Open Journal of Mathematical Sciences

Lacunary series expansions in hyperholomorphic \(F^{\alpha}_{G}(p,q,s)\) spaces

Alaa Kamal, Taha Ibrahim Yassen\(^1\)
Port Said University, Faculty of Science, Department of Mathematics Port Said, {42511,} Egypt.; (A.K)
Qassim University, College of Sciences and Arts in Muthnib, Department of Mathematics, {51431,} KSA.; (A.K)
The Higher Engineering Institute in Al-Minia, Mania,{61111,} Egypt.; (T.I.Y)
\(^{1}\)Corresponding Author: taha_hmour@yahoo.com

Abstract

In this paper we define a new class of hyperholomorphic functions, which is known as \(F^{\alpha}_{G}(p,q,s)\) spaces. We characterize hyperholomorphic functions in \(F^{\alpha}_{G}(p,q,s)\) space in terms of the Hadamard gap in Quaternion analysis.

Keywords:

Quaternionic analysis, \(F^{\alpha}_{G}(p,q,s)\) spaces, lacunary Series.

1. Introduction

Quaternions were introduced for the first time by William Rowan Hamilton in 1843 [1]. The generalizations of the theory of holomorphic functions in one complex variable is known as Quaternion analysis [2, 3, 4, 5]. Quaternions are also recognized as a powerful tool for modeling and solving problems in theoretical as well as applied mathematics [6]. The emergence of a large of software packages to perform computations in the algebra of the real quaternions [7], or more generally, Clifford algebra has been enhanced by the increasing interest in using quaternions and their applications in almost all applied sciences [8, 9].

Definition 1. Let \(\;0< p< \infty\), \(\;-2< q< \infty\;\) and \(\;0< s< \infty\) and let \(f\) be an analytic function in \(\mathbb D.\) If $$ \|f\|^{p}_{F(p,q,s)}=\sup_{a\in{\mathbb D}}\int_{{\mathbb D}}|f'(z)|^{p}(1-|z|^2)^{q} g^{s}(z,a)dA(z)< \infty, $$ then \(f\in F(p,q,s).\) Moreover, if $$ \lim_{|a|\rightarrow1}\int_{\mathbb D}|f'(z)|^{p}(1-|z|^2)^{q} g^{s}(z,a)dA(z)=0, $$ then \(\;f\in{F_{0}(p,q,s)}.\)

To introduce the meaning of hyperholomorphic functions, let \(\mathbb{H}\) be the skew field of quaternions. The element \(w\in\mathbb{H}\) can be written in the form: $$ w=w_0+w_1 i+w_2 j+w_3 k,\quad w_0,w_1,w_2,w_3\in\mathbb{R}, $$ where \(1,i,j,k\) are the basis elements of \(\mathbb{H}\). For these elements we have the multiplication rules $$ i^2=j^2=k^2=-1,ij=-ji=k, kj=-jk=i, ki=-ik=j. $$ The conjugate element \(\bar w\) is given by \(\bar w=w_0-w_1 i-w_2 j-w_3 k,\) and we have the property $$ w\bar w=\bar w w=\| w\|^2=w_0^2+w_1^2+w_2^2+w_3^2. $$ Moreover, we can identify each vector \(\vec x=(x_0,x_1,x_2)\in\mathbb{R}^3\) with a quaternion \(x\) of the form $$ x=x_0+x_1 i+x_2 j. $$ We will work in the unit ball in the real three-dimensional space, \(\mathbb B_1(0)\subset\mathbb{R}^3\). We will consider functions \(f\) defined on \(\mathbb B_1(0)\) with values in \(\mathbb{H}\). We define a generalized Cauchy-Riemann operator \(D\) and it's conjugate \(\bar D\) by $$ Df=\frac{\partial f}{\partial x_0}+i\frac{\partial f}{\partial x_1}+j\frac{\partial f}{\partial x_2}, $$ and $$ \bar Df=\frac{\partial f}{\partial x_0}-i\frac{\partial f}{\partial x_1} -j\frac{\partial f}{\partial x_2}. $$ For these operators, we have $$D \bar D= \bar DD=\Delta_3,$$ where \(\Delta_3\) is the Laplacian for functions defined over domains in \(\mathbb{R}^3.\) We denote by \( \varphi_a(x)=(a-x)(1-\bar a x)^{-1},\;|a|< 1, \) the Möbius transform, which maps the unit ball onto itself. Let $$ g(x,a)=\frac{1}{4\pi}\left(\frac{1}{|\varphi_a(x)|}-1\right) $$ be the modified fundamental solution of the Laplacian in \(\mathbb{R}^3.\) Let \(f:\mathbb B\mapsto \mathbb{H}\) be a hyperholomorphic function. Then [4]:
  • \({\cal B}(f)=\sup\limits_{x\in \mathbb B} (1-|x|^2)^{3/2} |\bar Df(x)|\),
  • \(Q_p(f)=\sup\limits_{a\in \mathbb B}\int_{\mathbb B}|\bar Df(x)|^2g^p(x,a)d{\mathbb B}_x\).

