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1. Introduction

M erdivenci [1] considered the following second-order boundary value problem for difference equations,
and established criteria for the existence of solutions by an application of a fixed point theorem:(

∆2y
)
(ζ − 1) = f (ζ, y(ζ)), ζ ∈ NT

1 , (1)

Ay(0)− B (∆y) (0) =0, Cy(T) + D (∆y) (T) = 0, (2)

where A, B, C ≥ 0, A2 + B2 > 0, D > 0 with ACT + AD + BC > 0; T ∈ N3; y : NT+1
0 → R, and f : NT

1 ×R → R
is a continuous function with respect to its second argument. Also, Atici [2] proved the existence of solutions
for the nonlinear discrete Sturm–Liouville equation(

∆2y
)
(ζ − 1)− αy(ζ) = f (ζ, y(ζ)), ζ ∈ NT

1 , (3)

with α ≥ 0 subject to two-point homogeneous separated boundary conditions (2) using some results of
differentiable operators. Following these works, Aykut et al. [3] investigated the existence and uniqueness of
solutions for the boundary value problem (3) - (2) using fixed point theory under the following assumptions:
α ≥ 0; A, B, C, D ≥ 0, A + B > 0, C + D > 0, A + C > 0 (if α = 0). Further, in [4–6], Atici et al. proved
the existence of solutions of the second-order nonlinear difference Eq. (3) for α > 0 with periodic boundary
conditions

y(0) = y(T), (∆y) (0) = (∆y) (T), (4)

using suitable fixed point theorems.
In 2015, Lyons and Neugebauer [7] studied the second-order nonlinear difference Eq. (1) satisfying the

anti-periodic boundary conditions

y(0) + y(T) = 0, (∆y) (0) + (∆y) (T) = 0. (5)
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It is obvious that the second-order difference Eq. (1) associated with (4) or any of the following pairs of
two-point boundary conditions is at resonance.

(∆y) (0) = 0, (∆y) (T) = 0, (6)

y(0) = 0, (∆y) (0) = (∆y) (T). (7)

At the same time, the boundary value problems (3) - (4) and (3) - (6) are nonresonant for α > 0. Recently,
the authors of [8–10] observed that the second-order difference Eq. (1) associated with the following pairs of
two-point boundary conditions is also at resonance.

y(0) = y(T), (∆y) (0) + (∆y) (T) = 0, (8)

y(0) + y(T) = 0, (∆y) (0) = (∆y) (T). (9)

Inspired by these studies, in this article, we examine the second order difference equation(
∆2y

)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = f (ζ, y(ζ)), ζ ∈ NT

1 , (10)

associated with the boundary conditions either (2) or

Ay(0) + By(T) = 0, C (∆y) (0) + D (∆y) (T) = 0, (11)

where α, β ≥ 0; A, B, C, D ∈ R with A2 + B2, C2 + D2 > 0; T ∈ N3; y : NT+1
0 → R, and f : NT

1 ×R → R is a
continuous function with respect to its second argument.

Clearly, the boundary conditions (4), (5), (7), (8), and (9) are particular cases of (11). Moreover, a suitable
choice of α and β yield the boundary value problems (10) - (7), (10) - (8), and (10) - (9) non-resonant.

In particular, the following Tables 1 and 2 illustrate that the boundary value problems considered in [1–10]
as special cases of the boundary value problems (10) - (2) and (10) - (11):

Table 1. Special cases of the boundary value problem (10) - (2) studied in the literature

α β A B C D Reference
0 0 ≥ 0 ≥ 0 ≥ 0 > 0 [1]

≥ 0 0 ≥ 0 ≥ 0 ≥ 0 > 0 [2]
≥ 0 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 [3]

Table 2. Special cases of the boundary value problem (10) - (11) studied in the literature

α β A B C D Reference
> 0 0 1 −1 1 −1 [4–6]

0 0 1 1 1 1 [7]
0 0 1 −1 1 1 [8–10]
0 0 1 1 1 −1 [8–10]

Consequently, the results established in this article not only encompass the works of [1–10] as special
cases, but also extend to a broad range of second-order difference equations through appropriate choices of
the parameters α and β. Moreover, they accommodate a wide variety of boundary conditions via suitable
selections of the constants A, B, C, and D.

We organize the present article as follows: §2 contains preliminaries on discrete calculus [11] and fixed
point theory [12]. In §3, we obtain the expressions for the Green functions associated with the boundary value
problem (10) - (2) and (10) - (11). We also derive a few important properties of the Green functions, which we
will use to deduce the main results. In §4, we establish sufficient conditions for the existence of solutions to
the boundary value problems (10) - (2) and (10) - (11). §5 presents two examples to show the applicability of
the main results.
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2. Preliminaries

In this section, we present the following fundamentals of discrete calculus [11] and fixed point theory [12],
which we will use throughout the article. Denote by Na = {a, a + 1, a + 2, . . .} and Nb

a = {a, a + 1, a + 2, . . . , b}
for any real numbers a and b such that b − a ∈ N1.

Definition 1. [11] The forward jump operator σ : Na → Na+1 is defined by

σ(ζ) = ζ + 1, ζ ∈ Na.

Definition 2. [11] Let y : Nb
a → R and M ∈ N1. The first-order forward difference of y is defined by

(∆y) (ζ) = y(σ(ζ))− y(ζ), ζ ∈ Nb−1
a ,

and the Mth-order forward difference of y is defined recursively by(
∆My

)
(ζ) =

(
∆
(

∆M−1y
))

(ζ), ζ ∈ Nb−M
a .

Consider

B1 =
{

y : NT+1
0 → R | Ay(0)− B (∆y) (0) = 0, Cy(T) + D (∆y) (T) = 0

}
⊆ RT+2,

and
B2 =

{
y : NT+1

0 → R | Ay(0) + By(T) = 0, C (∆y) (0) + D (∆y) (T) = 0
}
⊆ RT+2.

