Engineering and Applied Science Letter

Some integral inequalities for co-ordinated harmonically convex functions via fractional integrals

Naila Mehreen\(^1\), Matloob Anwar
School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan.; (N.M & M.A)

\(^{1}\)Corresponding Author: nailamehreen@gmail.com

Abstract

In this paper, we find some Hermite-Hadamard type inequalities for co-ordinated harmonically convex functions via fractional integrals.

Keywords:

Hermite-Hadamard inequalities, Riemann-Liouville fractional integral, co-ordinated convex functions, co-ordinated harmonically convex functions.

1. Introduction and Preliminaries

For a convex mapping \(\prod:I\rightarrow \mathbb{R}\) on a real interval, for all \(f_1,f_2\in I\) and \(t\in[0,1]\), the inequality

\begin{equation}\label{p1} \prod\left( \frac{f_1+f_2}{2}\right) \leq \frac{1}{f_2-f_1}\int^{f_2}_{f_1}\prod(u)du\leq\frac{\prod(f_1)+\prod(f_2)}{2}, \end{equation}
(1)
is known as the Hermite-Hadamard inequality [1]. The inequality (1) has been established for several generalized convex functions [2,3,4,5,6,7,8,9]. Dragomir [10] and Sarikaya [11] calculated Hermite-Hadamard inequality for co-ordinated convex functions. They define co-ordinated convex function as:

Definition 1. [10] A function \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}\) is called co-ordinate convex on \(\Delta\) with \(f_1 < f_2\) and \(g_1 < g_2\), if the partial functions \begin{equation} \prod_{y}:[f_1,f_2] \rightarrow \mathbb{R}, \prod_{y}(u)=\prod(u,y), and \prod_{x}:[g_1,g_2] \rightarrow \mathbb{R}, \prod_{x}(v)=\prod(x,v), \end{equation} are convex for all \(x\in[f_1,f_2]\) and \(y\in [g_1,g_2]\).

Sarikaya [11] define the co-ordinated convex function as:

Definition 2. [11] A function \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq \mathbb{R}^{2}\rightarrow \mathbb{R}\) is called coordinate convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\), if \begin{align*} \begin{split} &\prod(t_1x+(1-t_1)z,t_2 y+(1-t_2)w) \\ &\leq t_1t_2\prod(x,y)+t_1(1-t_2)\prod(x,w)+(1-t_1)t_2 \prod(z,y)+(1-t_1)(1-t_2)\prod(z,w), \end{split} \end{align*} holds for all \(t_1,t_2\in [0,1]\) and \((x,y),(z,w)\in\Delta\).

Every convex function is co-ordinated convex but not conversely [10].

Theorem 3. [10] Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}\) be convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\). Then

\begin{align} \prod\left(\frac{f_1+f_2}{2},\frac{g_1+g_2}{2}\right) &\leq\frac{1}{2}\Bigg[\frac{1}{f_2-f_1}\int_{f_1}^{f_2}\prod\left( x,\frac{g_1+g_2}{2}\right) dx +\frac{1}{g_2-g_1}\int_{g_1}^{g_2}\prod\left( \frac{f_1+f_2}{2},y\right) dy\Bigg]\notag \\ &\leq\frac{1}{(f_2-f_1)(g_2-g_1)}\int_{g_1}^{g_2}\int_{f_1}^{f_2}\prod(x,y)dxdy\notag\end{align}\begin{align} &\leq\frac{1}{4}\Bigg[\frac{1}{f_2-f_1} \int_{f_1}^{f_2}\prod(x,g_1)dx+\frac{1}{f_2-f_1}\int_{f_1}^{f_2}\prod(x,d)dx \notag\\ &\hspace{0.5cm}+\frac{1}{g_2-g_1}\int_{g_1}^{g_2} \prod(f_1,y)dy+\frac{1}{g_2-g_1}\int_{g_1}^{g_2}\prod(f_2,y)dy\Bigg] \notag\\ &\leq\frac{\prod(f_1,g_2)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4}. \end{align}
(2)

Definition 4. [12] A function \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}\) is called harmonically convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\), if \begin{equation*} \prod\left(\frac{xz}{t_1x+(1-t_1)z},\frac{yw}{t_2 y+(1-t_2)w}\right) \leq t_1t_2 \prod(x,y)+(1-t_1)(1-t_2)\prod(z,w), \end{equation*} holds for all \(t_1,t_2\in [0,1]\) and \((x,y),(z,w)\in\Delta\).

Definition 5. [12] A function \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) is called coordinated harmonically convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\), if \begin{align*} \begin{split} &\prod\left(\frac{xz}{t_1x+(1-t_1)z},\frac{yw}{t_2 y+(1-t_2)w}\right) \\ &\leq t_1t_2 \prod(x,y)+t_1(1-t_2)\prod(x,w)+(1-t_1)t_2 \prod(z,y)+(1-t_1)(1-t_2)\prod(z,w), \end{split} \end{align*} holds for all \(t_1,t_2\in [0,1]\) and \((x,y),(z,w)\in\Delta\).