Definition 2. Let \(0< \alpha< \infty.\) The hyperholomorphic \(\alpha\)-Bloch space is defined as follows (see [2]): $$ {\cal B}^\alpha=\{f\in \ker D :\;\;\sup\limits_{x\in \mathbb B}(1-{\vert x\vert}^2)^{\frac{3\alpha}{2}} \vert \bar Df(x)\vert < \infty\}. $$ The little \(\alpha\)-Bloch type space \({\cal B}^\alpha_0\) is a subspace of \({\cal B}\) consisting of all \(f\in {\cal B}^\alpha\) such that $$\lim_{\vert x\vert \to 1^-}(1-{\vert x\vert}^2)^{\frac{3\alpha}{2}} \vert \bar Df(x)\vert=0.$$

Definition 3. [10] Let \(f\) be quaternion-valued function in \(\mathbb B.\) For \(0< p< \infty,\) \(-2< q< \infty\) and \(0< s< \infty.\) If $$ \|f\|^{p}_{F(p,q,s)}=\sup_{a\in{\mathbb B}}\int_{{\mathbb B}}|{\overline D} f(x)|^{p}(1-|x|^2)^{\frac{3q}{2}} \biggl(1-\vert \varphi_a(x)\vert^2\biggr)^sd{\mathbb B}_x< \infty, $$ then \(f\in F(p,q,s).\) Moreover, if $$ \lim_{|a|\rightarrow1}\int_{{\mathbb B}}|{\overline D} f(x)|^{p}(1-|x|^2)^{\frac{3q}{2}} \biggl(1-\vert \varphi_a(x)\vert^2\biggr)^sd{\mathbb B}_x=0, $$ then \(\;f\in{F_{0}(p,q,s)}.\)

The green function in \(\mathbb{R}^3 \) is defined as (see [11]): $$G(x,a)=\frac{1-|\varphi_a(x)|^2}{|1-\overline{a}x|}.$$ We introduce following new definition of so called hyperholomorphic \(F^{\alpha}_{G}(p,q,s)\) spaces.

Definition 4. Let \(1< \alpha,\; p < \infty,\) \(-2< q< \infty,\) and \(s>0.\) Assume that \(f\) be hyperholomorphic function in the unit ball \(\mathbb{B}_{1}(0).\) Then, \(f \in F^{\alpha}_{G}(p,q,s),\) if \begin{eqnarray*} F^{\alpha}_{G}(p,q,s)=\bigg\{f\in ker D: \sup\limits_{a\in {\mathbb B_1(0)}} \int_{{\mathbb B_1(0)}}|{\overline D} f(x)|^{p}{(1-|x|^2)^{{3\alpha q}{2}+2s}} \big( G(x,a)\big)^{s}d{\mathbb B}_x< \infty\bigg\}. \end{eqnarray*} The space \(F^{\alpha}_{G,0}(p,q,s)\) is subspace of \(F^{\alpha}_{G}(p,q,s)\) consisting of all functions \(f\in F^{\alpha}_{G}(p,q,s),\) such that \begin{eqnarray*} \lim_{|a|\rightarrow1^-} \int_{{\mathbb B_1(0)}}|{\overline D} f(x)|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \big( G(x,a)\big)^{s}d{\mathbb B}_x=0. \end{eqnarray*}

Our objective in this article is twofold. First, we study the generalized quaternion space \(F^{\alpha}_{G}(p,q,s)\) and characterize their relations to the quaternion \(\mathcal B^{\alpha}_{0} \). Second, characterizations \(F^{\alpha}_{G}(p,q,s)\) function space by the coefficients of Hadamard gap expansions. The following lemma, we will need in the sequel:

Lemma 5.[12] Let \(0< R< 1\), \(1< q,\) \(a\in \mathbb{B}_1(0)\) and \(f\; : \; \mathbb{B}_1(0)\longrightarrow \mathbb{H} \) be a hyperholomorphic function. Then \[\vert\bar{D}f(a)\vert^q\leq \displaystyle\frac{3\cdot4^{2+q}}{\pi R^3(1-R^2)^{2q}(1-\vert a\vert^2)^3}\int_{\mathcal{M}(a,R)}\bigl\vert\bar{D}f(x)\bigr\vert^q \, d\mathbb{B}_x\ .\]

2. Power series expansions in \(\mathbb{R}^3\)

The major difference to power series in the complex case consists in the absence of regularity of the basic variable \(x = x_0 + x_1i + x_2j \) and of all of its natural powers \(x^n,\; n = 2, 3,\ldots \). This means that we should expect other types of terms, which could be designated as generalized powers. We use a pair \(\underline{y} = (y_1, y_2)\) of two regular variables given by $$y_1 = x_1-ix_0\; and\; y_2 = x_2 - jx_0,$$ and a multi-index \( \nu= (\nu_1, \nu_2),\; |\nu| = (\nu_1 + \nu_2)\) to define the \(\nu\)-power of \(\underline{y}\) by a \(|\nu|\)-ary product [5, 13, 14].