Clearly, B1 and B2 are Banach spaces equipped with the maximum norm defined by

∥y∥ = max
ζ∈NT+1

0

|y(ζ)| ,

for any y ∈ B1 (or B2).
We apply the Leray–Schauder nonlinear alternative to establish sufficient conditions for the existence of

solutions to the boundary value problem (10) - (11). We state this theorem as follows for convenience:

Theorem 1. [12] (Leray–Schauder Nonlinear Alternative) Let B = (B, ∥ · ∥) be a Banach space, C a closed, convex
subset of B, U an open subset of C and 0 ∈ U. Suppose that T : Ū → C is a completely continuous map. Then, either

1. T has a fixed point in Ū; or
2. there exist a y ∈ ∂U and λ ∈ (0, 1) such that y = λTy.

3. Green functions & their properties

In this section, we obtain the expressions for the Green functions associated with the boundary value
problems (10) - (2) and (10) - (11). We also derive a few important properties of the Green functions, which we
will use to deduce the main results.

Denote by

λ =
(2 + α + β) +

√
(α + β)2 + 4β

2
,

Λ = λ − 1 + α

λ
=

λ2 − α − 1
λ

,

g(x) = λx −
(

1 + α

λ

)x
, x ∈ N0,

h(x) = λ−x −
(

1 + α

λ

)−x
, x ∈ N0,

ω(x) = g(x + 1)− (1 + α)g(x), x ∈ N0,

w(x) = (1 + α)−1h(x)− h(x + 1), x ∈ N0.
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Lemma 1. We have that
(1) λ ≥ 1 + α + β ≥ 1 + α;
(2) λ2 − (2 + α + β)λ + (1 + α) = 0;
(3) λ ≥ 1;
(4) Λ ≥ 0;
(5) g : N0 → R is a nonnegative nondecreasing function;
(6) h : N0 → R is a nonpositive nonincreasing function;
(7) ω : N0 → R is a nonnegative nondecreasing function;
(8) w : N0 → R is a nonnegative nondecreasing function.

Proof. First, we prove (1). Consider

λ =
(2 + α + β) +

√
(α + β)2 + 4β

2
≥ (2 + α + β) + (α + β)

2
= 1 + α + β ≥ 1 + α.

The proof of (1) is complete. Next, we prove (2). The roots of the quadratic equation x2 − (2 + α + β)x +

(1 + α) = 0 are

x =
(2 + α + β)±

√
(2 + α + β)2 − 4(1 + α)

2
=

(2 + α + β)±
√
(α + β)2 + 4β

2
.

Since

λ =
(2 + α + β) +

√
(α + β)2 + 4β

2
,

it satisfies the quadratic equation x2 − (2+ α + β)x + (1+ α) = 0. The proof of (2) is complete. Now, we prove
(3). From (1), we have λ ≥ 1 + α ≥ 1. The proof of (3) is complete. Next, we prove (4). From (1) and (3), we
have 1+α

λ ≤ 1 and λ ≥ 1 implying that

Λ = λ − 1 + α

λ
≥ 0.

The proof of (4) is complete. Now, we prove (5). Clearly, g(0) = 0, g(1) = Λ ≥ 0, and

g(2) = λ2 −
(

1 + α

λ

)2
= Λ

(
λ +

1 + α

λ

)
≥ 0.

For x ∈ N0, consider

(∆g) (x) = g(x + 1)− g(x)

=

[
λx+1 −

(
1 + α

λ

)x+1
]
−
[

λx −
(

1 + α

λ

)x]

=
[
λx+1 − λx

]
−
[(

1 + α

λ

)x+1
−
(

1 + α

λ

)x
]

= (λ − 1)λx −
(

1 + α

λ
− 1
)(

1 + α

λ

)x

= (λ − 1)λx +

(
1 − 1 + α

λ

)(
1 + α

λ

)x
.

Clearly, λ − 1 ≥ 0 and 1 − 1 + α

λ
≥ 0. Since λx > 0 and

(
1+α

λ

)x
> 0 for all x ∈ N0, we obtain that

(∆g) (x) ≥ 0, x ∈ N0,

implying that g is a nonnegative nondecreasing function. Next, we prove (6). Clearly, h(0) = 0, and

h(1) =
1
λ
− λ

1 + α
=

1 + α − λ

λ(1 + α)
≤ 0.
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For x ∈ N0, consider

(∆h) (x) = h(x + 1)− h(x)

=

[
λ−x−1 −

(
1 + α

λ

)−x−1
]
−
[

λ−x −
(

1 + α

λ

)−x
]

=
[
λ−x−1 − λ−x

]
−
[(

1 + α

λ

)−x−1
−
(

1 + α

λ

)−x
]

= (1 − λ)λ−x−1 −
(

1 − 1 + α

λ

)(
1 + α

λ

)−x−1

= −(λ − 1)λ−x−1 −
(

1 − 1 + α

λ

)(
1 + α

λ

)−x−1
.

Clearly, λ − 1 ≥ 0 and 1 − 1 + α

λ
≥ 0. Since λ−x−1 > 0 and

(
1+α

λ

)−x−1
> 0 for all x ∈ N0, we obtain that

(∆h) (x) ≤ 0, x ∈ N0,

implying that h is a nonpositive nonincreasing function. Now, we prove (7). Clearly,

ω(0) = g(1)− (1 + α)g(0) = Λ ≥ 0.

For x ∈ N0, consider

(∆ω) (x) = ω(x + 1)− ω(x)

= [g(x + 2)− (1 + α)g(x + 1)]− [g(x + 1)− (1 + α)g(x)]

= g(x + 2)− (2 + α)g(x + 1) + (1 + α)g(x)

=

[
λx+2 −

(
1 + α

λ

)x+2
]
− (2 + α)

[
λx+1 −

(
1 + α

λ

)x+1
]

+ (1 + α)

[
λx −

(
1 + α

λ

)x]
=
[
λx+2 − (2 + α)λx+1 + (1 + α)λx

]
−
[(

1 + α

λ

)x+2
− (2 + α)

(
1 + α

λ

)x+1
+ (1 + α)

(
1 + α

λ

)x
]

= λx
[
λ2 − (2 + α)λ + (1 + α)

]
− 1

λ

(
1 + α

λ

)x+1 [
λ2 − (2 + α)λ + (1 + α)

]
=

1
λ

[
λ2 − (2 + α)λ + (1 + α)

]
g(x + 1)

≥ 1
λ

[
λ2 − (2 + α + β)λ + (1 + α)

]
g(x + 1)

= 0,

implying that ω is a nonnegative nondecreasing function. Finally, we prove (8). Clearly,

w(0) = (1 + α)−1h(0)− h(1) =
λ − α − 1
λ(1 + α)

≥ 0.

