The Pecaric jornal of
Mathematical Inequalities

Atrticle

Existence of solutions for implicit fractional differential
inclusions involving Hilfer-Katugampola fractional
derivatives

Karima Bensaid!, Mohammed Said Souid?>* and Salah Mahmoud Boulaaras?

1
2
3

Department of Mathematics, University of Tiaret, Tiaret, Algeria

Department of Economic Sciences, University of Tiaret, Tiaret, Algeria

Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
*  Correspondence: souimed2008@yahoo.com

Received: 10 April 2025; Accepted: 20 July 2025; Published: 24 September 2025

Abstract: This paper investigates the existence of solutions for initial value problems (IVPs) involving
implicit fractional differential inclusions defined via the Hilfer-Katugampola fractional derivative.
The Hilfer-Katugampola operator, recently introduced as a generalization of Katugampola and
Caputo-Katugampola derivatives, encompasses a wide class of fractional operators. We establish existence
results for the multivalued fractional differential problem under convexity and compactness assumptions
on the multivalued right-hand side, leveraging Bohnenblust-Karlin fixed point theorem and contraction
principles for multivalued maps. An illustrative example is provided to demonstrate the applicability of
the main theoretical results. Our work contributes to the emerging theory of fractional differential inclusions
governed by fractional derivatives of generalized type.
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1. Introduction

he theory of fractional calculus has recently undergone significant growth with the development of
T new fractional differential operators that generalize classical derivatives to better capture memory and
hereditary properties of complex systems [1-7]. Among these operators, the Hilfer-Katugampola fractional
derivative, introduced by Oliveira et al. [8], provides a unifying generalization that incorporates parameters
controlling both the order and the type of the fractional derivative. This operator extends the Katugampola
and Caputo-Katugampola derivatives, enabling a more flexible modeling framework adapted to various
applications.
Motivated by these advances, this paper investigates the existence of solutions for initial value problems
involving implicit fractional differential inclusions formulated with the Hilfer-Katugampola fractional
derivative. The considered problem is of the form

PDIR2(1) € N(1,2(1),f DY 22(1), 1€ T = [a,b], M

(PI}'2)(a) =0, O ER, L=t + (1 0y), @)

where /1 € (0,1), £, € [0,1], and p a positive real number. Let X be a set-valued mapping defined from
J xR x R into P(R), where P(R) denotes the collection of all nonempty subsets of the real numbers R,
PDslfz is the Hilfer Katugampola fractional derivative of order ¢; and type ¢ and ? Ifi , PI;IZ are Katugampola
fractional integral of order ¢; and 1 — /, respectively with a > 0.

The multivalued mapping R takes values in convex and compact subsets of R, allowing the formulation of
fractional differential inclusions that can describe systems with uncertainty or multistate behaviors. Utilizing

fixed point theorems for multivalued maps, specifically the Bohnenblust-Karlin theorem and contraction
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principles, we establish existence results for solutions under natural assumptions such as upper semicontinuity
and boundedness of R.

The organization of this manuscript is outlined as follows. In §2, essential definitions and foundational
concepts related to fractional calculus and multifunctions are reviewed. §3 contains the principal existence
theorems concerning the initial value problem. An illustrative example demonstrating the practical use
of these findings is provided in §4. This study adds to the expanding body of research on fractional
differential inclusions and emphasizes the relevance of generalized fractional derivatives for modeling
complex phenomena.

2. Preliminaries

In this part, we establish the notations, fundamental definitions, and essential preliminary results that
will be utilized consistently throughout the rest of this work.
Define C(J) as the set of all continuous functions u : J — R equipped with the norm

ul|c = max |u(1)].
lullc = max]u(2)]

The notation £!(J) refers to the collection of Lebesgue integrable functions u : J — R with the
associated norm

b
lulle, = [l
Consider the weighted space,

© — af
P

1-¢
Cigpo(J) ={w:J" = (a,b] = R: ( ) w(1) € C(J)}, 0<£<1,

obviously, Cy_,(J) is Banach space equipped with the norm

e = (5) w0l =] () o

We proceed by presenting several fundamental results and characteristics related to fractional calculus.

Definition 1. [9] For 1 > a, the Katugampola fractional integral of left-sided type and order ¢; € C with
(Re(#1) > 0) is defined as follows:

1-¢
PTLR(1) = ?(&3 / (i — )7 s h(s)ds, 3)

if the integral exists, where I'(.) is the Gamma function.