Definition 6. Let \(\nu_1\) elements of the set \(a_1,.... ,\; a_{|\nu|} \) be equal to \(y_1\) and \(\nu_2\) elements be equal to \(y_2\). Then the \(\nu\)-power of \(\underline{y}\) is defined by

\begin{eqnarray}\label{eq 3.1} \underline{y}:=\frac{1}{|\nu|!}\sum_{(i_1,...,i_{|\nu|})\in\pi(1,...|\nu|)}a_{i1}a_{i2}...a_{{i}_{|\nu|}}, \end{eqnarray}
(1)
where the sum runs over all permutations of \((1,...., |\nu|).\)

The general form of the Taylor series of left monogenic functions in the neighborhood of the origin is given as [14]:
\begin{eqnarray}\label{eq 3.2.1} P(\underline{y}):=\sum_{n=0}^{\infty}\bigg(\sum_{|\nu|=n}\underline{y}^\nu c_\nu\bigg),\;\; \; c_\nu\in\mathbb{H}. \end{eqnarray}
(2)

Theorem 7.[5, 15] Let \(g(x)\) be left hyperholomorphic with the Taylor series (2). Then

\begin{eqnarray}\label{eq 3.111} \bigg|\frac{1}{2}\overline {D} g(x)\bigg|\leq \sum\limits_{n=1}^{\infty}n\bigg(\sum\limits_{|\nu|=n}|c_\nu|\bigg)|x|^{n-1}. \end{eqnarray}
(3)
We introduce the notation \(\mathbf{H}_n(x):=\sum\limits_{|\nu|=n}\underline{y}^{|\nu|}c_\nu\) and consider monogenic functions composed by \(\mathbf{H}_n(x)\) in the following form: $$f(x)=\sum\limits_{n=0}^{\infty}\mathbf{H}_n(x)b_n,\;\;\;\;\; b_n\in\mathbb{H}.$$ Using (3), we have
\begin{eqnarray}\label{eq 3.112} \bigg|\frac{1}{2}\overline D f(x)\bigg|\leq \sum\limits_{n=1}^{\infty}n\bigg(\sum\limits_{|\nu|=n}|c_\nu|\bigg)|b_n||x|^{n-1}. \end{eqnarray}
(4)
This is the motivation for another notation,
\begin{eqnarray}\label{eq 3.112.x} a_n:= \bigg(\sum\limits_{|\nu|=n}|c_\nu|\bigg)|b_n|\;\;\; (a_n \geq 0),\end{eqnarray}
(5)
finally, we have
\begin{eqnarray}\label{eq 3.113} \bigg|\frac{1}{2}\overline D f(x)\bigg|\leq \sum\limits_{n=1}^{\infty}na_n|x|^{n-1}. \end{eqnarray}
(6)

3. Lacunary series expansions in \(F^{\alpha}_{G}(p,q,s)\) spaces

In this section, we give a sufficient and necessary condition for the hyperholomorphic function \(f\) on \({\mathbb B_1(0)} \) of \(\mathbb{R}^3\) with Hadamard gaps to belong to the weighted hyperholomorphic \(F^{\alpha}_{G}(p,q,s)\) spaces. The function
\begin{eqnarray}\label{eq4.1} f(r)=\sum\limits_{k}^{\infty}a_k r^{n_{k}}\;\;\;\;\; (\; n_k\in \mathbb{N};\; \forall\; k\in \mathbb{N}) \end{eqnarray}
(7)
belong to the Hadamard gap class (Lacunary series) if there exists a constant \(\lambda>1\) such that \(\frac{n_{k+1}}{n_k}\geq \lambda,\; \forall\; k\in \mathbb{N}.\) Characterizations in higher dimensions using several complex variables and quaternion sense [16, 17, 18].

Theorem 8. Let \(f(r)=\sum_{n=1}^{\infty}a_{n}r^{n},\) with \(a_{n} \geq 0 .\) If \( \alpha > 0,\;p > 0.\) Then

\begin{eqnarray} \int_{0}^{1} (1-r)^{\alpha-1}(f(r))^{p}\; dr \approx \sum_{n=0}^{\infty} \; 2^{-n \alpha} \; t_n^{p}, \end{eqnarray}
(8)
where \(t_n=\sum_{k\in I_n}a_{k},\; n\in \mathbb{N},\) \(I_n = \{k: 2^{n} \leq k < 2^{n+1};\;\;k\in \mathbb{N}\}.\)

Proof. The prove of this theorem can be obtained easily from Theorem 2.5 of [19] with the same steps.