For x ∈ N0, consider

(∆w) (x) = w(x + 1)− w(x)
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=
[
(1 + α)−1h(x + 1)− h(x + 2)

]
−
[
(1 + α)−1h(x)− h(x + 1)

]
= −h(x + 2) +

(
1 +

1
1 + α

)
h(x + 1)− h(x)

(1 + α)

= −
[

λ−x−2 −
(

1 + α

λ

)−x−2
]
+

(
1 +

1
1 + α

)[
λ−x−1 −

(
1 + α

λ

)−x−1
]

− 1
(1 + α)

[
λ−x −

(
1 + α

λ

)−x
]

= −
[

λ−x−2 −
(

1 +
1

1 + α

)
λ−x−1 +

1
(1 + α)

λ−x
]

+

[(
1 + α

λ

)−x−2
−
(

1 +
1

1 + α

)(
1 + α

λ

)−x−1
+

1
(1 + α)

(
1 + α

λ

)−x
]

= − 1
λ(1 + α)

[
λ2 − (2 + α)λ + (1 + α)

]
h(x + 1)

≥ − 1
λ(1 + α)

[
λ2 − (2 + α + β)λ + (1 + α)

]
h(x + 1) = 0,

implying that w is a nonnegative nondecreasing function. The proof is complete.

Remark 1. To the end of this article, we assume that Λ ̸= 0.

Lemma 2. A general solution of the homogeneous second-order difference equation(
∆2y

)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = 0, ζ ∈ N1, (12)

is given by

y(ζ) = C1λζ + C2

(
1 + α

λ

)ζ

, ζ ∈ N0, (13)

where C1 and C2 are arbitrary constants.

Proof. In order to prove that (13) is a general solution of (12), it is enough to show that y1(ζ) = λζ and

y2(ζ) =

(
1 + α

λ

)ζ

are two linearly independent solutions of (12) on N0. For ζ ∈ N1, consider

(
∆2y1

)
(ζ − 1)− α (∆y1) (ζ − 1)− βy1(ζ) = y1(ζ + 1)− (2 + α + β)y1(ζ) + (1 + α)y1(ζ − 1)

= λζ+1 − (2 + α + β)λζ + (1 + α)λζ−1

= λζ−1
[
λ2 − (2 + α + β)λ + (1 + α)

]
= 0,

and(
∆2y2

)
(ζ − 1)− α (∆y2) (ζ − 1)− βy2(ζ) = y2(ζ + 1)− (2 + α + β)y2(ζ) + (1 + α)y2(ζ − 1)

=

(
1 + α

λ

)ζ+1
− (2 + α + β)

(
1 + α

λ

)ζ

+ (1 + α)

(
1 + α

λ

)ζ−1

=

(
1 + α

λ

)ζ−1
[(

1 + α

λ

)2
− (2 + α + β)

(
1 + α

λ

)
+ (1 + α)

]

=
1
λ

(
1 + α

λ

)ζ [
λ2 − (2 + α + β)λ + (1 + α)

]
= 0,
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implying that y1(ζ) = λζ and y2(ζ) =

(
1 + α

λ

)ζ

are solutions of (12) on N0. Further, the Wronskian of y1 and

y2 is given by

W (y1, y2) (ζ) =

∣∣∣∣∣ y1(ζ) y2(ζ)

(∆y1) (ζ) (∆y2) (ζ)

∣∣∣∣∣
=

∣∣∣∣∣∣∣
λζ

(
1+α

λ

)ζ

(λ − 1)λζ
(

1+α
λ − 1

) (
1+α

λ

)ζ

∣∣∣∣∣∣∣
=

(
1 + α

λ
− 1
)

λζ

(
1 + α

λ

)ζ

− (λ − 1)λζ

(
1 + α

λ

)ζ

= −Λ(1 + α)ζ ̸= 0, ζ ∈ N1,

implying that y1(ζ) = λζ and y2(ζ) =

(
1 + α

λ

)ζ

are linearly independent on N0. The proof is complete.

Lemma 3. Assume k is a real-valued function defined on a discrete set N1. A general solution of the nonhomogeneous
second-order difference equation(

∆2y
)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = k(ζ), ζ ∈ N1, (14)

is given by

y(ζ) = C1λζ + C2

(
1 + α

λ

)ζ

+
1
Λ

ζ−1

∑
s=1

[
λζ−s −

(
1 + α

λ

)ζ−s
]

k(s) (15)

= C1λζ + C2

(
1 + α

λ

)ζ

+
1
Λ

ζ−1

∑
s=1

g(ζ − s)k(s), (16)

for ζ ∈ N0. Here C1, C2 are arbitrary constants and

g(ζ − s) = λζ−s −
(

1 + α

λ

)ζ−s
, s ∈ Nζ−1

1 .