Definition 2. [9] The Katugampola left-sided fractional derivative, which is associated with the Katugampola
fractional integral given by Eq. (3), is defined for : > a as follows:

Kl—}’l-l—l d "
pph _ P 1-p 4 / 0 pyi—ti—1 p—1
D L h(1) T=0) <z dz) / (1 —sP) sP~ h(s)ds,

where n = [¢1] 4 1, if the integral exists.

Lemma 1. [8] For 1 > a, then the following hold:

o (s —af\¢\ . T(+1) [ —ar\¢Th
G%+( p >>(0_T@+&+ﬂ)( p ) A==

Proposition 1. [8] Let {1, £, > 0,0 € R, then forh € C1_y,(J) and 1 € J*, we have
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() ] PTRh = PT PTG = TN,
(i) PD\ PT 1 h=h.

In particular, if h € C(J) then these equalities hold at 1 € 7.
Theorem 1. (Linearity property). Let 0 < £y < 1, then for hy, hy € Cy_y,,(J)

(i) PTY (hy + hp) =P T2 hy +2 Z0 .

(ii) PD'L (hy + hy) =F D'\ hy +0 Dl ky.
Lemma2. [8]Let0< ¢y <1,0<{¢ <1 Then PIfi is bounded from Cy_,(J ), into Cy_y,(J).
Definition 3. [8] The Hilfer-Katugampola derivative of fractional order ¢; for a function h € C;_y,, is given
by

01,0 Ly (1—4 1—61)(1-¢
D () = (TG ) ),

where 0 < 01 <1,0< b, <1,£ =101+, — £145.
Remark 1. [8] The Hilfer Katugampola operator ° Dflfz can be written in terme of Katugampola functional

derivative as
pplvl —p 720705 p71ol _p 700Dl g — g 4y — 010,

Lemma3. [8]Let 0 < (1 <1, 0< <1, =L+ L — by ifh € Cf_, (T), where

Cl_p(T) = {h € C1go(T) P Dpsh € Crog,o(T)}-

Then
(i) T PDIV2n = pT!, DL .
(i) PDL. T p = pD2 0
(iii) pDﬁi& pzj}rh — pri(lfh) pDﬁi(lfh)h'
2.1. Set-valued mappings

Consider X and Y as Banach spaces. We define several families of subsets of X as follows:

P(X) ={KC X:K#2},
P(X) ={K e P(X) : Kis closed},
Py(X) = {K € P(X) : Kis bounded},
Peo(X) = {K € P(X) : Kis convex},
Pep(X) = {K € P(X) : Kis compact},
Pepe(X) = {K € P(X) : Kis both compact and convex}.

A set-valued map T : X — P(Y) is termed compact if the union J,ecx T(x) forms a compact subset of
Y. The images T(x) are said to have properties such as convexity, closedness, or compactness if these hold
for each x € X. Additionally, T is bounded on bounded subsets of X provided that for every bounded subset
B C X, the set J,cp T(x) remains bounded in Y.

The map T is upper semicontinuous (abbreviated u.s.c.) at a point xg € X if T(xp) is nonempty and
closed, and for every open set N containing T(xg), there exists an open neighborhood Nj of xy such that
T(Ny) € N. Furthermore, when T takes bounded subsets of X into relatively compact subsets of Y, it is said
to be completely continuous.

When T is completely continuous and its values are nonempty and compact, the concepts of upper
semicontinuity and closedness of the graph coincide. More precisely, if sequences x, — x, in X and v, — v«
in Y satisfy y, € T(x,), then necessarily v, € T(x.).
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Let Py (X) denote the collection of all nonempty, bounded, closed, and convex subsets of X. A
set-valued mapping T : J — P.(X) is measurable if for each y € X, the function 1 — dist(y, T(2)) is
measurable on 7.

If X C Y, a fixed point y € X of T is defined by the condition y € T(y). The set of all such fixed points is
represented by Fix(T).

The norm on T(y) is given by ||T(y)||p = sup{|x| : x € T(y)}. Foramap T : J — P (R), measurability
means the function

1—d(x,T(1)) = inf |x—y|,
YyeT(1)
is measurable for each x € R.
Giveny € Cy,(J,R), define the set of measurable selections of X by

Sw.={geLNT):g(1) € N(z,z(z),ngizzz(z))for almost every 1 € J }.
Consider now a metric space (X, d) induced by the norm | - |. The Hausdorff metric %, : P(X) x P(X) —

[0, 00| is defined by

H4(A,B) = max { supd(a, B),supd(A,Db) ¢,
acA beB

where

d(A,b) = inf d(a,b), d(a,B) = infd(a,b).