Theorem 9. Let \(\alpha,\; p\geq 1,\) \(-2< q< \infty,\) \(s>0,\) and \(I_n=\{k:2^n\leq k< 2^{n+1};k\in\mathbb{N}\}.\) Suppose that \(f(x)=\sum\limits_{n=0}^{\infty}H_n(x) b_n, b_n\in\mathbb{H},\) where \(H_n(x)\) be homogenous hyperholomorphic polynomials of degree \(n,\) and let \(a_n\) be define as {before in (5). If

\begin{eqnarray}\label{eq4.2} \sum\limits_{n=0}^{\infty}2^{-n(\frac{3}{2}\alpha q +s-p+1)}\bigl({\sum_{k\in I_n}|a_k|}\bigr)^p< \infty, \end{eqnarray}
(9)
then
\begin{eqnarray}\label{eq4.3} \sup\limits_{a\in {\mathbb B_1(0)}}\int_{{\mathbb B_1(0)}}\bigg|\frac{1}{2}{\overline D} f(x)\bigg|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \big( G(x,a)\big)^{s}d{\mathbb B}_x< \infty, \end{eqnarray}
(10)
and \(f\in F^{\alpha}_{G}(p,q,s).\)

Proof. Suppose that (9) holds. Using the equality

\begin{eqnarray} \label{eq1.1} G(x,a)=\frac{1-|\varphi_a(x)|^2}{|1-\overline{a}x|}= \frac{(1-|a|^2)(1-|x|^2)}{|1-\overline{a}x|^3}, \end{eqnarray}
(11)
where
\begin{eqnarray}\label{eq1.2} 1-|x|\leq |1-\overline{a}x|\leq 1+|x|,\;\;\;\;\;1-|a|\leq |1-\overline{a}x|\leq 1+|a|\leq2. \end{eqnarray}
(12)
Then, we get
\begin{eqnarray}\label{eq4.4} &&\int_{{\mathbb B_1(0)}}\bigg|\frac{1}{2}{\overline D} f(x)\bigg|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \big( G(x,a)\big)^{s}d{\mathbb B}_x\nonumber\\ &&=\int_{{\mathbb B_1(0)}}\bigg|\frac{1}{2}{\overline D} \bigg(\sum\limits_{n=0}^{\infty}H_n(x) b_n \bigg)\bigg|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \frac{(1-|a|^2)^s(1-|x|^2)^s}{|1-\overline{a}x|^{3s}}d{\mathbb B}_x\nonumber\\ &&\leq\int_{{\mathbb B_1(0)}}\bigg(\sum\limits_{n=0}^{\infty} n a_n x^{n-1} \bigg)^{p} {(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \frac{(1-|a|^2)^s(1-|x|^2)^s}{(1-|a|)^s(1-|x|)^{2s}}d{\mathbb B}_x\nonumber\\ &&\leq2^{\frac{3\alpha q}{2}+4s}\int_{0}^{1}\bigg(\sum\limits_{n=0}^{\infty} n a_n r^{n-1} \bigg)^{p}{(1-r)^{{3\alpha q}{2}+s}}r^2d{r}\nonumber\\ &&\leq\lambda\int_{0}^{1}\bigg(\sum\limits_{n=0}^{\infty} n a_n r^{n-1} \bigg)^{p}{(1-r)^{\frac{3\alpha q}{2}+s}}d{r}. \end{eqnarray}
(13)
Using Theorem 8 in (13), we deduced that
\begin{eqnarray}\label{eq4.5} \int_{{\mathbb B_1(0)}}\bigg|\frac{1}{2}{\overline D} f(x)\bigg|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \big( G(x,a)\big)^{s}d{\mathbb B}_x &\leq&\lambda\int_{0}^{1}\bigg(\sum\limits_{n=0}^{\infty} n a_n r^{n-1} \bigg)^{p}{(1-r)^{\frac{3\alpha q}{2}+s}}d{r}\nonumber\\ &\leq&\lambda\sum\limits_{n=0}^{\infty} 2^{-n({3\alpha q}{2}+s+1)} t_n^P . \end{eqnarray}
(14)
Since $$ t_n=\sum_{k\in I_n} k a_{k}< 2^{n+1}\sum_{k\in I_n} a_{k},$$ we obtain that, \begin{eqnarray}\label{eq4.6} \int_{{\mathbb B_1(0)}}\bigg|\frac{1}{2}{\overline D} f(x)\bigg|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \big( G(x,a)\big)^{s}d{\mathbb B}_x &\leq&\lambda_1\sum\limits_{n=0}^{\infty} 2^{-n(\frac{3\alpha q}{2}+s-p+1)} \bigl({\sum_{k\in I_n}|a_k|}\bigr)^p.\nonumber \end{eqnarray} Therefore, we have \begin{eqnarray}\label{eq4.7} \|f\|_{F^{\alpha}_{G}(p,q,s)}\leq\lambda_1\sum\limits_{n=0}^{\infty} 2^{-n(\frac{3\alpha q}{2}+s-p+1)} \bigl({\sum_{k\in I_n}|a_k|}\bigr)^ p< \infty,\nonumber \end{eqnarray} where \(\lambda_1\) is a constant. Then, the last inequality implies that \(f\in {F^{\alpha}_{G}(p,q,s)}\) and the proof of our theorem is completed.

