein integral equations. It was also used by Eveson [5] to prove the existence of a positive eigenvector
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associated with a positive eigenvalue for a linear operator. Hilbert’s projective metric even arises in more
complicated systems, as shown by Huang et al. [6] when studying a nonlinear elliptic problem or Reeb et
al. [7] in their work on quantum information theory. However, Thompson’s part metric is very effective to
solve nonlinear matrix equations as it is shown by Liao et al. [8]. Furthermore, it has been used by Chen
[9] and Herzog and Kunstmann [10] to study the stability of difference equations and semilinear equations,
respectively. Alternative distance functions, to the Thompson metric, have been introduced by the author in
[11]. Here we show how to construct projective suprametrics and part suprametrics connected to Hilbert and
Thompson distance functions.

In this paper, we introduce the concept of projective suprametrics and provide new part suprametrics
in normed vector spaces. We present their interconnections and mutual relations with the Hilbert and
Thompson distance functions, and furnish various examples. We study the link between the different notions
of convergences. As a byproduct, we get new inequalities for Hilbert’'s and Thompson’s distances. We
provide some sufficient conditions for the completeness of certain subsets of the space. We prove a theorem of
Krein-Rutman for strongly positive operators via some existing fixed point theorems and involving projective
suprametrics. We further establish a Geraghty fixed point theorem in suprametric spaces and show that certain
classes of concave or convex operators satisfy the contraction of Geraghty type. As an application, we prove a
Perron-Frobenius theorem and show the existence of positive eigenvalue and eigenvector to a tensor spectral
problem.

The paper is organized as follows: §2 presents the pseudo-suprametric spaces. §3 introduces some
projective and genuine suprametrics. The convergence relationships are investigated in §4. §5 presents some
conditions for the completeness. In §6, we establish a new fixed point theorem of Geraghty type. §7 presents
some theorems of Krein-Rutman types. In §8, we study certain concave and convex operators. §9 is devoted
to the investigation of a problem of tensor eigenvalues.

2. Pseudo-suprametric spaces

In this section, we present the concept of pseudo-suprametric and provide an example of bounded
suprametric.

Definition 1. Let X be a nonempty set and p be a constant in [0, +o0). Let d: X x X — [0, +o0) be a function
and for all x,y,z € X consider the following properties:

d)d(x,y) =0 = x=uy.

(d2)d(x,x) =0.

(d3) d(x,y) = d(y, x).

(d4) d(x,y) <d(x,z) +d(z,y) +pd(x,z)d(z,y).

A pair (X, d) is called suprametric space if X is a nonempty set and d satisfies (d1)-(d4), and it is called
pseudo-suprametric space if X is a nonempty set and d satisfies (d1)—-(d4).

For examples of suprametrics, we refer the reader to [11]. We next provide an example of a suprametric
whose range is [0,1).

Example 1. Let X = Rand d: X x X — [0,1) be the function given by
dix,y) =1- e ul(l=y+D) - for anl x,y € X.

Then d is a suprametric for p = 1. Precisely, (d1)—(d3) hold easily and (d4) comes from the following
technical lemma.

Lemma 1. Foralls,t > 0,¢° + e < e5tt 4 ¢75E,

Proof. Firstly, observe thatif s = 0 or t = 0 the inequality becomes equality. We now show that the inequality
holds for t = s > 0, that is,
205 < % + e_sz, s > 0.
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By the monotonicity of the function s — ¢° + e=5=5 _ 2, we deduce that it is positive for s > 0, which
implies thate* —1 > 1 — S (es - e_sz) e”* or equivalently e° (¢* — 1) + e > et

Without loss of generality, suppose now thats > t > 0. If t > 1, then by the mean value theorem, it
follows that there exists a constant ¢ € (0, ¢) such that e® (¢! — 1) 4+ e~ = te5t¢ + 75! > ¢!, Otherwise, if t < 1,
we will instead prove the following equivalent inequality

est+t —-1< est+s+t _ est+s‘

To this end, we apply twice [12, Lemma 2] (see also [13]), which asserts that for all x,y € R such that

x # y, we have

X _ oY
Ty<e ¢ gl(ex—ﬁ—ey).
xX—y

Hence, since st +t # 0 and st + s+t # st + s, we get

N

—_

est+t 1< E(St 4 t) ( st+-t 4 1) and test+s+% < est+s+t o est+s'

We claim that 1 (st + #)(et+ + 1) < tes T3 if 0 < t < s with t < 1. Observe first that if t € (0,1),

!
<t +1n (1+t)) = zﬂ < 0, we deduce that 2t +21In (Li) < 0 or equivalently (1 —t)%ef < (1+t)%e

t P . . £\ 1 2 —t 2t
thus t — 153 — cosh 5 is increasing on (0,1) since (1th — cosh j) = 1w (( +Het—(1-1) e) +

3 (sinh t — sinh £), which implies that > cosh , 50 by monotonicity of t > 16—“ we deduce for s > t that

t+1

e et 1/ ¢t  _t 1/t _g_t
> > 2 {2 2) > 2,2 2.
1+sl+t2(e te )z(e te

Hence, our claim follows easily from the following inequality

eStHaes > lesH% (1+s) (eé —i—e*St*%> . O
2
Let us now return to the proof of (d4) of Example 1. Note that from [11, Example 1.1], we have that
(x,y) — |x —y| (|]x — y| + 1) is a suprametric with p = 1, then we deduce

—s—t—st
7

dix,y) <1l—e
wheres = [x —z| (|]x —z| + 1) and t = |z — y| (|z — y| + 1). To show (d4) it suffice to show that

et < (1—e )+ (1—e )+ (1—e") (1—e)
=3—_2¢ 52ty

or equivalently
2 —2¢° —2¢" + 71 +1 >0,

which follows easily from the previous lemma. However, it is worthy to note that d is not a metric, since
d(x,y) > d(x,z) +d(z,y) when 10z =20x =5y = 1.

At the end of this section recall that the concepts of convergence and completeness are similar to that in
metric spaces.

3. Suprametrics in vector spaces

In what follows we will adopt the following notations. Let E be a real normed vector space and K its cone.
K is called solid if K is nonempty. The order interval [x,y] := (x + K) N (y — K). The notation x < y means that
y — x € K whenever K is solid. Moreover if K is solid, an operator A: E — E is called strictly (strongly) positive

if A (K) C K (A (K*) C K). A positive operator A is said increasing (resp. decreasing) whenever Ax < Ay
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(resp. Ax > Ay)if x < y. If Kis solid, a strongly positive operator A is said strongly increasing whenever
Ax < Ay if x < y with x # y. A positive operator A is called p-homogeneous on S C K if A (Ax) = AP Ax
forall A > 0and x € S, where p € [0,00) is constant. If E is equipped with a norm | - ||, K is called normal
if there exists a constant of normality ¢y > 0 such that x < y implies ||x|| < cn||y|. The norm is said to
be monotone if x < y implies ||x|| < |ly||. Let r>0, and define the set S, := {x € K: ||x| = r} and if K
is solid, we define the set S, := {x € K: |x|| = r}. The open ball of center z and of radius r is denoted by
B(zr):={x € E: ||lx—z| <r}. Anoperator A: E — F is said compact if the image of bounded subsets of E
are relatively compact subsets of F. Now we recall a result of Bushell [14].

Lemma 2. Ifx,y € K* and M(x/y) is finite, then m(x/y)y < x < M(x/y)y. Moreover,0 < m(x/y) < M(x/y) <
oo for all x,y € K when K is solid.

In the sequel, if K is solid, then for all x,y,z € K and all A, u > 0, we have

m(x/z)m(z/y) < m(x/y), M(x/y) < M(x/z)M(z/y). 1)
m(Ax/py) = ;\m(x/y), M(Ax/py) = QM(x/y)- )
m(x/y)M(y/x) = 1. 3)

More properties are presented in [15,16]. From now on, we fix the constants k € [1,4+00) and T € [2, +c0), and
forallx,y € K, we define

T (x,y) = (m(x/y)m(y/x))*,  mm(xy) = (M(x/y)M(y/x))",
A(x,y) == (m(x/y) Am(y/x))",  V(xy):=(M(x/y)VM(y/x))".

