Open Journal of Mathematical Analysis

On some new subclass of bi-univalent functions associated with the Opoola differential operator

Timilehin Gideon Shaba
Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.; shabatimilehin@gmail.com

Abstract

By applying Opoola differential operator, in this article, two new subclasses \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\psi,k,\tau)\) and \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\) of bi-univalent functions class \(\mathcal{H}\) defined in \(\bigtriangledown\) are introduced and investigated. The estimates on the coefficients \(|l_2|\) and \(|l_3|\) for functions of the classes are also obtained.

Keywords:

Univalent function, bi-univalent function, coefficient bounds, Opoola differential operator.

Let \(\mathcal{J}\) denote the subclass of \(\mathcal{G}\) which is of the form

\begin{equation} \label{main} \Im(z)=z+\sum_{k=2}^{\infty}l_kz^k \end{equation}
(1)
consisting of functionas which are holomorphic and univalent in the unit disk \(\bigtriangledown\). Let \(\Im^{-1}\) be inverse of the function \(\Im(z)\), then we have \[\Im^{-1}(\Im(z))=z\] and \[\Im^{-1}(\Im(b))=b,\quad |b| < r_0(\Im);r_0(\Im)\ge\frac{1}{4}\] where
\begin{equation} \Im^{-1}(\Im(b))=b-l_2b^2+(2l_2^2-l_3)b^3-(5l_2^3-5l_2l_3+l_4)b^4+\cdots . \end{equation}
(2)
A function \(\Im(z)\in \mathcal{G}\) denoted by \(\mathcal{H}\) is said to be bi-univalent in \(\bigtriangledown\) if both \(\Im(z)\) and \(\Im^{-1}(z)\) are univalent in \(\bigtriangleup\) [1]. Subclasses of \(\mathcal{H}\), such as class of bi-convex and starlike functions and bi-strongly convex and starlike function similar to the well known subclasses \(\mathcal{L}^*(\vartheta)\) and \(\mathcal{K}(\vartheta)\) of starlike and convex functions of order \(\vartheta(0< \vartheta< 1)\) respectively [2].

Recently, numerous researchers [1,3,4] obtained the coefficient \(|l_2|\) and \(|l_3|\) of bi-univalent functions for the several subclasses of functions in the class \(\mathcal{H}\). Motivated by the work of Darus and Singh [5], we introduce the subclasses \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\psi,k,\tau)\) and \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\) of the function class \(\mathcal{H}\), which are associated with the Opoola differential operator and to obtain estimates on the coefficients \(|l_2|\) and \(|l_3|\) for functions in these new subclasses of the function class \(\mathcal{H}\) applying the techniques used earlier by Darus and Singh [5], Frasin and Aouf [4] and Srivastava et al., [1].

Lemma 1. [6] Suppose \(u(z)\in \mathcal{P}\) and \(z\in \bigtriangledown\), then \(|w_k|\leq2\) for each \(k\), where \(\mathcal{P}\) is the family of all function \(u\) analytic in \(\bigtriangledown\) for which \(\Re(u(z))>0\), \[u(z)=1+w_1z+w_2z^2+\cdots .\]

Definition 1. A function \(\Im(z)\in \mathcal{G}\) is in the class \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\psi,\tau)\) if the following condition are fulfilled:

\begin{equation} \label{eq1} \left|\arg\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}\right]\right|< \frac{\psi\pi}{2}, \end{equation}
(3)
\begin{equation} \label{eq2} \left|\arg\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}\right]\right|< \frac{\psi\pi}{2} \end{equation}
(4)
where \(0< \psi\leq1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0\) and
\begin{equation} h(b)=b-l_2b^2+(2l_2^2-l_3)b^3-(5l_2^3-5l_2l_3+l_4)b^4+\cdots \end{equation}
(5)
and
\begin{equation} \label{third} D^{m,\mu}_{\tau,\beta}\Im(z)=z+\sum_{k=2}^{\infty} (1+(k+\mu-\beta-1)\tau)^m l_kz^k \end{equation}
(6)
where \(\quad0\leq\mu\leq\beta, \tau\ge0\) and \( m\in \mathbb{N}_0=\{0,1,2,3\cdots\}\) is the generalized Al-oboudi derivative defined by Opoola [7].

Remark 1.

  • 1. \(\mathcal{M}_{\mathcal{H},1}^{\mu,\beta}(0,\psi,\tau)\)=\(\mathcal{M}_{\mathcal{H}}(\psi)\) which Srivastava et al., [1] presented and studied.
  • 2. \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(0,\psi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(\psi)\) which Frasin and Aouf [4] presented and studied.
  • 3. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\psi,1)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\psi)\) which Porwal and Darus [8] presented and studied.
  • 4. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\psi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\psi,\tau)\) which Darus and Singh [5] presented and studied.