For the converse of Theorem 9, we consider the following theorem.

Proposition 10. (see [5]) Let \(\alpha = (\alpha_1, \alpha_2), \alpha_ i \in\mathbb{R},\; i = 1, 2 \) be the vector of real coefficients defining \(\mathrm{H}_{n,\alpha}(x)=(y_1\alpha_1+y_2\alpha_2)^n.\) Suppose that \(|\alpha|^2 = \alpha_1^2+\alpha_2^2\neq0.\) Then,

\begin{eqnarray}\label{eq4.10} \|\mathrm{H}_{n,\alpha}\|^p_{L_p(\partial\mathbb B_1)}=2 \pi \sqrt{\pi}|\alpha|^{np}\frac{\Gamma(\frac{n}{2}p+1)}{\Gamma(\frac{n}{2}p+\frac{3}{2})},\;\;\; where\;0< p< \infty. \end{eqnarray}
(15)
Moreover, we have (see [5])
\begin{eqnarray}\label{eq4.11} \frac{\|-\frac{1}{2}\overline{D}\mathrm{H}_{n,\alpha}\|^p_{L_p(\partial\mathbb B_1)}}{\|\mathrm{H}_{n,\alpha}\|^p_{L_p(\partial\mathbb B_1)}}=n^p \frac{\mathbf{B}\bigg(\frac{1}{2},\frac{n-1}{2}p+1\bigg)}{\mathbf{B}\bigg(\frac{1}{2},\frac{n}{2}p+1\bigg)}\geq \lambda n^p>0,\;\;\;\;\;\; \end{eqnarray}
(16)
where, \(\mathbf{B}\bigg(\frac{1}{2},\frac{n-1}{2}p+1\bigg)=\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{n-1}{2}p+1\right)}{\Gamma\left(\frac{n-1}{2}p+\frac{3}{2}\right)},\) and \( \lim\limits_{n\rightarrow\infty}\frac{\mathbf{B}\left(\frac{1}{2},\frac{n-1}{2}p+1\right)}{\mathbf{B}\left(\frac{1}{2},\frac{n}{2}p+1\right)}=1.\)

Corollary 11.[5] Assume that \(p\geq2.\) Then,

\begin{eqnarray}\label{eq4.12} \frac{\|-\frac{1}{2}\overline{D}\mathrm{H}_{n,\alpha}\|^2_{L_2(\partial\mathbb B_1)}}{\|\mathrm{H}_{n,\alpha}\|^2_{L_p(\partial\mathbb B_1)}}\geq \lambda n^{\frac{2+3p}{2p}}. \end{eqnarray}
(17)

Theorem 12. Let \(\alpha\geq 1,\) \(2\leq p< \infty,\) \(-2< q< \infty,\) \(s>0,\) and \(0< |x|=r< 1. \) If

\begin{eqnarray}\label{eq4.13} f(x)=\bigg(\sum\limits_{n=0}^{\infty}\frac{\mathrm{H}_{n,\alpha}}{(1-|x|^2)^{\frac{8s+p}{4p}}\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}} a_n\bigg) \in F^{\alpha}_{G}(p,q,s). \end{eqnarray}
(18)
Then,
\begin{eqnarray}\label{eq4.14} \sum\limits_{n=0}^{\infty}2^{-n(\frac{3}{2}\alpha q +s-p+1)}\bigl({\sum_{k\in I_n}|a_k|}\bigr)^p< \infty. \end{eqnarray}
(19)

