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Abstract: We present a theoretical model for analyzing skeletal muscle contraction, explicitly incorporating
the deformation characteristics of muscle tissue. Additionally, we propose an analytical framework to
investigate the mechanical behavior and contraction dynamics of the modeled muscle system. This approach
offers a refined understanding of muscle function by integrating both structural and functional aspects into
a cohesive mathematical representation.
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1. Introduction

he prediction and analysis of muscle contraction play a crucial role in understanding the physiological
T foundations of human movement. Skeletal muscles are central to almost every form of locomotion,
and their mechanical behavior significantly impacts clinical assessments, rehabilitation, and athletic
performance. In medical contexts, identifying informative parameters of muscle mechanics aids in diagnosing
neuromuscular disorders and tailoring treatment regimens for patients undergoing physical therapy or
recovery from injury [1-5].

In sports science, the ability to predict and model muscle behavior enables coaches and trainers to
optimize training regimens, enhance athlete performance, and reduce injury risks. The development of
accurate biomechanical models helps bridge the gap between theoretical physiology and practical application.
With the advancement of real-time data acquisition technologies and simulation tools, modern modeling
approaches now allow continuous refinement of treatment and training protocols, even during their active
execution. This dynamic adaptability underscores the importance of integrated muscle modeling in both
medical and athletic fields.

This paper introduces a mathematical model specifically designed to analyze skeletal muscle contraction
while accounting for its deformation properties. Unlike simplified or purely empirical approaches, our model
incorporates structural and mechanical aspects of muscle tissue. Furthermore, we present an analytical
framework to explore the dynamic behavior of muscle contraction under varying physiological conditions.
The proposed approach aims to provide a more realistic representation of muscle function, which can be
utilized for both diagnostic and predictive applications in biomedical engineering and sports biomechanics.

2. Method of solution

In this section, we consider the model of skeletal muscle contraction and analyze it. In the framework
of the model under consideration, we will assume that the muscle is a locally flat object and has the structure
“elastic thread—elastic-viscous substrate”: it is a set of parallel threads connected to an elastic-viscous substrate.
We will assume that the effective layer of tissue with depth H is reduced. A linear law of distribution along
the coordinate g of the component of the displacement field normal to the muscle surface is adopted

U(y,zt) = Vizt) [1+awzn L], (1)
where U(y, z, t) is the normal-to-surface component of the displacement vector field; V(z, t) is the movement

of a fiber point along the Oy axis, spaced from the edge at a distance z; H is the depth of the effective layer
of the substrate; y is the coordinate directed from the free surface of the muscle; z is the fiber axis coordinate;
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and « is the empirical parameter that takes into account possible deviations of the system under consideration
from ideality.
The equation of transverse oscillations of a thread on an elastic-viscous substrate has the form [6]

?V(z, 0 aV(z,
g = 5 (w0 V) — g, ®

where m is the mass per unit length of the thread; T(y,z,t) is the thread tension force; and q(y,z,t) is the
distributed shear force from the side of the substrate, directed against the axis y. Force q(y, z, t) is determined
through the tension in the muscle—substrate o, multiplied by the effective width b: g = o b.

As boundary conditions, Eq. (2) is supplemented by the conditions for fastening the thread

V(0,t)=0, V(Lt)=0, (3a)
V(z,0) =V, aa—‘t/(z,O) =0. (3b)

Here L is the effective thread length and Vj is the initial displacement.
We solve (2)—(3) by the method of functional corrections [7,8]. Within this approach, we represent the
thread tension as
T(y,z,t) = To[l +eg(y,zt)], 0<e<l1, |g(y,zt)] <1, 4)

where Tj is the average value of the tension. We seek the solution in the form of a power series

V(z,t) = Zsi Vi(z, ). )
i=0
Substituting (4) and (5) into (2)—(3) and grouping terms by powers of ¢ yields problems for V;:
*Vy 9’V
Mmoo - To 52 = q(y,z,t), (6a)
0%V, %V, 9 oV;_ ‘
m atzl —To azzl =3 (TO 8(y,zt) 812 1> , i1, (6b)

with boundary and initial conditions

Vi(0,£) =0, Vi(L,t) =0, %(Z,o)zo(z‘zo); Vo(z,0) = Vo, Vi(z,0) =0 (i > 1). @)

Egs. (6)—(7) are solved by Fourier separation of variables [9]. The solutions can be written as sine-series

over the eigenfunctions sin (%7%):

Vo(z,t) = ism(;lnz) Ay cos(wpt) + By sin(wyt) + % /Ot G (T) Sm(wtd(:_f)) dr] , (8a)
' _E o nmnz t . sin(wn(tf‘r)) .
Vilz ) = ¢ n;sm( ) /O Gusle) T, iz, (8b)

where w;, = 4/ % 1, Gu(t) = %fOLq(y,g,t) sin(nT”g) dg, and

Gni(t) = %/O.L ;)ag [8(% ot a‘ggl (¢, t)} sin(nTNg> dag.

Constants A, and B, are fixed by the initial data (7). The spatio-temporal distributions V(z,t) were
analyzed analytically by using the second-order (i = 0, 1,2) approximation in the framework of the method of
functional corrections. This approximation is usually sufficiently accurate for qualitative analysis and to obtain

some quantitative results. All obtained results have been checked by comparison with results of numerical
simulations.
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3. Discussion

In this section, we analyze the spatio-temporal distribution of the fiber-point displacement along the

Oy axis. Figure 1 shows typical dependences of the considered distribution on the coordinate during fiber
compression for various values of the external force 4. An increase in the curve number corresponds to an
increase in the considered force. Stretching the fiber leads to the opposite result. A similar result was obtained
when analyzing the change in fiber over time.
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Figure 1. Typical dependences of the distribution of the fiber-point displacement along the Oy axis for various
values of the external force 4. An increase in the curve number corresponds to an increase in the considered
force

4. Conclusion

In this paper, we propose a model for the analysis of skeletal muscle contraction, which takes into account

its deformation properties. We analyzed the considered model. We introduce an analytical approach for
analysis of the considered muscle contraction.
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