Proof. In view of Lemma 2, it is enough to show that

v(ζ) =
1
Λ

ζ−1

∑
s=1

g(ζ − s)k(s), ζ ∈ N0,

is a particular solution of (14). For this purpose, we claim that(
∆2v

)
(ζ − 1)− α (∆v) (ζ − 1)− βv(ζ) = k(ζ), ζ ∈ N1. (17)

To see this, for ζ ∈ N1, consider(
∆2v

)
(ζ − 1)− α (∆v) (ζ − 1)− βv(ζ)

= v(ζ + 1)− (2 + α + β)v(ζ) + (1 + α)v(ζ − 1)

=
1
Λ

ζ

∑
s=1

g(ζ − s + 1)k(s)−
(

2 + α + β

Λ

) ζ−1

∑
s=1

g(ζ − s)k(s) +
(

1 + α

Λ

) ζ−2

∑
s=1

g(ζ − s − 1)k(s)

=
1
Λ

[g(1)k(ζ) + g(2)k(ζ − 1)]−
(

2 + α + β

Λ

)
g(1)k(ζ − 1)



Open J. Math. Sci. 2026, 10, 29-47 36

+
1
Λ

ζ−2

∑
s=1

[
λζ−s+1 − (2 + α + β)λζ−s + (1 + α)λζ−s−1

]
k(s)

− 1
Λ

ζ−2

∑
s=1

[(
1 + α

λ

)ζ−s+1
− (2 + α + β)

(
1 + α

λ

)ζ−s
+ (1 + α)

(
1 + α

λ

)ζ−s−1
]

k(s)

= k(ζ) +
(

λ2 + α + 1
λ

)
k(ζ − 1)− (2 + α + β)k(ζ − 1)

+
1
Λ

λζ−s−1
ζ−2

∑
s=1

[
λ2 − (2 + α + β)λ + (1 + α)

]
k(s)

− 1
λΛ

(
1 + α

λ

)ζ−s ζ−2

∑
s=1

[
λ2 − (2 + α + β)λ + (1 + α)

]
k(s)

= k(ζ) +
1
λ

[
λ2 − (2 + α + β)λ + (1 + α)

]
k(ζ − 1)

= k(ζ),

implying that (17) holds. The proof is complete.

Remark 2. Consider (15). Then, for ζ ∈ N0,

(∆y) (ζ) = y(ζ + 1)− y(ζ)

= C1λζ+1 + C2

(
1 + α

λ

)ζ+1
+

1
Λ

ζ

∑
s=1

g(ζ − s + 1)k(s)−
[

C1λζ + C2

(
1 + α

λ

)ζ

+
1
Λ

ζ−1

∑
s=1

g(ζ − s)k(s)

]

= C1(λ − 1)λζ + C2

(
1 + α

λ
− 1
)(

1 + α

λ

)ζ

+
1
Λ

g(1)k(ζ) +
1
Λ

ζ−1

∑
s=1

[g(ζ − s + 1)− g(ζ − s)] k(s)

= C1(λ − 1)λζ + C2

(
1 + α

λ
− 1
)(

1 + α

λ

)ζ

+
1
Λ

ζ

∑
s=1

[g(ζ − s + 1)− g(ζ − s)] k(s)

= C1(λ − 1)λζ + C2

(
1 + α

λ
− 1
)(

1 + α

λ

)ζ

+
1
Λ

ζ

∑
s=1

[
(λ − 1)λζ−s −

(
1 + α

λ
− 1
)(

1 + α

λ

)ζ−s
]

k(s).

Using Lemmas 2 and 3, we obtain the expressions for the Green functions associated with the linear
boundary value problems{(

∆2y
)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = k(ζ), ζ ∈ NT

1 ,

Ay(0)− B (∆y) (0) = 0, Cy(T) + D (∆y) (T) = 0,
(18)

and {(
∆2y

)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = k(ζ), ζ ∈ NT

1 ,

Ay(0) + By(T) = 0, C (∆y) (0) + D (∆y) (T) = 0.
(19)

For convenience, we use the following notations:

E1 = A + BλT ,

E2 = A + B
(

1 + α

λ

)T
,

E3 = C + DλT ,

E4 = C + D
(

1 + α

λ

)T
,

F1 = A − B(λ − 1),

F2 = A − B
(

1 + α

λ
− 1
)

,
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F3 = CλT + D(λ − 1)λT ,

F4 = C
(

1 + α

λ

)T
+ D

(
1 + α

λ
− 1
)(

1 + α

λ

)T
,

−ξ = Λ
[

AC + BD(1 + λ)T
]
+ AD [g(T + 1)− g(T)] + BCω(T − 1),

−χ = ACg(T) + AD [g(T + 1)− g(T)] + BCω(T − 1) + BD(λ − 1)
(

1 − 1 + α

λ

)
g(T).

Remark 3. To the end of this article, we assume that ξ ̸= 0 and χ ̸= 0.

Lemma 4. Assume k is a real-valued function defined on a discrete finite set NT
1 . Then, the linear boundary value

problem (19) has a unique solution given in the form

y(ζ) =
T

∑
s=1

H(ζ, s)k(s), ζ ∈ NT+1
0 , (20)

where

H(ζ, s) =
1
Λ

{
H1(ζ, s), s ∈ Nζ

1,

H2(ζ, s), s ∈ NT
ζ ,

(21)

ξH2(ζ, s) =ADg(ζ) [g(T − s + 1)− g(T − s)]

+ BCg(T − s)ω(ζ − 1) + BDΛ(1 + α)Th(s − ζ), (ζ, s) ∈ NT+1
0 ×Nζ

1,

and

ξH1(ζ, s) =ADg(ζ) [g(T − s + 1)− g(T − s)] + BCg(T − s)ω(ζ − 1) + BDΛ(1 + α)T g(ζ − s)

+ ξg(ζ − s), (ζ, s) ∈ NT+1
0 ×NT

ζ .