Proof. Since

\begin{eqnarray}\label{eq4.15} \|f\|_{F^{\alpha}_{G}(p,q,s)}&=&\sup\limits_{a\in {\mathbb B_1(0)}}\int_{{\mathbb B_1(0)}}|{\overline D} f(x)|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \big( G(x,a)\big)^{s}d{\mathbb B}_x\nonumber\\ &=&\sup\limits_{a\in {\mathbb B_1(0)}}\int_{{\mathbb B_1(0)}}|{\overline D} f(x)|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+2s}} \bigg( \frac{(1-|x|^2)(1-|a|^2)}{|1-\overline{a}x|^3}\bigg)^{s}d{\mathbb B}_x\nonumber\\ &\geq&\sup\limits_{a\in {\mathbb B_1(0)}}\int_{{\mathbb B_1(0)}}|{\overline D} f(x)|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+3s}}d{\mathbb B}_x \;\;\; (where \;a=0). \end{eqnarray}
(20)
Hence, we have
\begin{eqnarray}\label{eq4.16} \|f\|_{F^{\alpha}_{G}(p,q,s)}&\geq&\int_{{\mathbb B_1(0)}}|-\frac{1}{2}{\overline D} f(x)|^{p}{(1-|x|^2)^{\frac{3\alpha q}{2}+3s}} d{\mathbb B}_x \;\;\; (where \;a=0).\nonumber\\ &=&\int_{{\mathbb B_1(0)}}\bigg|\sum\limits_{n=0}^{\infty}\bigg[\frac{-\frac{1}{2}{\overline D}\mathrm{H}_{n,\alpha}}{(1-|x|^2)^{\frac{8s+p}{4p}}\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}}\bigg] a_n\bigg|^{{p}}{(1-|x|^2)^{\frac{3\alpha q}{2}+3s}}d{\mathbb B}_x. \end{eqnarray}
(21)
where \(\bigg[\frac{-\frac{1}{2}{\overline D}\mathrm{H}_{n,\alpha}}{\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}}\bigg]\) is a homogeneous hyperholomorphic polynomial of degree \(n\)-\(1\) and it can be written in the form
\begin{eqnarray}\label{eq4.17} \bigg[\frac{-\frac{1}{2}{\overline D}\mathrm{H}_{n,\alpha}}{\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}}\bigg]=r^{(n-1)}\Phi_n(\phi_1,\phi_2), \end{eqnarray}
(22)
where
\begin{eqnarray}\label{eq4.18} \Phi_n(\phi_1,\phi_2):=\bigg(\bigg[\frac{-\frac{1}{2}{\overline D}\mathrm{H}_{n,\alpha}}{\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}}\bigg]\bigg)_{\partial\mathbb B_1}. \end{eqnarray}
(23)
Now, by the inner product \(\langle f, g\rangle_{\partial\mathbb B_1(0)}=\int_{{\partial\mathbb B_1(0)}} \overline{f(x)} g(x)d\Gamma_x,\) the orthogonality of the spherical monogenic \(\Phi_n(\phi_1,\phi_2)\) (see [20]) in \( L_2(\partial\mathbb B_1(0)).\) From (22) and (23) to (21), we have
\begin{eqnarray}\label{eq4.19} &&\int_{{\mathbb B_1(0)}}\bigg|\sum\limits_{n=0}^{\infty}\bigg[\frac{-\frac{1}{2}{\overline D}\mathrm{H}_{n,\alpha}}{(1-|x|^2)^{\frac{8s+p}{4p}}\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}}\bigg] a_n\bigg|^{{p}}{(1-|x|^2)^{\frac{3\alpha q}{2}+3s}} d{\mathbb B}_x\nonumber\\ &=&\int_{{0}}^1\int_{{\partial\mathbb B_1(0)}}\bigg(\bigg|\sum\limits_{n=0}^{\infty}\frac{r^{n-1}}{(1-r^2)^{\frac{8s+p}{4p}}}\Phi_n(\phi_1,\phi_2)a_n\bigg|^2 \bigg)^{\frac{{p}}{2}}r^2{(1-r^2)^{\frac{3\alpha q}{2}+3s}}d\Gamma_x dr\nonumber\\ &=&\int_{{0}}^1\int_{{\partial\mathbb B_1(0)}}\bigg(\sum\limits_{n=0}^{\infty}\sum\limits_{j=0}^{\infty}\overline{a_n}\frac{r^{2n-2}}{(1-r^2)^{\frac{8s+p}{2p}}}\overline{\Phi_n}(\phi_1,\phi_2){\Phi_j}(\phi_1,\phi_2)a_j \bigg)^{\frac{{p}}{2}} r^2{(1-r^2)^{\frac{3\alpha q}{2}+3s}}d\Gamma_x dr = \mathrm{L}. \end{eqnarray}
(24)
From Hölder's inequality, we have