With this metric, (P}, (X), Hg) forms a metric space, whereas (P,(X), H,) is a generalized metric space
(cf. [10]).

Definition 4. Consider a multivalued mapping N : X — P, (X). We say that

(a) N is ¢-Lipschitz continuous if there is a positive constant ¢ > 0 so that for every pair x,y € X, the
Hausdorff distance between the images satisfies

Ha(N(x), N(y)) < d(x,y).
(b) Furthermore, NV is termed a contraction if the above condition holds with some ¢ strictly less than 1.
The subsequent lemmas serve as foundational tools for the developments that follow.

Lemma 4 (Bohnenblust-Karlin [11]). Let X be a Banach space and K C X a nonempty, closed, convex set. Consider a
multivalued map N : K — P,y .(K) that is upper semicontinuous, with the property that N'(K) is relatively compact in
X. Then, N admits at least one fixed point in the set K.

Lemma 5 (Dei). Assume (X,d) is a complete metric space. Suppose the multivalued operator N : X — P (X) fulfills
a contraction condition. Under these assumptions, the set of fixed points Fix(N') is guaranteed to be nonempty.

For an extensive treatment of the theory of multivalued mappings, readers may consult the works of
Aubin and Cellina [12], as well as Deimling [13].

3. Main results

To begin, we clarify the notion of a solution for the problem described by (1) — (2).

Definition 5. A function z belonging to the space C;_;,(J) is called a solution of the problem (1) — (2) if
there exists a function g € L1 (J) such that for almost every 1 € 7,

g(1) € N(1,2(1), DL22(1)),
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and z satisfies the fractional differential equation
(D220 =g0) on 7,

along with the initial condition
(PZL"2)(a) = 6.

Based on Theorem 3 in [8] (page 11), we can state the following supporting lemma.

Lemma 6 (See [8]). Let the parameters satisfy 0 < {1 < 1,0 < ¢y < 1,and p > 0, and define { = {1 + {5(1 — £7).
Suppose g belongs to the space C1_y,(J ). A function z solves the fractional integral equation

2(1) = r?e) (lp_papyl + /ﬂl 501 (”;5’))611 I?((Zl)) ds,

recisely when this condition holds z is a solution to the fractional initial value problem.

DI 2() = g(1), 1€,

subject to the initial condition
(PT'2)(a) =0, OeR, L=l +0(1—1).

Remark 2. By Lemma 6 we deduce easily

g(1) € R(1,z(1)f DY2z) <= g(1) € N ( rfg) (p‘pp)é +f zgzm,z(l)) ae1€J.

Our focus shifts to establishing the existence of solutions for problem (1) — (2) under the assumption
that the multivalued operator on the right-hand side takes values that are convex sets. More specifically, we
consider the case where X is a multivalued mapping whose values are both compact and convex.

We begin by stating the assumptions listed below:

(H1) The multivalued mapping 8 : 7 x R x R — P, ¢(R) defined by (1, y,z) + R(1,y, z) satisfies:

(i) For every fixed y,z € R, the map is measurable with respect to the variable 1.
(ii) For almost every 1 € J, it is upper semicontinuous in the variables (y,z) € R x R.

(H2) A continuous function ¢ : 7 — R exists such that for every 1 € J and all y, z € R, the following holds:

¢(1)
N(1,y,z)||p =su e eN(y,2) < —F—F——,

(H3) There are functions p,q € C(J) with the property that for almost every 1 € J and every y,7,2,Z € R,
Ha(R(1y,2),R(1,7,2)) < p()ly =yl +q(1)|z =z,
The initial existence theorem follows directly from Lemma 4.

Theorem 2. Suppose the conditions listed in (H1) through (H3) hold true. Under these hypotheses, the initial value
problem given by (1) — (2) admits at least one solution defined on the interval J .