Remark that for all x,y € K, by (3) we have
7t (x,y) = T (x,y) "t and A(x,y) = V(x,y) " (4)
If the norm is monotone, then for all x,y € K it follows from Lemma 2 that
0 <7m(x,y) <m(x/y) <1< M(x/y) < m(x,y). )

Forallx,y € I°<, we easily obtain:
(PL) 7t (x,y)x < m(x/y)m(y/x)x < m(x/y)y < x.
(P2) x < M(x/y)y < M(x/y)M(y/x)x < mtp(x, y)x.
(P3) Alx,y)x < m(x/y)m(y/x)x < m(x/y)y < x.
(p4) x < M(x/y)y < M(x/y)M(y/x)x < V(x,y)x.
P5) Alx,y)y < (m(x/y) Am(y/x))y < m(x/y)y < x.
(p6) x < M(x/y)y < (M(x/y)V M(y/x))y < V(x,y)y.
®7) T (x,y) <m(x/y)m(y/x) <1< M(x/y)M(y/x) < mp(x,y).
(P8) Ax,y) < m(x/y)m(y/x) <1< M(x/y)M(y/x) < V(x,y).
(P9) Alx,y) <m(x/y) < M(x/y) < V(x,y).

Definition 2. Let d,,: K* x K* — [0, 1] be given by,

du(x,y) = { L= mn(xy), ifx~y,

1, otherwise.

Let dp: K* x K* — [0, o] be given by,

dM(x/]/): { nM(x’y)ill ifXNy,

00, otherwise.
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The next proposition justifies the projective nomenclature of d;, and d ;.

Proposition 1. Let K be a solid cone. If d is either dy, or dp then
(i) d(Ax, py) = d(x,y) forall x,y € Kand A, u > 0.
(ii) d(x,y) = 0 for x,y € K, then x = Ay forall A > 0.

Proof. From (2) follows immediately (i), and (ii) follows easily from Lemma 2, (i), (3), (p1l), (p2) and the

respective definition of 4. O

Next, we show that a subset of K endowed with one of the projective suprametrics is a suprametric space.

Theorem 1. Let K be a solid cone. If d is equal to d,, or dyy, then (K, d) is a pseudo-suprametric space and (S,,d) is a
suprametric space.

Proof. Clearly, (d1) does not holds because of Proposition 1 except if x,y € §,, however (d2) and (d3) follow
from the very definition of d. We now show that (d4) is satisfied for both d;;, and dps. By (1) and (p7), we have

dm(x,y) < 1= (m(x/z)m(z/y)m(y/z)m(z/x))"
< 1= 7tm(x,2)7tm(z,y) +2(1 — 7t (x,2)) (1 — 7t (2,y))
=327y (x,z) = 27tm(2,y) + 7T (x, 2) T (2, y)
=du(x,z) +dm(y,z) +du(x,z)dm(y, z).

dm(x,y) < (M(x/2)M(z/y)M(y/z)M(z/x))* =1
=dm(x,z) +dp(y, z) +dpm(x, 2)dp(y,z). O
Remark 1. Let K be a solid cone. It is worthy to note that on K and by (4), we have

dym _d
Tri and dy = S

dm -
Hilbert’s projective metric is related to d,; and d), as following:

dy =1 —e¢ %1, dy = efin 1,
dy = —« 'In(1 —dy), dyg=x"tIn(dy +1).

Next we give examples of projective suprametrics.

Example 2. LetE := R", K := {(x1,...,x,) : %, > 0,1 <i<n}and K = {(x1,...,%,) : x; > 0,1 < i < n}.
By using m(x/y) = minj<;<, % and M(x/y) = maxj<i<y %, we define the functions d,,: K x K — [0,1) and
dp: K x K — [0, +00) by:

dm(x,y) =1— ( min Xzy]> and dy(x,y) = < max xl%) 1

1<ij<n YiXj 1<ij<n YiX;j

Example 3. Let E := C[0, 1] be a space of all real-valued continuous functions defined on [0,1]. Let K := {x €

E:x(t)>0,0<t<1}andK:={x€E:x(t) >0,0<t<1}. Forallx,y € K, weuse m(x/y) = inf,c (o) %

and M(x/y) = sup;co ] %, we then define the functions d,: K x K — [0,1) and dj;: K x K — [0, +-c0) by:
K K
—1—( inf xew®) — X(s)y(h) | _
An(xy) =1 <s,tlerfg,1] y(s>x<t)) and  dy(x,y) = (s,feu[gfl] y<s)x<t>> L

Example 4. Let E be the set of positive definite matrices, K(7) be the cone of positive semi-definite matrices of
size n and K(n) its interior. If we denote by Ap(S) and A, (S) respectively the greatest and the least eigenvalue
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of any matrix S € K(n), so as in [17, Lemma 2.1] (see also [18]), then we define d,: K(n) xK(n) — [0,1) and
dp: K(n)xK(n) — [0, +00) by

du(A,B) =1 = Ap(A'BYA(B A and dp(A,B) = Ap(A 1B Ap (B 1A)F — 1.

Example 5. Let (E, || - ||) be a real (n + 1)-dimensional affine normed space. Let K C E be a solid a cone and
H C E be an n-dimensional affine hyperplane such that Q) := HN K is open, bounded, convex set. The line
joining two distinct points x and y of Q) intersects dQ) in x” and y’ such that x is between x’ and y, and y is
between x and y’ (cf. Figure 1).

Figure 1. A convex set Q where x,y € Q and x’,y’ € 9Q)

Define the functions ,,: Q x Q — [0,1) and dp1: Q x Q — [0, +00) by

b y) =1 <|x—x’||||y—y’||>“ and gl ) = (uy—xwux—y'u)"_l
ly=~llx—vI lr=2lly=vI

forall x # yin ), and d(x,x) = 0 for all x € Q. Then using the same arguments as that of the proof of [19,
Theorem 2.2], we get

X — / _X/
M(x/y):M and M(y/x):M,

and the restriction of 4, and dj to () coincide respectively with d,,, and .
We next present new part suprametrics.
Definition 3. Letd,: K* x K* — [0, 1] be given by

B 1—A(x,y), ifoy/
da(x,y) = { 1, otherwise.

Letdy: K* x K* — [0, 40| be given by

Vivy)—1, ifx~y,
o, otherwise.

dy(x,y) = {

We need the following obvious lemma in the proof of suprametrics.
Lemma3. (abAcd) > (aNc)(bAd)and (abVcd) < (aVc)(bVd), foralla,b,c,d e [0,+00).
Theorem 2. Let K be a solid cone. If d is either d 5 or dy, then (K, d) is a suprametric space.

Proof. If d=d,, then da(x,y) =0 implies that A(x,y)=1. Without loss of generality, we assume that
m(x/y) =1, so by (p9) and (4) it follows that m(y/x) =1, which implies that x =y and (d1) holds. Similarly, if
d=dy we get dy(x,y) =0 implies x = y and again (d1) holds. Now, (d2) and (d3) follows immediately from
the definition of 4. We next show that (d4) is satisfied for d 4 and dy. By using (1), (p3), (p4) and Lemma 3, we
obtain

da(x,y) <1—(m(x/z)m(z/y) Am(y/z)m(z/x))"
<1—A(x,2)A(z,y) +2(1 — A(x,2))(1 — A(z,y))
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=3—-2A(x,z) —2A(z,y) + A(x,z2)A(z,y)

=da(x,z) +da(y,z) +da(x,z)dA(y, 2).
dy(x,y) < (M(x/z)M(z/y) vV M(y/z)M(z/x))" — 1

<V(xz)V(zy) -1

=dy(x,z)+dv(y,z) +dy(x,z)dy(y,z). O

Remark 2. Let K be a solid cone. It is worthy to note that on K and by (4), we have

Thompson’s metric dr is related to d, and dy as following:

dy=1—¢"™1, 4y, =¢"1 1,
dr = -1 'In(1—d,), dr=1'In(dy+1).