\begin{eqnarray}\label{eq4.20} \int_{{\partial\mathbb B_1(0)}}|f(x)|^pd\Gamma_x\geq (4\pi)^{1-p}\bigg|\int_{{\partial\mathbb B_1(0)}}f(x)d\Gamma_x\bigg|^p, \;\;\;\;(where\;1\leq p< \infty). \end{eqnarray}
(25)
From (25), for \(2\leq p< \infty,\) we have
\begin{eqnarray}\label{eq4.21} \mathrm{L} &\geq&(4\pi)^{1-\frac{p}{2}}\int_{{0}}^1\bigg(\sum\limits_{n=0}^{\infty}|{a_n}|^2\frac{r^{2n-2}}{(1-r^2)^{\frac{8s+p}{2p}}}\|{\Phi_n}(\phi_1,\phi_2)\|^2_{L_2(\partial\mathbb B_1)} \bigg)^{\frac{{p}}{2}} r^2{(1-r^2)^{\frac{3\alpha q}{2}+3s}} dr\nonumber\\ &\geq&(4\pi)^{1-\frac{p}{2}}\int_{{0}}^1\bigg(\sum\limits_{n=0}^{\infty}|{a_n}|^2{r^{2n-2}}\|{\Phi_n}(\phi_1,\phi_2)\|^2_{L_2(\partial\mathbb B_1)} \bigg)^{\frac{{p}}{2}} r^3{(1-r^2)^{\frac{3\alpha q}{2}+s-\frac{p}{4}}} dr \end{eqnarray}
(26)
From Corollary 11, we have $$\|{\Phi_n}(\phi_1,\phi_2)\|^2_{L_2(\partial\mathbb B_1)}=\frac{\|-\frac{1}{2}{\overline D}\mathrm{H}_{n,\alpha}\|_{L_2(\partial\mathbb B_1)}}{\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}}\geq\lambda n^{\frac{2+3p}{2p}}\geq\lambda n^{\frac{3}{2}}.$$ Then, from above we have
\begin{eqnarray}\label{eq4.22} \mathrm{L}&\geq&(4\pi)^{1-\frac{p}{2}}\lambda \int_{{0}}^1\bigg(\sum\limits_{n=0}^{\infty}n^{\frac{3}{2}}|{a_n}|^2{r^{2n-2}} \bigg)^{\frac{{p}}{2}} r^3{(1-r^2)^{\frac{3\alpha q}{2}+s-\frac{p}{4}}} dr\nonumber\\ &=&\lambda_1 \int_{{0}}^1\bigg(\sum\limits_{n=0}^{\infty}n^{\frac{3}{2}}|{a_n}|^2{r^{2n-2}} \bigg)^{\frac{{p}}{2}} r^3{(1-r^2)^{\frac{3\alpha q}{2}+s-\frac{p}{4}}} dr\nonumber\\ &=&\frac{\lambda_1}{2} \int_{{0}}^1\bigg(\sum\limits_{n=0}^{\infty}n^{\frac{3}{2}}|{a_n}|^2{\xi^{n-1}} \bigg)^{\frac{{p}}{2}} \xi{(1-\xi)^{\frac{3\alpha q}{2}+s-\frac{p}{4}}} d\xi\nonumber\\ &\geq&\lambda_3 \int_{{0}}^1\bigg(\sum\limits_{n=0}^{\infty}n^{\frac{3}{2}}|{a_n}|^2{\xi^{n-1}} \bigg)^{\frac{{p}}{2}}{(1-\xi)^{\frac{3\alpha q}{2}+s-\frac{p}{4}}} d\xi, \end{eqnarray}
(27)
where \(\lambda_j,\; j={1,2,3},\) are constants do not depending on \(n.\) Now, by applying Theorem 8 in equation (27), we deduced that
\begin{eqnarray}\label{eq4.23} \|f\|_{F^{\alpha}_{G}(p,q,s)} \geq \mathrm{L}\geq\frac{\lambda_3}{k}\sum\limits_{n=0}^{\infty}2^{{-n}(\frac{3\alpha q}{2}+s-\frac{p}{4}+1)}\big({\sum_{k\in I_n}k^{\frac{3}{2}}|a_k|^2}\big)^{\frac{p}{2}}, \end{eqnarray}
(28)
where $${\sum_{k\in I_n}k^{\frac{3}{2}}|a_k|^2}> \bigg(2^n\bigg)^{\frac{3}{2}}\bigg({\sum_{k\in I_n}|a_k|^2}\bigg)^{{\frac{{p}}{2}}}.$$ Then,
$$ \|f\|_{F^{\alpha}_{G}(p,q,s)}\geq \mathrm{L}\geq C\sum\limits_{n=0}^{\infty}2^{-n(\frac{3\alpha q}{2}+s-p+1)}\big(\sum_{k\in I_n}|a_k|^2\big)^{\frac{p}{2}}, $$
(29)
From [21], we have $$\sum\limits_{n=0}^{N}a_n^p\leq \bigg(\sum\limits_{n=0}^{N}a_n^p\bigg)^p\leq N^{p-1}\sum\limits_{n=0}^{N}a_n^p.$$ Then, we have
\begin{eqnarray}\label{eq4.24} \|f\|_{F^{\alpha}_{G}(p,q,s)} \geq \mathrm{L}\geq C_1\sum\limits_{n=0}^{\infty}2^{{-n}(\frac{3\alpha q}{2}+s-{p}+1)}\big({\sum_{k\in I_n}|a_k|}\big)^{{p}}, \end{eqnarray}
(30)
where \(C_1\) be a constants which do not depend on \(n.\) Then,
\begin{eqnarray} \sum\limits_{n=0}^{ \infty}2^{{-n}(\frac{3 \alpha q}{2}+s-{p}+1)}\bigg({\sum_{k\in I_n}|a_k|}\bigg)^{p}< \infty. \end{eqnarray}
(31)
This completes the proof of theorem.