Proof. From Lemma 3, a general solution of the second-order difference equation in (19) is given by

y(ζ) = C1λζ + C2

(
1 + α

λ

)ζ

+
1
Λ

ζ−1

∑
s=1

g(ζ − s)k(s), ζ ∈ NT+1
0 , (22)

where C1 and C2 are arbitrary constants. It follows from Remark 2 that

(∆y) (ζ) = C1(λ − 1)λζ + C2

(
1 + α

λ
− 1
)(

1 + α

λ

)ζ

+
1
Λ

ζ

∑
s=1

[g(ζ − s + 1)− g(ζ − s)] k(s), ζ ∈ NT
0 . (23)

Using Ay(0) + By(T) = 0 in (22), we obtain

C1E1 + C2E2 = − B
Λ

T−1

∑
s=1

g(T − s)k(s). (24)

Using C (∆y) (0) + D (∆y) (T) = 0 in (23), we obtain

(λ − 1)C1E3 +

(
1 + α

λ
− 1
)

C2E4 = −D
Λ

T

∑
s=1

[g(T − s + 1)− g(T − s)] k(s). (25)

From (24) and (25), we have

C1 = − 1
Λξ

T

∑
s=1

[(
1 + α

λ
− 1
)

BE4g(T − s)− DE2 [g(T − s + 1)− g(T − s)]
]

k(s), (26)
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and

C2 = − 1
Λξ

T

∑
s=1

[−B(λ − 1)E3g(T − s) + DE1 [g(T − s + 1)− g(T − s)]] k(s). (27)

Substituting the equalities (26) and (27) in (22), we obtain (20). The proof is complete.

Remark 4. Imposing the boundary conditions Ay(0) + By(T) = 0 and C (∆y) (0) + D (∆y) (T) = 0 on the

general solution y(ζ) = C1λζ + C2

(
1+α

λ

)ζ
of the associated homogeneous second-order difference equation

(
∆2y

)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = 0, ζ ∈ NT

1 ,

yields a linear algebraic system for the constants C1 and C2:(
E1 E2

(λ − 1)E3

(
1+α

λ − 1
)

E4

)(
C1

C2

)
=

(
0
0

)
.

The determinant of the co-efficient matrix of this system is given by −ξ. The condition ξ ̸= 0 guarantees
that the homogeneous boundary value problem{(

∆2y
)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = 0, ζ ∈ NT

1 ,

Ay(0) + By(T) = 0, C (∆y) (0) + D (∆y) (T) = 0.

has only the trivial solution. Consequently, the linear boundary value problem (19) has a unique solution given
in the form (20).

Lemma 5. Assume k is a real-valued function defined on a discrete finite set NT
1 . Then, the linear boundary value

problem (18) has a unique solution given in the form

y(ζ) =
T

∑
s=1

G(ζ, s)k(s), ζ ∈ NT+1
0 , (28)

where

G(ζ, s) =
1
Λ

{
G1(ζ, s), s ∈ Nζ

1,

G2(ζ, s), s ∈ NT
ζ ,

(29)

χG2(ζ, s) = [Cg(T − s) + D (g(T − s + 1)− g(T − s))]× [Ag(ζ) + Bω(ζ − 1)] , (ζ, s) ∈ NT+1
0 ×Nζ

1, (30)

and
G1(ζ, s) = G2(ζ, s) + g(ζ − s), (ζ, s) ∈ NT+1

0 ×NT
ζ . (31)

Proof. From Lemma 3, a general solution of the second-order difference equation in (18) is given by

y(ζ) = C1λζ + C2

(
1 + α

λ

)ζ

+
1
Λ

ζ−1

∑
s=1

g(ζ − s)k(s), ζ ∈ NT+1
0 , (32)

where C1 and C2 are arbitrary constants. It follows from Remark 2 that

(∆y) (ζ) = C1(λ − 1)λζ + C2

(
1 + α

λ
− 1
)(

1 + α

λ

)ζ

+
1
Λ

ζ

∑
s=1

[g(ζ − s + 1)− g(ζ − s)] k(s), ζ ∈ NT
0 . (33)

Using Ay(0)− B (∆y) (0) = 0 in (32) - (33), we obtain

C1F1 + C2F2 = 0. (34)
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Using Cy(T) + D (∆y) (T) = 0 in (32) - (33), we obtain

C1F3 + C2F4 = − 1
Λ

T

∑
s=1

[Cg(T − s) + D (g(T − s + 1)− g(T − s))] k(s). (35)

From (34) and (35), we have

C1 =
F2

Λχ

T

∑
s=1

[Cg(T − s) + D (g(T − s + 1)− g(T − s))] k(s), (36)

and

C2 = − F1

Λχ

T

∑
s=1

[Cg(T − s) + D (g(T − s + 1)− g(T − s))] k(s). (37)

Substituting the equalities (36) and (37) in (32), we obtain (28). The proof is complete.

Remark 5. Imposing the boundary conditions Ay(0) − B (∆y) (0) = 0 and Cy(T) + D (∆y) (T) = 0 on the

general solution y(ζ) = C1λζ + C2

(
1+α

λ

)ζ
of the associated homogeneous second-order difference equation

(
∆2y

)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = 0, ζ ∈ NT

1 ,

yields a linear algebraic system for the constants C1 and C2:(
F1 F2

F3 F4

)(
C1

C2

)
=

(
0
0

)
.

The determinant of the co-efficient matrix of this system is given by −χ. The condition χ ̸= 0 guarantees
that the homogeneous boundary value problem{(

∆2y
)
(ζ − 1)− α (∆y) (ζ − 1)− βy(ζ) = 0, ζ ∈ NT

1 ,

Ay(0)− B (∆y) (0) = 0, Cy(T) + D (∆y) (T) = 0,

has only the trivial solution. Consequently, the linear boundary value problem (18) has a unique solution given
in the form (28).

Lemma 6. The Green’s function H(ζ, s) given by (21) satisfies the following property:

T

∑
s=1

|H(ζ, s)| ≤ Υ, ζ ∈ NT+1
0 ,

where

Υ =
1
|ξ| max

ζ∈NT+1
0

([
|A||D|g(ζ)

T

∑
s=1

[g(T − s + 1)− g(T − s)]

+ |B||C|ω(ζ − 1)
T

∑
s=1

g(T − s) + |B||D|Λ(1 + α)T
ζ

∑
s=1

g(ζ − s)

+ |B||D|Λ(1 + α)T
T

∑
s=ζ

|h(s − ζ)|
]
+

ζ

∑
s=1

g(ζ − s)

)
.