2. Coefficient Bounds For The Function Class \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\psi,k,\tau)\)

Theorem 1. Let \(\Im(z)\in \mathcal{G}\) be in the class \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\psi,k,\tau)\), \(0< \psi\leq1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0\) , then

\begin{equation} \label{new} |l_2|\leq\frac{2\psi}{\sqrt{{2\psi[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]-}{\psi(\psi-1)[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}}} \end{equation}
(7)
and
\begin{eqnarray} |l_3|&\leq& \frac{2\psi}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\notag\\&&+\frac{4\psi^2}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{eqnarray}
(8)

Proof. It follows from (3) and (4) that

\begin{equation} \label{mb} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}=(q(z))^\psi, \end{equation}
(9)
and
\begin{equation} \label{mb1} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}=(t(b))^\psi, \end{equation}
(10)
where \(q(z)=1+q_1z+q_2z^2+q_3z^3+\cdots\) and \(t(b)=1+t_1b+t_2b^2+t_3b^3\cdots\) are in \(\mathcal{P}\). Equating the coefficient in (9) and (10), we have
\begin{equation} \label{mb2} [(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=\psi q_1, \end{equation}
(11)
\begin{equation} \label{mb3} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3=\psi q_2+\frac{\psi(\psi-1)}{2}q_1^2, \end{equation}
(12)
\begin{equation} \label{mb4} -[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=\psi t_1, \end{equation}
(13)
\begin{equation} \label{mb5} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2. \end{equation}
(14)
From (11) and (13), we get
\begin{equation} \label{mb6} q_1=-t_1, \end{equation}
(15)
and
\begin{equation} \label{mb7} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=\psi^2 (q_1^2+t_1^2). \end{equation}
(16)
From (12),(14) and (16), we get \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2\\&&-[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_3=\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2 \end{eqnarray*} implies \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2\\&&=[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_3+\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2. \end{eqnarray*} Then from (12), we have \begin{multline*} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=\psi q_2+\frac{\psi(\psi-1)}{2}q_1^2+\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2, \end{multline*} implies \begin{multline*} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=\psi (q_2+t_2)+\frac{\psi(\psi-1)}{2}(q_1^2+t_1^2). \end{multline*} Then from (16), we get \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2\\&&=\psi (q_2+t_2)+\frac{\psi(\psi-1)}{2}\frac{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}{\psi^2}l_2^2, \end{eqnarray*} implies
\begin{align}\label{mb8} l_2^2=\frac{\psi^2(q_2+t_2)}{ {2\psi[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]-}{\psi(\psi-1)[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}}. \end{align}
(17)
Applying Lemma 1 for (17), we get \begin{equation*} |l_2|\leq\frac{2\psi}{\sqrt{ {2\psi[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]-}{\psi(\psi-1)[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}}} \end{equation*} which gives the desired estimate on \(|l_2|\) in (7). Hence in order to find the bound on \(|l_3|\), \begin{eqnarray*} &&[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3-[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}\\&&+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=\psi q_2+\frac{\psi(\psi-1)}{2}q_1^2-[\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2], \end{eqnarray*} implies \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&=[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]2l_2^2+\psi (q_2-t_2)+\frac{\psi(\psi-1)}{2}(q_1^2-t_1^2). \end{eqnarray*} Since \((q_1)^2=(-t_1)^2\Longrightarrow q_1^2=t_1^2\), then we have \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&=\psi (q_2-t_2)+[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]2l_2^2 \end{eqnarray*} \begin{eqnarray*} l_3&=& \frac{\psi(q_2-t_2)}{2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\\&&+\frac{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}{2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}2l_2^2. \end{eqnarray*} From (16), we have \begin{eqnarray*} l_3&=& \frac{\psi(q_2-t_2)}{2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\\&&+\frac{\psi^2 (q_1^2+t_1^2)}{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}. \end{eqnarray*} Applying Lemma 1 for coefficient \(q_1,q_2,t_1\) and \(t_2\), we have \begin{eqnarray*} |l_3|&\leq& \frac{2\psi}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\\&&+\frac{4\psi^2 }{[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}. \end{eqnarray*}

3. Coefficient bounds for the function class \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\)

Definition 2. A function \(\Im(z)\in \mathcal{G}\) is said to be in the class \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\) if the following condition are fulfilled:

\begin{equation} \label{eq3} \Re\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}\right]>\xi, \end{equation}
(18)
\begin{equation} \label{eq4} \Re\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}\right]>\xi, \end{equation}
(19)
where \(\Im(z)\in \mathcal{H}\), \(0\leq\xi< 1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0,\) and
\begin{equation} h(b)=b-l_2b^2+(2l_2^2-l_3)b^3-(5l_2^3-5l_2l_3+l_4)b^4+\cdots, \end{equation}
(20)
and
\begin{equation} D^{m,\mu}_{\tau,\beta}\Im(z)=z+\sum_{k=2}^{\infty} (1+(k+\mu-\beta-1)\tau)^m l_kz^k, \end{equation}
(21)
where \(\quad0\leq\mu\leq\beta, \tau\ge0\) and \( m\in \mathbb{N}_0=\{0,1,2,3\cdots\}\) is the generalized Al-oboudi derivative defined by Opoola [7].

Remark 2.