Note that, a function \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) is called coordinated harmonically convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\), if the partial functions

\begin{equation} \prod_{y}:[f_1,f_2] \rightarrow \mathbb{R}, \prod_{y}(u)=\prod(u,y), \prod_{x}:[g_1,g_2] \rightarrow \mathbb{R}, \prod_{x}(v)=\prod(x,v), \end{equation} are harmonically convex for all \(x\in[f_1,f_2]\) and \(y\in [g_1,g_2]\), (for more detail, see [9,12]).

Theorem 6. [12] Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) be co-ordinated harmonically convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\). Then

\begin{align} \prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right) &\leq \frac{(f_1f_2)(g_1g_2)}{(f_2-f_1)(g_2-g_1)}\int_{f_1}^{f_2}\int_{g_1}^{g_2}\frac{\prod(x,y)}{x^{2}y^{2}}dydx \notag\\ &\leq\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4}. \end{align}
(3)

Definition 7. [13] Let \(\prod \in L[f_1,f_2]\). The right-hand side and left-hand side Riemann- Liouville fractional integrals \(J^{\alpha}_{f_1+}\prod\) and \(J^{\alpha}_{f_2-}\prod\) of order \(\alpha > 0\) with \(f_2 > f_1\geq 0\) are defined by \begin{equation*} J^{\alpha}_{f_1+}\prod(x)=\frac{1}{\Gamma(\alpha)}\int_{f_1}^{x}(x-t)^{\alpha-1}\prod(t)dt,\ x>f_1, \end{equation*} and \begin{equation*} J^{\alpha}_{f_2-}\prod(x)=\frac{1}{\Gamma(\alpha)}\int_{x}^{f_2}(t-x)^{\alpha-1}\prod(t)dt,\ x< f_2, \end{equation*} respectively, where \(\Gamma(\alpha)\) is the Gamma function defined by \(\Gamma(\alpha)=\int_{0}^{\infty}e^{-t}t^{\alpha-1}dt\).

Theorem 8. [14] Let \(\prod:I\subseteq (0,\infty)\rightarrow \mathbb{R}\) be a function such that \(\prod\in L_1(f_1,f_2)\) where \(f_1,f_2\in I\) with \(f_1< f_2\). If \(\prod\) is harmonocally convex function on \([f_1,f_2]\), then following inequality for fractional integral hold:

\begin{align}\label{e1} \begin{split} &\prod\left(\frac{2f_1f_2}{f_1+f_2}\right)\leq\frac{\Gamma(\alpha+1)}{2} \left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha} \left[J^{\alpha}_{1/f_1-}\left(\prod\circ \Omega\right) \left( \frac{1}{f_2}\right) +J^{\alpha}_{1/f_2+}\left(\prod\circ \Omega\right)\left( \frac{1}{f_1}\right) \right] \leq \frac{\prod(f_1)+\prod(f_2)}{2}, \end{split} \end{align}
(4)
where \(\alpha>0\) and \(\Omega(x)=\frac{1}{x}\).

Definition 9. [11] Let \(\prod\in L_{1}([f_1,f_2]\times [g_1,g_2])\). The Riemann-Liouville integrals \(J^{\alpha,\beta}_{f_1+,g_1+}\), \(J^{\alpha,\beta}_{f_1+,g_2-}\), \(J^{\alpha,\beta}_{f_2-,g_1+}\) and \(J^{\alpha,\beta}_{f_2-,g_2-}\) of order \(\alpha,\beta>0\) with \(f_1,g_1\geq 0\) are defined by \begin{equation*} J^{\alpha,\beta}_{f_1+,g_1+}\prod(x,y)=\frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{f_1}^{x}\int_{g_1}^{y}(x-t)^{\alpha-1}(y-s)^{\beta-1}\prod(t,s)dsdt,\ x>f_1 \ y>g_1, \end{equation*} \begin{equation*} J^{\alpha,\beta}_{f_1+,g_2-}\prod(x,y)=\frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{f_1}^{x}\int_{y}^{g_2}(x-t)^{\alpha-1}(y-s)^{\beta-1}\prod(t,s)dsdt,\ x>f_1 \ y< g_2, \end{equation*} \begin{equation*} J^{\alpha,\beta}_{f_2-,g_1+}\prod(x,y)=\frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{x}^{f_2}\int_{g_1}^{y}(x-t)^{\alpha-1}(y-s)^{\beta-1}\prod(t,s)dsdt,\ x< f_2 \ y>g_1, \end{equation*} and \begin{equation*} J^{\alpha,\beta}_{f_2-,g_2-}\prod(x,y)=\frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{x}^{f_2}\int_{y}^{g_2}(x-t)^{\alpha-1}(y-s)^{\beta-1}\prod(t,s)dsdt,\ x< f_2 \ y< g_2, \end{equation*} respectively. Here \(\Gamma\) is the Gamma function.