Proof. For ζ ∈ NT+1
0 , consider

T

∑
s=1

|H(ζ, s)| =
T

∑
s=ζ

|H2(ζ, s)|+
ζ

∑
s=1

|H1(ζ, s)|
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=
1
|ξ|

T

∑
s=ζ

|ξH2(ζ, s)|+ 1
|ξ|

ζ

∑
s=1

|ξH1(ζ, s)|

≤ 1
|ξ|

T

∑
s=1

∣∣∣∣∣ADg(ζ) [g(T − s + 1)− g(T − s)] + BCg(T − s)ω(ζ − 1)

∣∣∣∣∣
+

1
|ξ|

ζ

∑
s=1

∣∣∣∣∣BDΛ(1 + α)T g(ζ − s)

∣∣∣∣∣+ 1
|ξ|

T

∑
s=ζ

∣∣∣∣∣BDΛ(1 + α)Th(s − ζ)

∣∣∣∣∣+ ζ

∑
s=1

g(ζ − s)

≤ 1
|ξ|

[
|A||D|g(ζ)

T

∑
s=1

[g(T − s + 1)− g(T − s)]

+ |B||C|ω(ζ − 1)
T

∑
s=1

g(T − s) + |B||D|Λ(1 + α)T
ζ

∑
s=1

g(ζ − s)

+ |B||D|Λ(1 + α)T
T

∑
s=ζ

|h(s − ζ)|
]
+

ζ

∑
s=1

g(ζ − s)

≤ Υ.

The proof is complete.

Lemma 7. The Green’s function G(ζ, s) given by (29) satisfies the following property:

T

∑
s=1

|G(ζ, s)| ≤ Θ, ζ ∈ NT+1
0 ,

where

Θ = max
ζ∈NT+1

0

(
[|A| g(ζ) + |B|ω(ζ − 1)]

|χ| ×
[
|C|

T

∑
s=1

g(T − s) + |D|
T

∑
s=1

[g(T − s + 1)− g(T − s)]

]
+

ζ

∑
s=1

g(ζ − s)

)
.

Proof. For ζ ∈ NT+1
0 , consider

T

∑
s=1

|G(ζ, s)| =
T

∑
s=ζ

|G2(ζ, s)|+
ζ

∑
s=1

|G1(ζ, s)|

=
1
|χ|

T

∑
s=ζ

|χG2(ζ, s)|+ 1
|χ|

ζ

∑
s=1

|χG1(ζ, s)|

≤ 1
|χ|

T

∑
s=1

∣∣∣∣∣ [Cg(T − s) + D (g(T − s + 1)− g(T − s))] [Ag(ζ) + Bω(ζ − 1)]

∣∣∣∣∣+ ζ

∑
s=1

g(ζ − s)

≤ [|A| g(ζ) + |B|ω(ζ − 1)]
|χ| ×

[
|C|

T

∑
s=1

g(T − s) + |D|
T

∑
s=1

[g(T − s + 1)− g(T − s)]

]
+

ζ

∑
s=1

g(ζ − s)

≤ Θ.

The proof is complete.

4. Main Results

This section establishes sufficient conditions on the existence of solutions to the boundary value problems
(10) - (2) and (10) - (11). Lemma 5 implies the equivalence between the solutions of (10) - (2) and the solutions
of the summation equation

y(ζ) =
T

∑
s=1

G(ζ, s) f (s, y(s)), ζ ∈ NT+1
0 .



Open J. Math. Sci. 2026, 10, 29-47 41

Similarly, Lemma 4 implies the equivalence between the solutions of (10) - (11) and the solutions of the
summation equation

y(ζ) =
T

∑
s=1

H(ζ, s) f (s, y(s)), ζ ∈ NT+1
0 .

Define the operators R : B1 → B1 and S : B2 → B2 by

(Ry) (ζ) =
T

∑
s=1

G(ζ, s) f (s, y(s)), ζ ∈ NT+1
0 ,

and

(Sy) (ζ) =
T

∑
s=1

H(ζ, s) f (s, y(s)), ζ ∈ NT+1
0 .

It follows from Lemma 5 that y is a fixed point of R if, and only if, y is a solution of (10) - (2). Also, from
Lemma 4, y is a fixed point of S if, and only if, y is a solution of (10) - (11). Let

L = {y ∈ B1 : ∥y∥ ≤ n} ,

and
K = {y ∈ B2 : ∥y∥ ≤ r} .

Clearly, L and K are nonempty bounded closed convex subsets of the finite dimensional normed space B1

and B2, respectively.
Now, we apply Theorem 1 to discuss the existence of solutions to (10) - (2) and (10) - (11).

Theorem 2. Assume the following conditions hold:
(C1) There exist p : NT

1 → [0, ∞) and a nondecreasing function q : [0, ∞) → [0, ∞) such that

| f (ζ, y)| ≤ p(ζ)q (∥y∥) , (ζ, y) ∈ NT
1 ×R.

(C2) There exists N > 0 such that
N

ΥΩq (N)
> 1,

where
Ω = max

ζ∈NT
1

p(ζ).

Then, (10) - (11) has a solution in B2.

Proof. Since NT+1
0 is a discrete set, B2 is finite dimensional normed space and S is a continuous operator, it

follows immediately that S is completely continuous.
Next, we suppose y ∈ B2 and that for some 0 < ν < 1, y = νSy. Then, for ζ ∈ NT+1

0 , and again by (C1),

|y(ζ)| = |ν(Sy)(ζ)|

≤
T

∑
s=1

|H(ζ, s)| | f (s, y(s))|

≤
T

∑
s=1

|H(ζ, s)| p(s)q (|y(s)|)

≤ q (∥y∥)
T

∑
s=1

|H(ζ, s)| p(s)

≤ ΥΩq (∥y∥) ,
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implying that
∥y∥

ΥΩq (∥y∥) ≤ 1.

It follows from (C2) that ∥y∥ ̸= N. If we set

U =
{

y ∈ B2 : ∥y∥ < N
}

,

then the operator S : Ū → B2 is completely continuous. From the choice of U, there is no y ∈ ∂U such that
y = νSy for some 0 < ν < 1. It follows from Theorem 1 that S has a fixed point y0 ∈ Ū, which is a desired
solution of (10) - (11).