Example 6. Under the hypotheses of Example 2, we define the functions d5: K x K — [0,1) and dy: K x K —
[0, +00) by:

x< y. T x. y. T
— 1 _ : ) : Jr — s Ji _
aCoy) =1 (qmin () 2 min () and ayo) = (max (51) vimex (%)) ~1

Example 7. Under the hypotheses of Example 3, we define the functions d: K x K — [0,1) and dy: K x K —
[0, +0c0) by:

T T
da(x,y) =1- 'f"“)A'fV(‘*)> d dy(x,y) = x(t) v ) g
At =1 (inf S0 i, 47 ) and vt = (s 36 sup

Example 8. Under the hypotheses of Example 4, we define the functions d: K x K — [0,1) and dy: K x K —
[0, +-00) by:

da(4,B) =1 (Au(A7'B) /\/\m(B_lA)>T and dy(4,B) = (Au(A'B) \/)\M(B_lA)>T 1

Example 9. Under the hypotheses of Example 5, we define the functions J5: Q x QO — [0,1) and dy: QA x Q —
[0, +00) by:

ly— vl ||x—x’|>T (nx—m ||y—x’||>T
oa(x, —1—< A and dy(x,y) = V —1.
A(x) vl "y =1 ve) = =y Y e

The restriction of d, and dy to Q) coincide respectively with J, and dy.

4. The convergence relationships

In this section we show the links between convergence in suprametrics and that in the underlying norm
of vector space.

Proposition 2. Let K be a normal solid cone in normed vector space (E, || - ||1) such that || - ||1 is monotone. Then, for
all x,y € ér,

dm(x,Yy)
1—dm(x,y)’

da(x,y)
1—dalx,y)

|x =yl < 2rdpm(x,y) = 2r

|x =yl <2rdy(x,y) =2r



Open J. Math. Sci. 2026, 10, 69-93 76

Proof. From Lemma 2 it follows that
0 <x—m(x/y)y < (M(x/y) —m(x/y))y.

Using the normality of K and (5), we obtain

lx =m(x/y)ylh < (M(x/y) —m(x/y)) |yllx = r(M(x/y) —m(x/y)).

Using (5), (p1) and Remark 1, we deduce

lx =yl < llx = m(x/y)ylr + [[(m(x/y) = Dyl
<r(M(x/y) —m(x/y)) +r (1L —m(x/y))
< 2r(M(x/y) —m(x/y))
<2rm(x/y) (M(x/y)M(y/x) —1)
<2r(mm(x,y)—1)

dm(x,y)
<2rdpm(x,y) = 2r————22—,
< 2rdm(x,y) "1 du(x,y)

and by (p8), we obtain

[x —ylli < 2rm(x/y) (M(x/y)M(y/x) —1)
<2r(V(x,y)—1)

da(x,y)

<2rdy(x,y) =2r———~—,
= V( y) 1*dA(x,]/)

Proposition 3. Let K be a normal solid cone in a normed vector space (E, ||-||). Then, forall x € Kand y € §,,

(2+dm(x,y))dm(x,y) _ (2 —dm(x,y))dm(x, y)
v = yll < 2enr-=— dM(x’;”) = Zenr g

(2+dv(xy))dv(x,y) (2—da(x,y))da(x,y)
x —yl|l < 2cnr 1‘; dv(x,yv) = 2cnr lA_ dA(x,yA) :

Proof. From (p7) it follows that
0 <x—m(x/y)m(y/x)y < (M(x/y)M(y/x) —m(x/y)m(y/x))y.
Hence, by normality of K, we obtain

I = m(x/y)m(y/x)y]| < ex (M(x/y)M(y/x) — m(x/y)m(y/x)) |ly]
— enr (M(x/y)M(y/x) — m(x/y)m(y/x)).

Using (5), (p1) and Remark 1, we deduce

lx =yl < [lx = m(x/y)m(y/x)y| + [|(m(x/y)m(y/x) — Dy|
< 2cnr (M(x/y)M(y/x) —m(x/y)m(y/x))
< 2enr (M(x/y)M(y/x) = 1) 4 2enr (1 = m(x/y)m(y/x))
< 2ent(dm(x,y) +dm(x,y)),

—_ —

and by (p8), we obtain

[l =yl < 2enr(dv(x,y) +da(xy)),

and the results follows from Remarks 1 and 2. [
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For (x,7) = (1,2) we easily obtain the following inequalities, from the previous proposition and
Remarks 1, 2.

Remark 3. For the Hilbert’s projective metric, we have
|x — y|| < 4cyrsinh (dy(x,y)) forallx € Kand y € S,.
For the Thompson's metric, we have
|x — y|| < 4cnrsinh (2d7(x,y)) forallx € Kand y € S,.
Some converse inequalities are given in the following proposition.

Proposition 4. Assume B(y;r) C K for some y € K. Then, for all x € B(y;7),

dn(x,y) <1— (r—”x—!/”> du(x,y) s( +||x—y|>
<

=yl =yl
r T

da(x, <1(> , dy(x, <(

A(xY) =) e < (o=

Proof. Following the proof [16, (1.21)], we obtain m(y/x) > and M(y/x) forallx € B(y;r)

r+H1 —x||
for x # y, which give the desired results. [

r— Hy x|

We next show that equivalence between convergences occur in 8,. We recall first some known facts in the
literature. Let ¢ € E such thate > 6 and

E. := {x € E: thereexists A > 0 such that — Ae < x < Ae}.

Take a norm || x|, on E,, which is given by || x|| := inf{A > 0: —Ae < x < Ae}. Then the pair (E,, || - ||¢) is
anormed linear space and || - || is called the e-norm. It is known [20] that if K is normal, then the pair (E,, || - ||¢)
becomes a Banach space, and there exists a constant w > 0 such that ||x|| < w||x||.. Moreover, K, := KNE, is
a normal solid cone of E,. If in addition K is solid and e € K, then E. = E and the e-norm is equivalent to the
norm of E. In the remainder of this section, we consider that K is normal and solid cone.

Proposition 5. Let K be a normal solid cone. Let x, € S, and {xy} C 5. If d is either dy, or dpy, then

lim d(x,,x.) =0 < hm [ — x4]] = 0.
n—oo
Proof. We next discuss the casesd = d,;; and d = d.
e Caseofd =d,,.
Let x, € S, and {xn} C §,, and assume that we have limy,_,c dm(xn,x5) = 0. Thus, by definition of
A, My 00 T (X4, x4) = 1, and by (p7) we get x > m(xs/xy)m(Xn /X5 )Xn > Ty (X4, Xn ) x«. Hence, we have

0 < xo —m(xe/xn)m(xn/x:)xn < (1 — 70 (%0, x4)) Xy, since ||x]| = r, we deduce by the normality of K

and ||x,|| = ||x«|| = r that we have lim,_,co ||[1(xs/Xn)m(xn/X4)xn — x«|| = 0. Now, by using the triangle
inequality, we obtain

||xn - X*H < Hxn — m(x*/xn)m(xn/x*)xnu + Hm(x*/xn)m(xn/x*)xn — X*H
S r(L—m(xa/xn)m(xu/x4)) 4 ||m (s / x0)m(x / %) %0 — x4 |
< 27’(1 - nm(x*/ xn)>/

which tends to zero as n tends to infinity.

e Caseofd =d,.