Theorem 13. Let \(\alpha\geq 1,\) \(2\leq p< \infty,\) \(-2< q< \infty,\) and \(s>0,\) then we have

\begin{eqnarray}\label{eq4.25} f(x)=\bigg(\sum\limits_{n=0}^{\infty}\frac{\mathrm{H}_{n,\alpha}}{(1-|x|^2)^{\frac{8s+p}{4p}}\|\mathrm{H}_{n,\alpha}\|_{L_p(\partial\mathbb B_1)}} a_n\bigg) \in F^{\alpha}_{G}(p,q,s), \end{eqnarray}
(32)
if and only if,
\begin{eqnarray}\label{eq4.26} \sum\limits_{n=0}^{\infty}2^{-n(\frac{3}{2}\alpha q +s-p+1)}\bigl({\sum_{k\in I_n}|a_k|}\bigr)^p< \infty. \end{eqnarray}
(33)

Proof. This theorem can be proved directly from Theorem 9 and Theorem 13.

Conclusion

We have introduce a new class of hyperholomorphic functions, which is also called \(F^{\alpha}_{G}(p,q,s)\) spaces. For this class, we give some characterizations of the hyperholomorphic \(F^{\alpha}_{G}(p,q,s)\) functions by the coefficients of certain lacunary series expansions in quaternion analysis.

Acknowledgments

The authors wishes to express his profound gratitude to the reviewers for their useful comments on the manuscript.

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Altmann, S. L. (1989). Hamilton, Rodrigues, and the quaternion scandal.Mathematics Magazine,62 (5), 291-308. [Google Scholor]
  2. Ahmed, A. E. S. (2008). On weighted \(\alpha\)-Besov spaces and \(\alpha\)-Bloch spaces of quaternion-valued functions. Numerical Functional Analysis and Optimization, 29(9-10), 1064-1081. [Google Scholor]
  3. El-Sayed Ahmed, A., & Asiri, F. (2015). Characterizations of Weighted Bloch Space by Q p, \(\omega\)-Type Spaces of Quaternion-Valued Functions. Journal of Computational and Theoretical Nanoscience, 12(11), 4250-4255. [Google Scholor]
  4. Gürlebeck, K., Kähler, U., Shapiro, M. V., & Tovar, L. M. (1999). On \(Q_{p}\)-spaces of quaternion-valued functions. Complex Variables and Elliptic Equations, 39(2), 115-135. [Google Scholor]
  5. Gürlebeck, K., & Ahmed, A. E. S. (2004). On series expansions of hyperholomorphic \(B^{q}\) functions. In Advances in Analysis and Geometry (pp. 113-129). Birkhäuser, Basel. [Google Scholor]
  6. Malonek, H. (2003). Quaternions in applied sciences: A historical perspective of a mathematical concept. In Proc. International Kolloquium applications of computer science and mathematics in architecture and building industry, IKM (Vol. 16).[Google Scholor]
  7. Gärlebeck, K., Habetha, K., & Spröig, W. (2007). Holomorphic functions in the plane and \(n\)-dimensional space. Springer Science & Business Media. [Google Scholor]
  8. Ablamowicz, R., & Fauser, B. (2005). Mathematics of clifford-a maple package for clifford and graSSmann algebras. Advances in Applied Clifford Algebras, 15(2), 157-181. [Google Scholor]
  9. Ablamowicz, R. (2009). Computations with Clifford and Grassmann algebras. Advances in applied Clifford algebras, 19(3-4), 499. [Google Scholor]
  10. Ahmed, A. E. S., & Omran, S. (2012). Weighted classes of quaternion-valued functions. Banach Journal of Mathematical Analysis, 6(2), 180-191. [Google Scholor]
  11. Swanhild, B. (2009). Harmonic \({Q_{p}}\) spaces. Computational Methods and Function Theory, 9(1), 285-304.
  12. Reséndis, O. L. F., & Tovar, S. L. M. (2004). Besov-Type Characterizations for Quaternione Bloch Functions. In Finite or Infinite Dimensional Complex Analysis and Applications} (pp. 207-219. Springer, Boston, MA. [Google Scholor]
  13. Gürlebeck, K. (1990). Quaternionic analysis and elliptic boundary value problems. Int. Series of Numerical Mathematics, 89. [Google Scholor]
  14. Malonek, H. (1990). Power series representation for monogenic functions in based on a permutational product. Complex Variables and Elliptic Equations, 15(3), 181-191. [Google Scholor]
  15. Gürlebeck, K., & Malonek, H. R. (2001). On strict inclusions of weighted Dirichlet spaces of monogenic functions. Bulletin of the Australian Mathematical Society, 64(1), 33-50. [Google Scholor]
  16. Avetisyan, K. L. (2007). Hardy-Bloch type spaces and lacunary series on the polydisk. Glasgow Mathematical Journal, 49(2), 345-356. [Google Scholor]
  17. Furdui, O. (2008). On a class of lacunary series in BMOA. Journal of Mathematical Analysis and Applications, 342(2), 773-779. [Google Scholor]
  18. Li, S., & Stevic, S. (2009). Weighted-Hardy functions with Hadamard gaps on the unit ball. Applied Mathematics and Computation, 212(1), 229-233. [Google Scholor]
  19. Zhao, R. (1996). On a general family of function spaces (Vol. 105). Suomalainen tiedeakatemia. [Google Scholor]
  20. Brackx, F., Delanghe, R., & Sommen, F. (1982). Clifford analysis (Vol. 76). Pitman Books Limited. [Google Scholor]
  21. Miao, J. (1992). A property of analytic functions with Hadamard gaps. Bulletin of the Australian Mathematical Society, 45(1), 105-112. [Google Scholor]