Theorem 10. [11] Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}\) be convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\) and \(\prod\in L_{1}(\Delta)\). Then

\begin{align} &\prod\left(\frac{f_1+f_2}{2},\frac{g_1+g_2}{2}\right) \leq \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4(f_2-f_1)^{\alpha}(g_2-g_1)^{\beta}} \notag\\ &\hspace{0.5cm}\times \left[J^{\alpha,\beta}_{f_1+,g_1+}\prod(f_2,g_2)+J^{\alpha,\beta}_{f_1+,g_2-}\prod(f_2,g_1)+J^{\alpha,\beta}_{f_2-,g_1+}\prod(f_1,g_2)+J^{\alpha,\beta}_{f_2-,g_2-}\prod(f_1,g_1)\right] \notag\\ &\leq\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4}. \end{align}
(5)
In this paper, we gave integral results for co-ordinated harmonically convex functions via fractional integrals.

2. Main Results

In this section, our aim is to prove some Hermite-Hadamard type ineqalities for co-ordinated harmonically convex functions in fractional integrals.

Theorem 11. Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) be harmonically convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\) and \(\prod\in L_{1}(\Delta)\). Then

\begin{align}\label{t1e1} &\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right) \leq \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \notag\\ &\hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega )\left( \frac{1}{f_2},\frac{1}{g_2}\right) +J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left( \frac{1}{f_2},\frac{1}{g_1}\right) \notag\\ &\hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}\left(\prod\circ \Omega\right)\left( \frac{1}{f_1},\frac{1}{g_2}\right) +J^{\alpha,\beta}_{1/f_2+,1/g_2+}\left(\prod\circ \Omega\right)\left( \frac{1}{f_1},\frac{1}{g_1}\right) \Bigg] \notag\\ &\leq\frac{\prod(f_1,g_2)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4}, \end{align}
(6)
where \(\Omega(x,y)=\left(\frac{1}{x},\frac{1}{y} \right) \) for all \((x,y)\in ([\frac{1}{f_2},\frac{1}{f_1}],[\frac{1}{g_2},\frac{1}{g_1}])\).

Proof. Let \((x,y),(z,w)\in \Delta\) and \(t_1,t_2 \in [0,1]\). Since \(\prod\) is co-ordinated harmonically convex on \(\Delta\), we have