Theorem 3. Assume the following conditions hold:
(C1) There exist p : NT

1 → [0, ∞) and a nondecreasing function q : [0, ∞) → [0, ∞) such that

| f (ζ, y)| ≤ p(ζ)q (∥y∥) , (ζ, y) ∈ NT
1 ×R.

(C3) There exists M > 0 such that
M

ΘΩq (M)
> 1,

where
Ω = max

ζ∈NT
1

p(ζ).

Then, (10) - (2) has a solution in B1.

Proof. Since NT+1
0 is a discrete set, B1 is finite dimensional normed space and R is a continuous operator, it

follows immediately that R is completely continuous.
Next, we suppose y ∈ B1 and that for some 0 < ν < 1, y = νRy. Then, for ζ ∈ NT+1

0 , and again by (C1),

|y(ζ)| = |ν(Ry)(ζ)|

≤
T

∑
s=1

|G(ζ, s)| | f (s, y(s))|

≤
T

∑
s=1

|G(ζ, s)| p(s)q (|y(s)|)

≤ q (∥y∥)
T

∑
s=1

|G(ζ, s)| p(s)

≤ ΘΩq (∥y∥) ,

implying that
∥y∥

ΘΩq (∥y∥) ≤ 1.

It follows from (C2) that ∥y∥ ̸= M. If we set

V =
{

y ∈ B1 : ∥y∥ < M
}

,

then the operator R : V̄ → B1 is completely continuous. From the choice of V, there is no y ∈ ∂V such that
y = νRy for some 0 < ν < 1. It follows from Theorem 1 that R has a fixed point y0 ∈ V̄, which is a desired
solution of (10) - (2).

5. Examples

In this section, we provide two examples to demonstrate the applicability of established results.
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Example 1. Consider (10) - (11) with A = B = C = D = 1, T = 5, α = 1, β = 0 and f (ζ, s) = ζs2. Clearly,

| f (ζ, s)| ≤ p(ζ)q (|s|) , (ζ, s) ∈ N5
1 ×R,

where
p(ζ) = ζ, ζ ∈ N5

1,

and
q (|s|) = |s|2 = s2, s ∈ R.

Also, p : N5
1 → [0, ∞) and q : [0, ∞) → [0, ∞) is a nondecreasing function. Thus, the assumption (C1) of

Theorem 2 holds. Further, we have
Ω = max

ζ∈N5
1

p(ζ) = 5.

Now, we calculate Υ. We have λ = 2, Λ = 1,

g(x) = 2x − 1, x ∈ N0,

h(x) = 2−x − 1, x ∈ N0,

ω(x) = 1, x ∈ N0,

w(x) =
1
2

, x ∈ N0.

Also,

−ξ = Λ
[

AC + BD(1 + λ)T
]
+ AD [g(T + 1)− g(T)] + BCω(T − 1)

= 1 + 35 + 26 − 25 + 1

= 277,

implying that ξ = −277. The corresponding Green’s function is given by

H(ζ, s) =

{
H1(ζ, s), s ∈ Nζ

1,

H2(ζ, s), s ∈ N5
ζ ,

where
H2(ζ, s) = − 1

277

(
2ζ−s+6 − 33

)
,

and
H1(ζ, s) =

213
277

2ζ−s − 244
277

.

Consequently,

Υ =
1
|ξ| max

ζ∈NT+1
0

([
|A||D|g(ζ)

T

∑
s=1

[g(T − s + 1)− g(T − s)]

+ |B||C|ω(ζ − 1)
T

∑
s=1

g(T − s) + |B||D|Λ(1 + α)T
ζ

∑
s=1

g(ζ − s)

+ |B||D|Λ(1 + α)T
T

∑
s=ζ

|h(s − ζ)|
]
+

ζ

∑
s=1

g(ζ − s)

)

=
1

277
max
ζ∈N6

0

([
g(ζ)

5

∑
s=1

[g(6 − s)− g(5 − s)] + ω(ζ − 1)
5

∑
s=1

g(5 − s) + (32)
ζ

∑
s=1

g(ζ − s)

+ (32)
5

∑
s=ζ

|h(s − ζ)|
]
+

ζ

∑
s=1

g(ζ − s)

)
.
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We have

ζ

∑
s=1

g(ζ − s) =
ζ

∑
s=1

2ζ−s −
ζ

∑
s=1

1

=

[
2ζ − 1
2 − 1

]
− ζ

= 2ζ − ζ − 1,
T

∑
s=ζ

|h(s − ζ)| =
5

∑
s=ζ

[
1 − 2ζ−s

]
=

5

∑
s=ζ

1 −
5

∑
s=ζ

2ζ−s

= 6 − ζ −
5−ζ

∑
s=0

(
1
2

)s

= 6 − ζ −

1 −
(

1
2

)6−ζ

1 −
(

1
2

)


= 4 − ζ + 2ζ−5,
5

∑
s=1

g(5 − s) = 25 − 5 − 1

= 26,

and

5

∑
s=1

[g(6 − s)− g(5 − s)] =
5

∑
s=1

g(6 − s)−
5

∑
s=1

g(5 − s)

=
5

∑
s=1

[
26−s − 1

]
− 26

=
5

∑
s=1

26−s −
5

∑
s=1

1 − 26

= 2
[

25 − 1
2 − 1

]
− 5 − 26

= 62 − 31 = 31.

Then,

Υ =
1

277
max
ζ∈N6

0

([
31
(

2ζ − 1
)
+ 26 + (32)

(
2ζ − ζ − 1

)
+ (32)

(
4 − ζ + 2ζ−5

) ]
+
(

2ζ − ζ − 1
))

=
3860
277

.