Let x, € S, and {xn} C §,, and assume that we have lim,_sc dp(xy,x.) = 0. So, by definition of
dp, imy e (x4, X)) = 1, and by (p7) we get x. < M(xo/x0) M(x0 /%) Xn < TTa1(Xx, X)X, thus 6 <
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M(xs/%n)M(x /%)X — x5 < (7Tp1(X4, Xn) — 1)x4. So from the normality of K and ||x,|| = ||x«]| = r follows
lim | M (2 / x0) M (% / x4 ) X — x| = 0. We conclude that

|20 — || < {200 =M (2 / X0 ) M (x50 / 20 ) X ||+ || M2/ 200 ) MU (X0 / 20 ) X — X |
< r(M(xo/x0)M(xn/x2) = 1) + || M(x4 /20 ) M (X / %) X — x|
< 2r(mpp (X, xp) — 1),

which tends to zero as n tends to infinity.
Conversely, assume that limy, ;e ||X, — x«|| = 0. Lete € K, so E, = E and the e-norm is equivalent to the
norm of E, which implies that for e, := ||x, — x«||., we have lim,, €, = 0, and we have

—epe < (xp —x) <gge and —egpe < (x —xy) < gpe.
We then take a small real number a > 0 such that x > ae, since x € K. Hence,

-2y <x—epe<x;, <x+ee < (1+2)x,
(1—)xy < xy —ene < x < xy +ege < (1+ 2)xy,

which implies that

from which we deduce that
(1— )2 <m(x/xn)m(xy/x) and M(x/xn)M(xn/x) < (1+ )2

We conclude that

(X0, X) = 1= 70 (20, %) <1 (1= @)%,
dy(xn, %) = 7oy (xn, %) =1 < (14 %) 1,

and this proves that d, (x,, x) and ds(x,, x) tend to zero as n — co. [

Remark 4. Note that Proposition 5 implies that the continuity of an operator on S, with respect to the norm or
d are equivalent.

Proposition 6. Let x, € Kand {x,} C K. Ifd is either d,, or dyy, then

lim ||x, —x4|| =0 <= lm d(x,, x+) = lim |[|x,]| — [|x«]| = 0.
n—oo n—o0 n—o0
Proof. Assume that lim ||x, — x.|| = 0, then clearly lim |/x,| — ||x«| = 0 and lim;_c0 ’ el — e ‘ = 0.
n—co n—oco [EA [EA
Now, using that ﬁ, H’;‘—:H € S, it follows from Proposition 5 that limy, e d ( H’ ;(:H , H’ ;:H = 0 with d is either d,,
or dy. Since d (Hr;—:u, ﬁ) = d(xy, x+), we conclude that lim,_ye d(xp, x.) =0.
Conversely, assume that limy, o d (X, X5 ) = limy, 0 || X || — [|x«]] = 0, then we get

lim d(xy,x) = lim d( Mn X ) =0

o
nveo n=veo \ [l | [l |

I
[E

Using Proposition 5, we get lim;, .0 ’ ‘ = 0, and by using the triangle inequality of the norm,

we obtain
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Xn Xy
o =l =l o~ T
xn x* X* X*
<l (5 el + I - )
Tl ™ Tl Il ~ Tl

which tends to zero since ||x, || tends to ||x.|| as n tends to infinity. [
Proposition 7. Let {x,} C Kand z € K. If d is either d o or dy, then

lim d(xy,z) =0 < lim ||x, —z| =0.
n—00 n—r00

Proof. Let d be either d, or dy.

Assume first that limy, e d(xp, z) = 0. Then {x,} is a Cauchy sequence and thus limy, y;—e0 d(Xs, X ) = 0.
As in the proof of Proposition 10, we deduce that there exists y € K such that lim, e ||x, — y|| = 0 and that
lim,, 00 d(x,,y) = 0. Hence, by [11, Proposition 1.4] follows that y = z and by consequence lim;, o ||y — y|| =
0.

Conversely, assume that lim,_,« |[x, — z|| = 0 and take e € K. Then, there exists # > 0 such that Ble,r) :=
{x € E:||x—e| <r} C K. Asz € K one can choose a sufficiently small number A € (0,7) such that z > Ae.

Observe that for x # z, we have e — HY+ZH(X —z) € K, which implies x < Hx—;zl‘e + z. Thus, we deduce that
X < (w + 1)z, and therefore
zZ—Xx
M(x,/z) < % (6)
Moreover, observe that for x # z, we have e + M(x —z) € K, which implies z < Me + x. Next,

-1
since there exists an integer N such that for all n > N, ||x, — z|| < A, we obtain z < (1 - W) Xpn, SO We

deduce
|z — x|

-1
I ) —1, foralln > N. (7)

M(z/x,) < <1 -

Thus from (6) and (7), we conclude that lim,,_, d(x,,z) = 0, where d is one of the suprametrics d, or
dy. O

After having shown the link between the convergence in norm and in 4 either it is d,, or d), we present
an example highlighting some advantages of the convergence in projective suprametrics.

Example 10. Consider E = CJ0, 1] the set of all continuous real function on [0,1]. LetK := {f € E: f(t) >
0,t € 0,1} and K := {f € E: f(t) > 0,t € [0,1]}. It is well knows that E is a Banach space with respect to the
norm || - || induced from the distance do, thatis, ||f — g|| = deo(f, g) Where

deo(f,8) = sup |f(t) —g(t)].
te[0,1]
Clearly, (S,,d«) is not complete. Note that it may occur that lgn deo(fu, f+) #0 while lgn d(fu, f«)=0
n [o0] n [oe]

where d is either d,, or d. For instance, take f. () =r and {f,} the sequence given by f,,(t) =2r"t, t € [0,1].

We have
n—t

lim deo(fn, f+) = lim sup |2r

n—oo n—oo tG[O,l]

—r| #0.

Nevertheless, the suprametrics of Example 3 satisfy

. . 1.1 . , n—t\"
Jim dy(fu, fr) = lim d, <2rfn/ rf*> = lim 1 (s,tler[lg,l} p— s) =0,

K
. . 1 1 . n—t
Jim di(fn, f+) = lim dy (ern/ rf*) = lim (:;,21[(})),1] ” _S> —-1=0.
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5. Completeness criteria

Let E be a normed vector space. We describe her when completeness holds.

Proposition 8. Let K be a normal solid cone in E endowed with a monotone norm || - ||y. If d is either dy, or dpy, (S, d)
is a complete suprametric space.

Proof. Assume that {x,} is a Cauchy sequence in (5,,d). Hence, we have limy 4500 d(xp, X4) = 0. We deduce
from (5) that,

Iim M(x,/x;) =1 and lim m(x,/x;) =1, 8
lim_ M(x,/x) i m(x, /) ®

which implies by Proposition 2 that lim; ;e [|xp — %4([1 = 0, and by completeness of E it follows that there
exists some x, € E such that limy,_« ||y, — x«||1 = 0. Note that x, € S, so ||x«]|; = 7.

e Assume that d = dj,. Thus, for any ¢ > 0, there is &, € (0,1) such that 1 — (%;—ZZ)K < &. By (8), we

deduce that there exists n,, such that

(1—em) <m(xp/xq) <1 and 1 < M(xp/x5) < (1+em),
for all p,q > ny, thus x, € I, where I, := [(1 — &n)xq, (14 €n)xy] for all p,q > ny,. Since K is closed, then
so is the order interval I,;;, thus by letting p tends to infinity for a fixed g in the previous inequality, we obtain
Xy € Iy for g > ny,, which implies x, € ér and

m(x./xg) > (1 —ep) and M(x./x5) < (1+em), 9 > np.

We conclude that

1—em\"©
A (X, Xg) =1 — (X4, x) <1 — (1+£:) <eg,

for g > ny,, which proves that dy, (xx, x;) tends to zero as g tends to infinity.

K
e Assume now that d = dj;. Thus, for any ¢ > 0, there is ¢); € (0,1) such that szﬁ) —1 < e By (8),
we deduce that there exists 1), such that

(1—em) <m(xp/x5) <1 and 1 < M(xp/%x5) < (14em),

for p,q > nys thus x,, € Iy where Iy := [(1 —epm)xg, (1 +epm)x4] forall p,q > ny,. By letting p tends to infinity
for a fixed q in the previous inequality, we obtain x. € Iy for g > 1y, s0 x. € S, with

m(xs/xq) > (1—ep) and M(x./x;) < (1+em), 9> ny.

We conclude that

1 K
dm(xs,xg) = Tpm (x4, %) =1 < ( +£M> —1<eg
1 — &M

for q > npy, thus dpg(xy, x4) tends to zero as g tends to infinity. [
Proposition 9. Let K be a normal solid cone. If d is either d, or dyy, then (S, d) is a complete suprametric space.