  • 1. \(\mathcal{M}_{\mathcal{H},1}^{\mu,\beta}(0,\xi,\tau)\)=\(\mathcal{M}_{\mathcal{H}}(\xi)\) which Srivastava et al., [1] presented and studied.
  • 2. \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(0,\xi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(\xi)\) which Frasin and Aouf [4] presented and studied.
  • 3. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\xi,1)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\xi)\) which Porwal and Darus [8] presented and studied.
  • 4. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\xi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\xi,\tau)\) which Darus and Singh [5] presented and studied.

Theorem 2. Let \(\Im(z)\in \mathcal{G}\) be in the class \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\xi,k,\tau)\), \(0\leq\xi< 1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0\), then

\begin{equation} \label{tb1} |l_2|\leq \sqrt{\frac{2(1-\xi)}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}}, \end{equation}
(22)
and
\begin{eqnarray}\label{tb2} |l_3|&\leq& \frac{4(1-\xi)^2}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]^2}\notag\\&&+\frac{2(1-\xi)}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{eqnarray}
(23)

Proof. From (18) and (19), where \(q(z),t(z)\in \mathcal{P}\),

\begin{equation} \label{tb3} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}=\xi+(1-\xi)q(z), \end{equation}
(24)
and
\begin{equation} \label{tb4} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}=\xi+(1-\xi)t(b), \end{equation}
(25)
where \(q(z)=1+q_1z+q_2z^2+q_3z^3+\cdots\) and \(t(b)=1+t_1b+t_2b^2+t_3b^3\cdots\). Now on equating the coefficient in (24) and (25), we have
\begin{equation} \label{tb5} [(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=(1-\xi) q_1, \end{equation}
(26)
\begin{equation} \label{tb6} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3=(1-\xi) q_2, \end{equation}
(27)
\begin{equation} \label{tb7} -[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=(1-\xi) t_1, \end{equation}
(28)
\begin{equation} \label{tb8} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=(1-\xi) t_2. \end{equation}
(29)
From (26) and (28), we have
\begin{equation} \label{tb88} q_1=-t_1, \end{equation}
(30)
and
\begin{equation} \label{tb9} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=(1-\xi)^2 (q_1^2+t_1^2). \end{equation}
(31)
From (27) and (29), we have
\begin{equation} \label{mb10} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2^2=(1-\xi) (q_2+t_2), \end{equation}
(32)
or we have \begin{equation*}\label{mb11} l_2^2=\frac{(1-\xi) (q_2+t_2)}{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]} \end{equation*} implies \begin{equation*} |l_2^2|\leq\frac{2(1-\xi) }{[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]} \end{equation*} which is the bound on \(|l_2|\) as given in (22). Hence in order to find the bound on \(|l_3|\), we subtract (27) and (29) and get \begin{eqnarray*} &&[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&-[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=(1-\xi) q_2-[(1-\xi) t_2], \end{eqnarray*} implies \begin{eqnarray*} &&2 [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&=[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]2l_2^2+(1-\xi) (q_2-t_2), \end{eqnarray*} implies \begin{equation*} l_3=l_2^2+\frac{(1-\xi) (q_2-t_2)}{2 [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{equation*} Then from (31), we have \begin{eqnarray*} l_3&=&\frac{(1-\xi)^2 (q_1^2+t_1^2)}{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}\notag\\&&+\frac{(1-\xi) (q_2-t_2)}{2 [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{eqnarray*} Applying Lemma 1 for the coefficient \(q_1,q_2,t_1\) and \(t_2\), we get \begin{eqnarray*} |l_3|&\leq&\frac{4(1-\xi)^2 }{[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}\notag\\&&+\frac{2(1-\xi) }{ [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}, \end{eqnarray*} which is the bond on \(|l_3|\) in (23).

4. Conclusion

In this present paper, two new subclasses of bi-univalent functions associated with Opoola differential operator \(D^{m,\mu}_{\tau,\beta}\) were introduced and worked on. Furthermore, the coefficient bounds for \(|l_2|\) and \(|l_3|\) of functions in these classes are obtained.

Conflict of Interests

The author declares no conflict of interest.

References

  1. Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10), 1188-1192. [Google Scholor]
  2. Brannan, D.A., & Taha, T. (1986). On some classes of bi-univalent functions. Babes-Bolyai Math, 31(2), 70-77. [Google Scholor]
  3. Xu, Q.H., & Gui, Y.C., & Srivastava, H.M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218, 11461-11465. [Google Scholor]
  4. Frasin, B.A., & Aouf, M.K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24, 1569-1573. [Google Scholor]
  5. Darus, M., & Singh, S. (2018). On some new classes of bi-univalent functions. Journal of Applied Mathematics, Statistics and Informatics, 14, 19--26. [Google Scholor]
  6. Pommerenke, C.H. (1975). Univalent Functions. Vandendoeck and Rupercht, Gottingen. [Google Scholor]
  7. Opoola, T.O. (2017). On a subclass of univalent function defined by generalized differential operator. International Journal of Mathematical Analysis, 11, 869-876. [Google Scholor]
  8. Porwal, S., & Darus, M. (2013). On a class of bi-univalent functions. Journal of Egyptian Mathematical Society, 21, 190-193. [Google Scholor]