Then, there exists 0 < N < 277
19300 such that

N
ΥΩq (N)

> 1,

implying that the assumption (C2) of Theorem 2 holds. Therefore, by Theorem 2, the boundary value problem
(10) - (11) has a solution in B2.
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Example 2. Consider (10) - (11) with A = B = C = D = 1, T = 5, α = 0, β = 1
2 and f (ζ, s) = ζs2. Clearly,

| f (ζ, s)| ≤ p(ζ)q (|s|) , (ζ, s) ∈ N5
1 ×R,

where
p(ζ) = ζ, ζ ∈ N5

1,

and
q (|s|) = |s|2 = s2, s ∈ R.

Also, p : N5
1 → [0, ∞) and q : [0, ∞) → [0, ∞) is a nondecreasing function. Thus, the assumption (C1) of

Theorem 2 holds. Further, we have
Ω = max

ζ∈N5
1

p(ζ) = 5.

Now, we calculate Υ. We have λ = 2, Λ = 3
2 ,

g(x) = 2x − 2−x, x ∈ N0,

h(x) = 2−x − 2x, x ∈ N0,

ω(x) = 2x + 2−x−1, x ∈ N0,

w(x) = 2x + 2−x−1, x ∈ N0.

Also,

−ξ = Λ
[

AC + BD(1 + λ)T
]
+ AD [g(T + 1)− g(T)] + BCω(T − 1)

=
3
2

[
1 + 35

]
+
[
26 − 2−6

]
−
[
25 − 2−5

]
+ 24 + 2−5

=
26499

64
,

implying that ξ = − 26499
64 . The corresponding Green’s function is given by

H(ζ, s) =
2
3

{
H1(ζ, s), s ∈ Nζ

1,

H2(ζ, s), s ∈ N5
ζ ,

where

ξH2(ζ, s) =
(

2ζ − 2−ζ
) (

2ζ−s + 2s−ζ−1
)
+
(

25−s − 2s−5
) (

2ζ−1 + 2−ζ
)
+ 3

(
2ζ−s−1 − 2s−ζ−1

)
,

and

ξH1(ζ, s) =
(

2ζ − 2−ζ
) (

2ζ−s + 2s−ζ−1
)

+
(

25−s − 2s−5
) (

2ζ−1 + 2−ζ
)
+ 3

(
2ζ−s−1 − 2s−ζ−1

)
+ ξ

(
2ζ−s − 2s−ζ

)
.

Consequently,

Υ =
1
|ξ| max

ζ∈NT+1
0

([
|A||D|g(ζ)

T

∑
s=1

[g(T − s + 1)− g(T − s)]

+ |B||C|ω(ζ − 1)
T

∑
s=1

g(T − s) + |B||D|Λ(1 + α)T
ζ

∑
s=1

g(ζ − s)

+ |B||D|Λ(1 + α)T
T

∑
s=ζ

|h(s − ζ)|
]
+

ζ

∑
s=1

g(ζ − s)

)
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=
64

26499
max
ζ∈N6

0

([
g(ζ)

5

∑
s=1

[g(6 − s)− g(5 − s)] + ω(ζ − 1)
5

∑
s=1

g(5 − s) + (32)
ζ

∑
s=1

g(ζ − s)

+ (32)
5

∑
s=ζ

|h(s − ζ)|
]
+

ζ

∑
s=1

g(ζ − s)

)
.

We have

ζ

∑
s=1

g(ζ − s) =
ζ

∑
s=1

2ζ−s −
ζ

∑
s=1

(
1
2

)ζ−s

=

[
2ζ − 1
2 − 1

]
−

1 −
(

1
2

)ζ

1 −
(

1
2

)


= 2ζ + 21−ζ − 3,

T

∑
s=ζ

|h(s − ζ)| =
5

∑
s=ζ

[(
1
2

)ζ−s
− 2ζ−s

]

=
5

∑
s=ζ

(
1
2

)ζ−s
−

5

∑
s=ζ

2ζ−s

=
5−ζ

∑
s=0

2s −
5−ζ

∑
s=0

(
1
2

)s

=

[
26−ζ − 1

2 − 1

]
−

1 −
(

1
2

)6−ζ

1 −
(

1
2

)


= 26−ζ + 2ζ−5 − 3,
5

∑
s=1

g(5 − s) = 25 + 2−4 − 3 =
465
16

,

and

5

∑
s=1

[g(6 − s)− g(5 − s)] =
5

∑
s=1

g(6 − s)−
5

∑
s=1

g(5 − s)

=
5

∑
s=1

[
26−s −

(
1
2

)6−s
]
− 465

16

=
5

∑
s=1

26−s −
5

∑
s=1

(
1
2

)6−s
− 465

16

= 2
[

25 − 1
2 − 1

]
− 1

2

1 −
(

1
2

)5

1 −
(

1
2

)
− 465

16

=
1023

32
.

Then,

Υ =
64

26499
max
ζ∈N6

0

([
1023

32

(
2ζ − 2−ζ

)
+

465
16

(
2ζ−1 + 2−ζ

)
+ (32)

(
2ζ + 21−ζ − 3

)
+ (32)

(
26−ζ + 2ζ−5 − 3

) ]
+
(

2ζ + 21−ζ − 3
))

=
319360
26499

.
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Then, there exists 0 < N < 85
5122 such that

N
ΥΩq (N)

> 1,

implying that the assumption (C2) of Theorem 2 holds. Therefore, by Theorem 2, the boundary value problem
(10) - (11) has a solution in B2.

6. Conclusion

In this article, we established sufficient conditions for the existence of solutions to the boundary value
problems (10) - (2) and (10) - (11) using Leray–Schauder nonlinear alternative. The results established in this
article not only subsume the works of [1–10] as particular cases, but also extend to a broad class of second-order
difference equations through appropriate choices of the parameters α and β. Moreover, they accommodate a
wide variety of boundary conditions via suitable selections of the constants A, B, C, and D. To the best of our
knowledge, no existing studies in the literature address the existence of solutions for the discrete boundary
value problems (10) - (2) and (10) - (11) by employing nonlinear analytical techniques such as fixed point
theory, fixed point index theory, coincidence degree theory, critical point theory, or variational methods.
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