Proof. Using [21, 1.7 Proposition], there exists a monotone norm denoted || - ||; on E equivalent to the norm
|- || Let V, := {x € K: ||x||y = r}, so it follows by Proposition 8 that (Vy,d) is complete with d is either d,,, or
dp1. We shall prove that (S,,d) is complete. Let {x, } be a Cauchy sequence in (S,,d), 0 limy, —sco d (%X, Xm) =
0. Using that ||x, || = 1 and the equivalence of the norms || - || and || - |1, we deduce that there exist two positive
real constants b > a such that a||x|| < ||x||; < b||x]|, x € E. Thus, 0 < ar < ||x,||y < br for all n > 1. Take
Zy = ,then z, € ér for all n > 1. Hence, by Proposition 1, we obtain

[EA

rXp rXg
||xp||1’ quHl

d(zp,zq) =d ( > =d(xp, x4),



Open J. Math. Sci. 2026, 10, 69-93 81

which tends to zero as p, g tend to infinity. By virtue of completeness of (V,,d), there is some z, € V, such that

limy, 00 (2, z4) = 0. Now, since ||z«||1 = r and al|z.|| < ||z«|l1 < b||z«]|, we deduce that 0 < b~ 17 < ||z.]| <
Zx

a~lr. Now, let x,, = T then x, € S, and

d(xn,x*) —d (||xn|1z r

r 7zl

Z*> = d(zn/ x*)/

which tends to zero as n tends to infinity, and this implies that (é,,d) is complete, where d is equal to d;,; or
dy. O

For the sake of completeness, we give the proof of the next proposition despite its resemblance to that of
Lemma [2].

Proposition 10. Let K be a normal solid cone. If d is either d 5 or dv, then (K, d) is a complete suprametric space.

Proof. The proof is divided into three steps:

Step 1. We show that every Cauchy sequence is bounded with respect to the norm. To see this, let {x,, } be
a Cauchy sequence with respect to d, where d is either d, or dy. Then, there exists an integer N > 0 such that
d(xp,xg) < 1,forall p,q > N. In particular, M(x,/xn) < 1,50 xp < (M(xp/xn) +1)xny < 2xyn. Hence, by
normality of K, [|xp|| < 2cn/||xn]| for all p > N. Therefore, {x, } is bounded by é where

6 = max{[[xil, ..., [lxnll, 2]l xn|}-

Step 2. We show that {x, } is convergent in norm. The sequence {x, } is Cauchy, for all ¢ > 0 there exists N;

such that d(xp, x;) < 7, for all p,q > N, where 11 := m, we obtain x, < (M(xp/x5) +1)x; < (7 +1)x4

and x; < (M(xy/xp) +1)xp < (74 1)xp. Thus, using the last inequalities, the normality of the cone and
Step 1, we obtain

[xp = xqll < llxp —xg + (xg = xp +11x5) — (xg — xp + 17 %) |
< llxgll + 11 (7 + 1)xg — xp||
<yd+enll(7+1)xg —xp+ (7 +1)xp — x4
<né+eny|xp+ xqll
<ndé(l+2N)=c¢.

Hence, {x,} is a Cauchy sequence in K with respect to the norm. The closeness of K with respect to the

norm implies that (K, || - ||) is complete, so there exists x, € K such that
nlglgo |y — x«|| = 0. )

Step 3. We show that {x, } converges to x, with respect to d. Since {x, } is Cauchy, there exists ¢ > 0 such
that for sufficiently large p and g we have d(x,,x;) < ¢ which implies x, < (e +1)x; and x; < (e +1)xp.
From other hand, and by closeness of K, we deduce from (9) for sufficiently large p that x, < (e +1)x, and
x, < (e+1)xp. Thus x, € Kand d(x, x,) < € for a large p, so {x,} converge to x, with respect tod. [

6. Fixed point theorems
First recall some results from [11].
Theorem 3. Let (X, d) be a complete suprametric space. Assume there exists ¢ € [0,1) such that a mapping f: X — X
satisfies:
A(fx, fy) < cd(x,y), forallx,y € X.
Then, f has a unique fixed point and the sequence { f"x} converges to this fixed point for all x € X.
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Theorem 4. Let (X, d) be a suprametric space. Assume that a mapping f: X — X satisfies:
d(fx, fy) <d(x,y), forall x,y € X such that x # y.

If there exists xo € X such that the sequence { f*xo} has a convergent subsequence, then f has a unique fixed point
and the sequence { f"x} converges to this fixed point for all x € X.

Proposition 11. Let (X, d) be a suprametric space. If a sequence {x, } ,en C X has a limit, then it is unique.

The following example illustrates that a mapping can be a strict contraction with respect to a suprametric
d (with p > 0), even when d does not satisfy the ordinary triangle inequality (i.e., when p = 0).

Example 11. Let X = {A,B,C}. Define d: X x X — [0, ) by:
d(A,B)=1, d(B,C)=1, d(AC)=3,

and extend symmetrically (d(x,y) = d(y, x)) withd(x,x) = 0forall x,y € X.
Take p = 2. Then (X, d) is a suprametric space because the inequality

d(x,y) <d(x,z) +d(z,y) +pd(x,2)d(z,y),

holds for all x,y,z € X. Define f: X — X by f(A) = A, f(B) = A, f(C) = A. Then for any x # y,

d(f(x), f(y)) =0 <d(x,y),

so f is a strict contraction in the suprametric space (X, d).
However, if we try to view (X, d) as a metric space (i.e., take p = 0 in the axioms), then the usual triangle
inequality fails because
d(A,C)=3>1+1=4d(A,B)+d(B,C).

Thus (X, d) with p = 0 is not a metric space, so f cannot be a strict contraction in “metric space (X,d)"
because such a metric space does not exist.

In order to establish a Geraghty fixed point theorem in suprametric spaces, we need the following
auxiliary lemma.

Lemma 4. Let (X, d) be a suprametric space and {xp } ,cn be a sequence in X such that

lim d(x,, x,41) = 0. (10)

n—0o0

If {x,} is not a Cauchy sequence, then there exist an € > 0 and two sequences {my } and {ny} of positive integers
such that the sequences d(Xuy, Xuy ), (Xmy, Xpe+1), (X, —1, %, ) tend to € as k tends to infinity.

Proof. For the sake of simplicity, we use the following notations:
Apm = d(xp, Xp) and d,, :=d,, 41 withn,m € N.

If {x,} is not a Cauchy sequence, , then there exist an € > 0 and two sequences {m; } and {n;} of positive
integers such that
nk > mk > k, dmk,nk—] < g, dmk,nk 2 £

for all k > 0. Hence

€ S dmk,nk S dmk,nkfl + dnkfl + Pdmk,nkfldnkfl S € + (1 + Pg)dnkfl-
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Using (10), we deduce that

lim dy = €. 11

Now, by using (d4), we get
dmk,nk S dmk,nk—H + d?’lk + Pdnkdmk,nk—l—l
S dmk,nk+l + dVlk + Pdnk (dmk,nk + d?’lk + Pdmk,nkdnk) ’
or equivalently, (1 — pdy, (1+ pdp,)) dppn, — A1 < (1 + pdy, )dy,, so by using (10)-(11) it follows that

klim Ay m+1 = € Again, by using (d4), we get
—00

dmk,nk-H S dmk,nk + dﬂk + Pdnkdmk,nk
S dmk,nk + di’lk + Pdnk (dmk,nk—i—l + d'flk + Pdmk,nk—i—ldnk) ’

or equivalently, (1 — pdy, (1+ pdy,)) dy, ne1 — Amgn, < (1 + pdy, )dy,, thus by using (10)-(11) it follows that
limy_,eo dypyy 11 < € We conclude that limy_,o dyy) 5,11 = €
Similarly, using (d4), we get

A < Ay 17+ D1, Oy 1Dy —1,m,
< dpy 1+ dmy—1,m+ 1 (dmkfl + A+ pdmrldmkr”k) ’
Aony—1,m < A1+ Ay + -1y g
< dmk_1+ Ay + pdmk_l (dmk_1+dmk_1r”k+ pdmk_ldmk_lr”k) ’

or equivalently,

(1 - Pdmk71<1 + Pdmkfl)) dmk,nk - dmkfl,nk S (1 + Pdmkfl)dmkflr
(1 - Pdmk—l(l + Pdmk—1)> dmk—l,nk — ey, < 1+ Pdmk—l)dmk—l'

By letting k — oo and using (10)-(11) it follows that klim Ay 1, =€ O
—00

In the sequel, we will denote by ®; (resp. ®;) the family of functions ¢: [0,1) — [0,1) (resp. ¢: [0, +o0) —
[0,1)) which satisfy
p(ty) =1 = t, = 0.