Proof. To prove the result, we rewrite the problem (1) — (2) as an equivalent fixed point formulation. Define
the multivalued operator

T: C1,g,p(J) — P(leé,p(j))/
by

A ! P — P\ o(s
(Tz)(l)—{heclg,p(j):h(l)—r(eg) (” ; p) +/a o1 < i . P) ljg((gl))ds}. @)
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It is evident that any fixed point of the operator 7 corresponds directly to a solution of the problem

(1) = (2)-

Define now
By ={z€Ciep(9): lzllc,,, <1},

y= ok (")
T(W) T+ \ p

Let us denote ¢ = max,c s ¢(1). It is straightforward to verify that the set B, forms a closed and convex
subset within the space C;_y,(J)-

Our goal is to demonstrate that the operator 7 meets all the criteria specified in Lemma 4.

The argument proceeds through several stages:

Step 1. For every z € By, the set 7 (z) is convex.

To justify this, suppose 11,712 € T (z). Then there exist functions g1, ¢>» € Sy, such that for all1 € 7, the

following holds:
h(l) — L (MD> +/ SP 1 <1P _Sp>€1_l gi(s) dS i=172
ST\ p P T 7

For any scalar 0 < d <1, and for every: € J, we have

! # —sp\ I~ s - s
- = [t (£22)7 B0 (- e,

where,

Because the set Sy , is convex—this follows from the fact that the values of the multivalued mapping N
are convex we conclude that

dhy + (1 — d)hp € T (2).

Step 2. T (By) is uniformly bounded.
Forany z € By, h € T(z) and each: € J, we have

() st (5 () b

1-¢
1*’7519 g -1
o (55) [ty
< 0 P
ST T A o Pls)ds

)
S&%*ﬁ%( 0 y24“1<ﬂivﬁl“
<+ (“;“P) (")
T (5

l+1-¢
< |9| b~ ] .
_F(f €1+1 Y

|9| ¢ o — l1+1—4
< =1.
Moo =1 "t \ ) 4

It follows that the operator satisfies 7 (B;) C By, and since By, is a bounded set, the image 7 (B;) is uniformly
bounded as well.
Step 3. The set T (Bj) is equicontinuous.

Therefore,




Pecari¢ |. Math. Ineq. 2025, 1, 10-19 16

Take any 11,1, € J with1; < 1y and any z € B,. Foreach /i € T (z) and for all: € J, applying assumption
(H2) yields

IN
I/
I\J~E
]| |
p~y
=
~_
-
&
—
S
195}
A
—
VR
5
\
@0
)
SN—
o~
S
|
—
oq
—~
©
SN—
=2
@0
|
VR
o |
2
=)
~_
—
&
m\N
@
7
—
/N
iy
|
@
=
~
S
|
—
o}
—
©
S—
QL
)

<1§pa">l€ 0 0 -1 0 1-¢ 0 o -1
"2 1, — S 1 1, — a 1, — S
< / o1 2 s)|ds + 2 o1 2
I(t)  Jy ( o ) slllds+ |, o o
1-¢ l1—1
AT LA R I HOIP
P P I'(6)

o N1t
) pﬂp> , 1 lg_sp l1—1 "
—_— S‘Di S dS+/
r ), ( p ) A

1‘2)—{19 17fsp71 Z‘lZ)—Sp -1
Y P

By virtue of the continuity property of the function ¢, it follows that

P 1-¢ P 1-¢

‘ ( 2 ; ) (hz)(12) — | P (hz)(11)
g & , Zfi _ ap 1-/¢ Zg _ lq 14414 . Zg P 1+46,—¢ - le) _ gp 1+01—¢ |
T Tl +1) p P P 14

As 11 — 17, the right-hand side of the above inequality approaches zero.
Combining the results of Steps 1 through 3 with the Arzela-Ascoli theorem, we deduce that the operator

T :Crgp(T) — P(Crrp(T)),

is completely continuous.

Step 4: The operator 7 possesses a closed graph.

Suppose that z, — z«, I, € T (z,), and h, — h,. The goal is to verify that 1, € T (z.). Since h, € T (zy),
it follows that there exist g, € Sy ., such that for every: € J,

wo =5t (55) [0 () Ee

It remains to demonstrate the existence of a function g, (1) € Sy ., such that for every: € 7,

ety (59)" [ (552) e

Owing to the upper semicontinuity of the mapping X(z, -, -), for any € > 0, there exists an integer ny(e) > 0
such that for all n > n, the following inclusion holds:

(1 ENz,zz,pDélfzzz CNz,z*z,PDglfzz*z +€B(0,1)a.e.1€ J.
8 a a
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Because the multivalued map X takes compact values, one can extract a subsequence gy, (-) for which
S (1) = gx(.) as m — oo,
(1) € N(1,2,(2)f Dﬁi’fzz*(l)) ae.1€ J.
For each 0 € N(1,z,(1) ° Ifiz*(z)), we obtain
18 (1) = 8(D)] < Ign,, (1) — 0 +|o = g4 (1),

and so
18 (1) = 8 (1] < (G (1), R (1,2 (1)), Tk 2. (1))

By employing an analogous argument where the positions of g,,, and g. are swapped, it follows that

80 (1) = 8:()]
< Ha (R(020, () Dy %20, (0), R0, 2" (1), DY 225 (1) )

_ o1 o o\ -1
<y (N(z,rfg) (55) T a0 g () +PI§1z*<z>,z*<z>>>
< PP 2y (1) = 2 ()] + 902, (1) — 2 ().

Then, for: € J, we get

| (5 “p)H (i (1) — m<z>>|

P
(¥>1 ¢ , o1 P P l1—1
St [ (5T ke - s
0 —gP 1-¢ _
< (lf(él)) /al sP1 (lp psF’)Z 1 {p(z)plfﬂznm(l) —z2"(1)| +q(1)|zn,, (1) — z*(z)|] ds
Therefore

20 14

p* bP — af 1 q* b —af\ "1
hy — hy < + Zny, — 2% ’
” M Hcl%p - l[ (251 + 1) ( 1Y I ([1 + 1) 1Y H m ”Cl%ﬂ

where p* = max,c 7 p(1) and ¢* = max,c 7 9(1).
Hence
17n,, — h*”cl%p —0asm — oo.

Consequently, applying Lemma 4 allows us to conclude that the operator 7 admits a fixed point z within
the set By C Cy_y,(J). This fixed point corresponds to a solution of the initial value problem (1) — (2). This
concludes the proof. [J

4. Example

To illustrate the applicability of our findings, we examine the following fractional initial value problem,

D20 € 0,20 D 2(), 1€ T o= (1], ?
eri ) =(1-7)., X

wherep >0, { = %.
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Set
R(1,2(1)f D,Y22(1)) = {g € R: 91(1,2() DY 22(1)) < g < 9a(1,2()F DY 22(1)},

where the functions ¢, ¢ : J X R x R — R are measurable with respect to the variable 1. We suppose that for
each fixed 1 € J, the function ¢ (1, -, -) is lower semicontinuous, meaning that for every i € R, the set

{z € R: ¢1(1,20),P DLV ?2(1)) > i},

is open. Similarly, for each fixed 1 € J, the function ¢, (1, -, -) is assumed to be upper semicontinuous, that is,
for every p € R, the set

{z € R:o(1,2(1),P DLV 22(1)) < pl,
is open. Further, we assume that
(1—%) isin(i— %)

(1+ /=B A+l + 1))

max(|¢1 (1, 2(1) L DY22(1)], |92 (1,20 DV 22(1))|) <

forevery: € J and z € R.
The condition (H2) holds true with

)= G 0Dl g

14+y/1-%

-~

o(
¢(%)=0.

As a consequence, the multivalued map N possesses compact and convex values and is also upper
semicontinuous (refer to [13]). Given that all the hypotheses of Theorem 2 are met, it follows that the initial
value problem (5) — (6) admits at least one solution.

5. Conclusion

The present work focuses on establishing the existence of solutions for implicit fractional differential
inclusions involving the recently introduced Hilfer-Katugampola fractional derivative, which generalizes the
Katugampola and Caputo-Katugampola operators. By formulating the problem as a fixed point problem for
multivalued operators on appropriate weighted function spaces, we utilized the Bohnenblust-Karlin fixed
point theorem and contraction principles for multivalued maps to establish existence results under natural
assumptions such as convexity, compactness, upper semicontinuity, and boundedness of the multivalued
right-hand side.

The illustrative example demonstrates how these theoretical results apply to a concrete fractional initial
value problem, confirming the broad applicability of our approach. This work contributes to the growing
literature on fractional differential inclusions by extending existence theory to operators of generalized
fractional type, enriching the modeling tools available for complex dynamical systems exhibiting memory
and hereditary properties.

Future work may consider uniqueness, stability, and numerical methods for such fractional inclusions as
well as extensions to more general fractional operators and systems in higher dimensions.
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