Next, we extends a Geraghty fixed point theorem of [22] in suprametric spaces.

Theorem 5. Let (X,d) be a complete suprametric space, where d: X x X — [0,1) (resp. d: X x X — [0, +00)) is a
suprametric, and let f: X — X be a given mapping. Suppose there exists ¢ € Py (resp. ¢ € P, ) such that

A(fx, fy) < ¢(d(x,y))d(x,y), forall x,y € X withx # y. (12)
Then f has a unique fixed point and the sequence { f"x} converges to this fixed point for all x € X.
Proof. Let x € X and x;, = f"x, n € N. For the sake of simplicity, we use the following notations:
Aym = d(xn,xy) and dy, :=d, 41 withn,m € N.

We next assume that d,, # 0, otherwise x, becomes a fixed point of f.

Claim 1. lim,_, d, = 0. Using (12), it follows that the sequence {d, } is decreasing and since it is bounded
below, lim;, s dy = € > 0. Assume that e > 0, so by (12), we obtain d"“ < ¢(dn), for n € N, which implies
that 1 < lim, o ¢(dy), and since ¢ € Pq (resp. ¢ € P;), thene =0 and our claim holds.
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Claim 2. The sequence {x, } is Cauchy. Suppose the contrary, that is, {x, } is not a Cauchy sequence. Using
the first claim, and according to Lemma 4 there exist an € > 0 and two sequences {m;} and {n;} of positive
integers such that the following sequences:

d(xmk/ xnk)/ d(xmk/ xnk+1)/ d(xmk—ll xnk)/

tend to £ as k tends to infinity.
By putting x = x;, and y = x,, 1 in (12), we obtain from certain order N that for all k > N, we have

dmk,nk—i-l S ¢(dmk—l,nk)dmk—l,nk~

d”‘l n .
Then, for all k > N, we have ﬁ < ¢(dm—1,n,) < 1, then by letting k — oo, we deduce that

Jim 1) = 1

Since ¢ € P (resp. ¢ € Dp), klim A, —1,n, = 0, which a contradiction. Thus the claim holds.
—00

Now, by completeness of (X, d) it follows that there exists x, € X such that lim,_,c d(x, x«) = 0. Thus,
from (12), we have

d(xnt1, f20) < @(d(xn, x:))d (xn, %),

so by using that ¢ € @; (resp. ¢ € @,) (both functions are bounded) and Proposition 11, we deduce that x; is
a fixed point of f. Clearly, (12) ensures the uniqueness of such a fixed point. [

7. Positive homogeneous operators

In this section, we provide a theorem of Krein-Rutman [23] type. Let E be an ordered vector space
equipped with a norm | - || and K be a solid cone in E, and define the setS! := {x € K: ||x||; = r}, where || - |1
is a monotone norm equivalent to || - ||, which exists if K is normal according to [21, 1.7 Proposition]. We recall
only two equivalent assertions that will be used later.

Proposition 12 ([21]). Let E be an ordered vector space equipped with a norm || - ||, and let K C E be the positive cone.
The following assertions are equivalent:

(i) K is normal for the topology generated by the norm || - ||.

(ii) There exists an equivalent monotone norm || - ||1 on E.

From now on, the notation || - ||; stands for a montone norm equivalent to the norm of the ordered vector
space E. Next, we need the following elementary lemma.

Lemma 5. Forall v € [0,4+00), 1 — 1P < p(1 — r) for every constant p € [1,+00), and 1P —1 < p(r — 1) for every
constant p € [0,1].

The following results provide, according to the values of p, some conditions to obtain the contraction of
Theorem 3.

Theorem 6. Let K be a cone and let A: E — E be a strongly positive, increasing and p-homogeneous operator on K*. If
p € [1,+00), then

dm(Ax, Ay) < pdp(x,y) forall x,y € K*,
Proof. (1)-(2): Let x,y € K*. By Lemma 2, the monotonicity and homogeneity of A, we obtain

m(x/y)P Ay < Ax < M(x/y)P Ay,

which implies
m(x/y)? <m(Ax/Ay) < M(Ax/Ay) < M(x/y)P. (13)
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Now, we apply Lemma 5, we get
dw(Ax, Ay) <1— (m(x/y)m(y/x))"™ < pdu(x,y). O

Theorem 7. Let K be a cone and let A: E — E be a strongly positive, increasing and p-homogeneous operator on K*. If
p € 10,1], then
dpm(Ax, Ay) < pdp(x,y) forall x,y € K¥, (14)

In addition, if p # 1 and K is normal solid cone, then
(a) for all v > 0, there exists x, € K, Ay > 0 such that Ax, = Avx,.
(b) A has a unique fixed point in x. € K and the sequence { A"x} converges to x. for all x € K.

Proof. Let x,y € K*. As above, from (13), we get

dm(Ax, Ay) < (M(x/y)M(y/x))" =1 < pdpm(x,y), if p € [0,1].

Let p € [0,1) and K a solid cone. Recall that A is strongly positive, which means that A(K*) C K, in
particular Ax € K for all x € K. Since K is normal solid cone, then according to Proposition 12, the operator

A K= S} given by A,x = TAx AA’ﬁ is well defined. Then, we have:

(a) For all x,y € K, dpm(Arx, Avy) = dM(HX‘;’l‘h, Hf‘\%l) = dy(Ax, Ay) < pdp(x,y). Hence, A, is a

contraction on the complete suprametric space (S%,dm) according to Proposition 8. We deduce by Theorem 3
that A, has a unique fixed point x, € Sl so Ay, = x, = ”Xifl’h. Let A, := M. Thus, A, > 0and Ax, = Ax,.
The proof of (b) is divided into several steps:

L
(b1) A fixed point of A in Kis given by x, = rl Xy, since

Axs = AN "x) = A TAYG = A T A = A T xg = X

(by) The fixed point of A is unique in K. Assume there exists y. € K a fixed point of A, then define

Xx Yy
X1 = and 1= 7
el ™ Tyl
We have x1,y; € 8}, and from homogeneity of A we have
Ax1=A( ok ) o Ax, and Ay=A(—— 'Y+ )= il Ays.
1: = 1:
[N T ly<lln™ Iyl

Thus

_ ol [EAl
M(¥s,ys) = dm(Axs, Ayi) = du (== Ax, == Ayi)

TXs  TYs
7

[lxell” [ly«lla

< pdm(x1,y1) = pdm( ) = pdm(xe, y),

which is a contradiction. We conclude that x, = py. and

X = Axy = A(pys) = pP Ays = pPys = pys,

soy =1and xs = ys.

(b3) Any sequence {A"x} converges to x, with respect to dp for all x € K. To see this, observe first that by
induction we easily obtain A} (1 IEP ) = H:‘Qx)ﬁ for all x € K. By Theorem 3, the sequence { A7 (%)} converges
to x,, thatis,

a( TX B a T ﬁ B rAlx B "
dM(A’(|x|1)’x’>‘dM(AT(|| ||1> r "*)‘dM<||Anx||1"‘* = dm (A%, 2),

[EIR
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tends to zero as n tends to infinity, we conclude that the sequence {A"x} converges to x the unique fixed
point of A forall x € K. [

Theorem 8. Let K be a cone and A: E — E be a strongly positive, strongly increasing and 1-homogeneous operator. If
(1) dp(Ax, Ay) < dp(x,y), forall x,y € S, such that x # v,
rAx

(2) K is normal solid cone and the operator A,: K — S, given by A,;x = TAx] is compact for some r > 0, then

(a) there exists x, € K, A, > 0 such that Ax, = Avx,.
(b) A has a unique positive eigenvalue with a positive eigenvector y, € K.
(c) the equation Ax = Ax for x € K implies that x = ~y, for some real number iy > 0. Furthermore,

ARy Ay ,
lim —— =y, and lim ———— = A, forally € K. (15)
koo ARy — T ES aky)| Jorally

Proof. (1) Let x,y € S, such that x # y, which means m(x/y)y # M(x/y)y otherwise m(x/y)y = x =
M(x/y)y, and since ||x|| = ||y|| = r it follows that m(x/y) = M(x/y) = 1, thus x = y which is a contradiction.
Assume, without loss of generality, that m(x/y)y # x. Since A is strongly increasing and 1-homogeneous,
then

m(x/y)Ay = A(m(x/y)y) < Ax < A(M(x/y)y) = M(x/y)Ay,

thus Ax — m(x/y)Ay € K, so there exists # > 0 such that t Ay < Ax — m(x/y) Ay, and we have
(a +m(x/y))Ay < Ax,
which means that
m(Ax/Ay) > a+m(x/y) > m(x/y).

We deduce that
m(x/y) < m(Ax/Ay) and M(Ax/Ay) < M(x/y),

which is equivalent by (3) to
M(Ay/Ax) < M(y/x) and M(Ax/Ay) < M(x/y),

thus we deduce
M(Ay/Ax)M(Ax/Ay) < M(x/y)M(y/x).

We conclude that
dp(Ax, Ay) < dp(x,y), forall x,y € K such that x # y.

(2) Letr>0and A,: K— S, ba a compact operator given by A,x = ﬁ. Note that A, is contractive on

ér, that is,

rAx rAy
[Ax[" [ Ay]

dpm(Arx, Avy) = dy ( > =dpm(Ax, Ay) < dum(x,y),

forall x,y € S, such that x # 1. Hence A, is continuous with respect to djs on §,, which implies by Remark 4
that A, is also continuous with respect to the norm on ér.
Next, we claim that the sequence { A¥*1x} has a convergent subsequence to a point of S, with respect to

dy. Lety € K, s0 Ay € Kand ||Ay|| > 0. Letx = {:‘ﬂ, it is clear that x € S,. Using the homogeneousness of

A it is easy to obtain by induction that A’,‘x = Hr:kké‘ = A’r‘y € ér, for all k € N. Since ér is bounded and A; is

compact it follows that { A¥x} has a convergent subsequence {A¥ix}toa point z with respect to the norm, that

is,
lim [|Afix — z|| = 0.
1—00
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From the closeness of K and S, and the fact that { A¥x} ¢ §,, it follows that z € K and ||z|| = r. Moreover,
by continuity of A, on ,, we have
im [|AN Ty — Az| = 0.
—00

1

rAz

TAz], SO Xx € S;, which

Since A is strongly increasing, z > 6 and z # 6, then Az € K. Let x. = A,z =
implies that
lim || ANy — x,| = 0.
k—o0

Now, according to Proposition 9, (ér, dp) is a suprametric space. Hence, by (14) and Theorem 4, we
deduce that A, has a unique fixed point x, € S, and any sequence { A¥*1y} converges to it, that is,

A 5
Arxy = HrA;rH = x,, kh_)n;o dy (A Yy, x,) =0, forally € K.
T
5 . k .
Letx = HVAL;H fory € K, then x € 5. Since A’r‘x = Hr Ifkyy” and x, € S;, then by Proposition 3, we obtain
. k . rAky .
k11_r>1010|\Arx—xr|| :kh_{r;o 1A%y —xr|| =0, forally € K.

In particular, A; has a unique fixed point x; € $; such that

Axl
Arxg = =Xy,
[ Axy]]
and from Proposition 3 it follows that
Aky .
—— —x1|| =0, forally € K. (16)
koo || [|ARY |
Lety, = x1, A = ||Ay«||and A, = M. Then as above, we have
Arxy = Apxy and Ay = Ays. 17)

We shall show that A, = A for all r > 0. Observe that we have

_AF) A x
IACHI [JAx | 7

Xr o Xr
es, (%)
r €1 ! r

Since y, = x1 is a unique fixed point of A, in él, then % = Y4, thatis, x, = ry. Further,

_llAx Ay
r r

Ay = A, forallr >0,

thus Ax, = Ax, for every v > 0. Clearly, from (16) and (17) follows (15). O

Let R” be the n-dimensional Euclidean space with usual norm. The cone R := {x € R": x > 0} is
normal and solid. Denote R} , := {x € R": x > 0}. Note that in finite-dimensional the compact condition
can be dropped.

Corollary 1. Let A: R" — R" be a strongly positive, strongly increasing and 1-homogeneous operator. Then
(@) A has a unique positive eigenvalue with an eigenvector y, € R' | .
(b) the equation Ax = Ax for x € R'}  implies that x = 7y, for some real number -y > 0. Furthermore,

Ay ARy
] — vy, and lim Y2 Y\ fraiy e RY
0 Ak~ gy~ Joraty € Ry
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A Perron-Frobenius theorem is derived easily from the previous corollary, since for a non-negative square
matrix M, if Ax = Mx, then A is 1-homogeneous, compact and strongly increasing.

Corollary 2. Let M be a non-negative square matrix. Then M has a unique positive eigenvalue with an eigenvector
v« € Rt . The equation Mx = Ax for x € R} | implies that x = vy, for some real number -y > 0. Furthermore,

. My [y
1 — yoand lim Yy eraliy e RY
0 TRy Y Ty N Sty € R

Remark 5. Theorem 8 answers [24, Problem 3] and shows that the norm does not need to be monotonic. It
is worthy to note that Theorem 8-(1) is equivalent to dp(Ax, Ay) <dp(x,y), for all x,y €S, such that x #y.
However, it is not known whether dj; of Theorem 7-(14) may be replaced by dp.

8. Concave and convex operators

We show here that some concave and convex operators indeed satisfy a Geraghty contraction.

Definition 4. Let K be a solid cone. We say that an operator A: K — K is o-concave if there exists a function
0:(0,1] = [0,400) such that

A(t™1x) < o(t)A(x), or equivalently, A(x) < o(t)A(tx),

forall x € Kand t € (0,1]. We say that an operator A: K — K is o-convex if there exists a function ¢: (0,1] —
[0, +c0) such that
A(tx) < o(t)A(x), or equivalently, A(x) < o(t)A(t 1x),

forallx € Kand t € (0,1].

Example 12. The a-concave (resp. a-convex) operators of [25, Definition 2.1] (« € [0,1]) are recovered by
taking o (t) = t~* (resp. o(t) = t*) in the definition of o-concave (resp. o-convex) operators.

We introduce the following functions to obtain a Geraghty contraction.

Definition 5. Define the functions q,01,0,02: (0,1] — [0, 400) by

() =1+ (t=1) ¢ (1-1) %, At =1+ (t-1) ¢ (1-1)F,
o) = (14 (1 =1) ga (1 =1))%, @0 = (14 (1 =1) 02 (1= 1)) ",
where k € [1,400), T € [2,+00),¢1: [0,1) = [0,1) and ¢: [0, +00) — [0, 1) are given functions.

To see the connextion of these functions with the Geraghty-type contraction observe the following
equivalent inequalities:

dp (Ax, Ay) <¢1 (dm (x,Y)) dn (x,y) <= 7m(Ax, Ay) 21+ (7w (x,y)—1) p1 (1=7tm(x,y)) .

= (Ax, AY)YE > o (7t (x,y)) 2.
dm (Ax, Ay) <¢2 (dm (x,y)) dm (x,y) <= 7m(Ax, Ay) <1+ (mm(x,y) — 1) ¢2 (tm(x,y) — 1)

— my(Ax, Ay)l/" <o (nM(x,y)_l)z.

dp (Ax, Ay) <¢1(da (x,y))da (x,y) <= A(Ax, Ay) 21+ (Alx,y) —1) ¢1 (1 - Ax,y)).
— AAx, AT > 5 (Alxy)

dy (Ax, Ay) < ¢z (dv (x,y))dv (x,y) <= V(Ax,Ay) <1+ (V(x,y) = 1) 2 (V(x,y) —1)
— V(Ax, )" <5 (Vixy) )
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Note also that we can recover the notions of a-concave/a-convex operators from these functions, for
instance if py = landx > 1,09(t) = (1+ (t—1) ¢y (1 — t))fi = ¢ 2. The 07-concave condition A (t71x) <
01 (t) A (x) becomes A (t71x) < %A (x), Vte (0,1], x € K. Setting A = +~1 > 1 yields A (Ax) <

A% A (x), YA>1 x¢€ K, which is exactly the definition of a-concavity with &« = 21—,( € (0 l]. However, if

pp=landx >1,05(t) = (1+(t1=1)¢p (- 1))2" — t2¢. The op-convex condition A (tx) < 03 (t) A (x)
becomes A (tx) < t2 A (x), Vte (0,1], x € K, which is exactly the definition of a-convexity with a = L €

(03]

Example 13. Let K= (0,00) and Ay, Ay: K — K be operators given by Aj(x) = 212 and A;(x) = 4§§E> It is

not difficult to see that if ¢ (t) = Zt;ll, [0,1), A1 is increasing 0q-concave for k =1 (07-concave for T = 2).

Moreover, if ¢, (t) = ;;;12 t € [0,+00), Ay is decreasing op-convex for k =1 (02-convex for T =2).

In the rest of this section, the distances d,;, dps, dy, and d 4 are defined in Definitions 2 and 3, and the
functions ¢; and ¢, are chosen from the classes @1 and @,, respectively.

Theorem 9. Let K be a solid cone in a vector space E endowed with a monotone norm. Let A be an increasing oy -concave
(resp. a decreasing o1-convex) operator. Then for all x,y € K,

dm (Ax, Ay) < ¢1 (dm (x,y)) dm (x,y) -

Proof. Letx,y € K. If Ais increasing and ¢j-concave, we obtain by (5),

Ax < A(m(x/y)y) < A(mtm(x,y)y) < 01 (T (x, ) Ay,
< A (mtm(x,y)x) < 01 (mm(x,y)) Ax.

In both cases we deduce that m(Ax/ Ay)m(Ay/Ax) > oy (7t (x,y)) %, which implies by definition of ¢y
that

Ton (AX, Ay) 2 14 (70u (x,y) = 1) 1 (1 = 7t (x,y)) ,

which gives the desired conclusion. [

Theorem 10. Let K be a solid cone in a vector space E endowed with a monotone norm. Let A be a ox-concave increasing
operator (resp. oa-convex decreasing operator). Then forall x,y € K,

dm(Ax, Ay) < ¢a(dm(x,y))dum(x,y)-
Proof. Let x,y € K. If A is increasing and 0»-concave, we obtain by (5),

Ax < A(M(x/y)y)
Ay < A(M(x/y)x)

(mm(x,y)y) < oa(mm(x,y) 1) Ay,
(mm(x,y)x) < oo (e (x,y) 1) Ax.

IAIA

A
A
However, if A is decreasing and o5 -convex, we get

oa(mm(x,y) ™) T Ay < A (x,y)y)
oo (ma(x,y) 1) T Ax < A(mm(x,y)x)
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In both cases, we have M(Ax/Ay)M(Ay/Ax) < oa(mtp(x,y)~1)?, thus
i (Ax, Ay) < 1+ (mm(xy) = D2 (mm(xy) — 1),
which gives the desired conclusion. [J

Theorem 11. Let K be a solid cone. Let A be a 01-concave increasing operator (resp. 07-convex decreasing operator).
Then for all x,y € K,
dx(Ax, Ay) < ¢1(da(x,y))da(x,y)-

Proof. Let x,y € K. If A is increasing and 01-concave, by (p9) we get

71(A(x,y)) 1Ay < A(A(x,y)y)
51(A(x,y)  Ax < A(A(xy)x)

However, if A is decreasing and o7-convex, we get by (p9),

Ax < A(m(x/y)y) < A(A(x,y)y) <
Ay < A(m(x/y)x) < A(A(x,y)x) <

In both cases we deduce that
m(Ax/Ay) ANm(Ay/Ax) > 01 (A(x,y))_l,
and by using the definition of 7 the desired result follows from
A(Ax, Ay) > 1+ (Alx,y) - D (1 - Alx,y)). O

Theorem 12. Let K be a solid cone in a vector space E endowed with a monotone norm. Let A be a p-concave increasing
operator (resp. Gy-convex decreasing operator). Then for all x,y € K,

dv (Ax, Ay) < ga(dv(x,y))dv (x,y)-
Proof. Let x,y € K. Then using (p9), the monotonicity and homogeneity of A, we obtain

Ax < AM(x/y)y) < A(V(x,y)y) <2(V(x,y) ") Ay,
Ay < A(M(x/y)x) < A(V(x,y)x) < 02(V(x,y) ") Ax.

Respectively, by monotonicity and homogeneity of A, we obtain

_

a(V(x,y) ) Ay < A(V(x,y)y)

A(M(x/y)y) < Ax,
B (V(iny) ) TAx < A(V(x,y)x) < A

< X
< A(M(x/y)x) < Ay.

In both cases, we have
M(Ax/Ay) vV M(Ay/ Ax) < 52(V(x,y)7 1),
and by using the definition of 7, the desired result follows from
V(Ax, Ay) <1+ (V(x,y) = 1)2(V(x,y) —1). O
Corollary 3. Let E be a real normed vector space. Let K be a solid cone of E and A: K — K be an increasing operator. If

A(tx) > (; + g) A(x) forallt € (0,1] and x € K,

then A has a unique fixed point in K and { A"x} converges to this fixed point for all x € K.
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1
Proof. Observe first that (4 + %) > 07 HOE (t42;2t:1) “forallt € (0,1). Hence for all x,y € K, Aisa
t+1

01-concave, where ¢(t) = 55. Then A satisfies the contraction of Theorem 11. Moreover, by Proposition 10
we have that (K, d,) is complete and since ¢ € ®;, we conclude by Theorem 5. []

Example 14. Let K= (0, ). The operator A; of Example 13 satisfies all the hypotheses of Corollary 3, hence
it has a unique fixed point in K and {A%x} converges to this fixed point for all x € K.
9. Application to tensor eigenvalue problems

The eigenvalue problem for tensors is nonlinear and involves finding nontrivial solutions of multivariate
polynomial systems, see for instance [26]. Let us recall the essential facts concerning this problem. Let C be an
m-order n-dimensional tensor, which consists of n™ entries in R:

C = (Ciyoiy)r Ciyoig €ER, 1<y, .00, iy <1

Given a real or complex n-vector x = (x, ..., Xy ), define an n-vector by

n
m—=1._
Cx = < Z Ciiy..igy Xiy + .Xl'n> .
1<i<n

iy.oim=1

Suppose that Cx™~1 £ 0. A scalar A € C is called an H-eigenvalue of C [27] if there exists x € C" \ {0}
called an eigenvector of C associated to A such that

mefl _ /\x[mfl],

where x["~1 = (X1, ).
Define the nonlinear mapping associated to the tensor C,

_1

Acx = (Cx™ 1)1,

The following result extends the Perron-Frobenius theorem of nonnegative matrix to the higher-order
nonnegative tensors.

Theorem 13. Let C be a nonnegative tensor and let Ac be strongly positive and strongly increasing mapping. Then
(a) C has a unique positive eigenvalue A"~ with a positive eigenvector y, € R .
(b) if x € R | is an eigenvector associated to A™ =1, then x = yy. for some real number y > 0. Furthermore,

Ak Ak+l
im fy =y, and lim M = A, forally e RY ,
koo |[Agy|l koo [|AGy|
where || - || denotes the standard Euclidean norm on R".

Proof. We first shall show that Theorem 8-(1) holds. It is known that A; is 1-homogeneous (see for instance
[28]) and it is strongly positive by hypothesis. By Corollary 1, there exists a unique A > 0 and an eigenvector
v« € R, such that

Acy. = (Cy" )T = Ay,

In addition, we have

Ak AkJrl
m gy =y, and lim M =, forally e R .
k=reo || gyl koo [|AgY

Take p = A"~1 > 0, we get
eyt = Aty =y o
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