\begin{align}\label{t1e2} &\prod\left(\frac{xz}{t_1x+(1-t_1)z},\frac{yw}{t_2 y+(1-t_2)w}\right) \notag\\ &\leq t_1t_2 \prod(x,y)+t_1(1-t_2)\prod(x,w)+(1-t_1)t_2 \prod(z,y)+(1-t_1)(1-t_2)\prod(z,w). \end{align}
(7)
By taking \(x=\frac{f_1f_2}{t_1f_1+(1-t_1)f_2}\), \(z=\frac{f_1f_2}{t_1f_2+(1-t_1)f_1}\), \(y=\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\), \(w=\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\) and \(t_1=t_2=\frac{1}{2}\) in (7), we get
\begin{align}\label{t1e3} &\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right) \notag\\ &\leq \frac{1}{4}\Bigg[\prod\left( \frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) +\prod\left( \frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right) \notag\\ &+ \prod\left( \frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right) +\prod\left( \frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) \Bigg]. \end{align}
(8)
Multiplying both sides of (8) by \(t_1^{\alpha-1}t_2^{\beta-1}\) and then integrating with respect to \((t_1,t_2)\) over \([0,1]\times [0,1]\), we get
\begin{align} \frac{1}{\alpha\beta}\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right) &\leq \frac{1}{4}\Bigg[\int_{0}^{1}\int_{0}^{1}\bigg\lbrace \prod\left( \frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) \notag\\ &\hspace{0.5cm}+\prod\left( \frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right) \bigg\rbrace t_1^{\alpha-1}t_2^{\beta-1} dt_1dt_2 \notag\\ &\hspace{0.5cm}+ \int_{0}^{1}\int_{0}^{1}\bigg\lbrace \prod\left( \frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) \notag\\ &\hspace{0.5cm}+\prod\left( \frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right)\bigg\rbrace t_1^{\alpha-1}t_2^{\beta-1}dt_1dt_2 \Bigg]. \end{align}
(9)
Applying change of variable, we find
\begin{align}\label{t1e4} \begin{split} &\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right) \leq \frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \\ &\times \Bigg[\int_{1/g_2}^{1/g_1}\int_{1/f_2}^{1/f_1}\bigg\lbrace \left(\frac{1}{f_1}-x \right)^{\alpha-1}\left(\frac{1}{g_1}-y \right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right) +\left(\frac{1}{f_1}-x \right)^{\alpha-1}\left(y-\frac{1}{g_2} \right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right) \bigg\rbrace dxdy \\ &+ \int_{1/g_2}^{1/g_1}\int_{1/f_2}^{1/f_1}\bigg\lbrace \left(x-\frac{1}{f_2} \right)^{\alpha-1}\left(\frac{1}{g_1}-y \right)^{\beta-1}\prod\left( \frac{1}{x},\frac{1}{y}\right) +\left(x-\frac{1}{f_2} \right)^{\alpha-1}\left(y-\frac{1}{g_2} \right)^{\beta-1}\prod\left( \frac{1}{x},\frac{1}{y}\right)\bigg\rbrace dxdy \Bigg]. \end{split} \end{align}
(10)
Then by multiplying and dividing by \(\Gamma(\alpha)\Gamma(\beta)\) on right hand side of inequality (10), we get the first inequality of (6). For the second inequality of (6) we use the co-ordinated harmonically convexity of \(\prod\) as: \begin{align*} \begin{split} &\prod\left( \frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) \\ &\leq t_1t_2 \prod(f_1,g_1)+t_1(1-t_2)\prod(f_1,g_2)+(1-t_1)t_2 \prod(f_2,g_1)+(1-t_1)(1-t_2)\prod(f_2,g_2), \end{split} \end{align*} \begin{align*} \begin{split} &\prod\left(\frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right) \\ &\leq t_1t_2 \prod(f_1,g_2)+t_1(1-t_2)\prod(f_1,g_1)+(1-t_1)t_2 \prod(f_2,g_2)+(1-t_1)(1-t_2)\prod(f_2,g_1), \end{split} \end{align*} \begin{align*} \begin{split} &\prod\left(\frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) \\ &\leq t_1t_2 \prod(f_2,g_1)+t_1(1-t_2)\prod(f_2,g_2)+(1-t_1)t_2 \prod(f_1,g_1)+(1-t_1)(1-t_2)\prod(f_1,g_2), \end{split} \end{align*} and \begin{align*} \begin{split} &\prod\left(\frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right) \\ &\leq t_1t_2 \prod(f_2,g_2)+t_1(1-t_2)\prod(f_2,g_1)+(1-t_1)t_2 \prod(f_1,g_2)+(1-t_1)(1-t_2)\prod(f_1,g_1). \end{split} \end{align*} Then by adding above inequalities, we get
\begin{align}\label{t1e5} &\prod\left(\frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) +\prod\left(\frac{f_1f_2}{t_1f_1+(1-t_1)f_2},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right) \notag\\ &+\prod\left(\frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_1+(1-t_2)g_2}\right) +\prod\left(\frac{f_1f_2}{t_1f_2+(1-t_1)f_1},\frac{g_1g_2}{t_2 g_2+(1-t_2)g_1}\right) \notag\\ &\leq \prod(f_1,g_1)+\prod(f_2,g_1)+\prod(f_1,g_2)+\prod(f_2,g_2). \end{align}
(11)
Thus by multiplying (11) by \(t_1^{\alpha-1}t_2^{\beta-1}\) and then integrating with respect to \((t_1,t_2)\) over \([0,1]\times [0,1]\), we get the second inequality of (6). Hence the proof is completed.

Remark 1. In Theorem 11, if one takes \(\alpha=\beta=1\) and using change of variable \(u=1/x\) and \(v=1/y\), then one has Theorem in [12].

Theorem 12. Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2] \subseteq (0,\infty)\times (0,\infty)\rightarrow \mathbb{R}\) be harmonically convex on \(\Delta\) with \(f_1< f_2\) and \(g_1< g_2\) and \(\varPsi\in L_{1}(\Delta)\). Then

\begin{align}\label{t2e1} &\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right)\leq \frac{\Gamma(\alpha+1)}{4}\left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha} \notag\\ &\hspace{0.5cm}\times\left[J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left( \frac{1}{f_1},\frac{2g_1g_2}{g_1+g_2}\right) +J^{\alpha}_{1/c_1-}(\prod\circ \Omega_{1})\left( \frac{1}{f_2},\frac{2g_1g_2}{g_1+g_2}\right) \right] +\frac{\Gamma(\beta+1)}{4}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \notag\\ & \hspace{0.5cm}\times \left[J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{g_1}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{g_2}\right) \right] \notag\\ &\leq \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{2} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \times \hspace{0.5cm}\Bigg[J^{\alpha,\beta}_{f_1+,g_1+}(\prod\circ \Omega)\left( \frac{1}{f_2},\frac{1}{g_1}\right) \notag\\ &\hspace{0.5cm} +J^{\alpha,\beta}_{f_1+,g_2-}(\prod\circ \Omega)\left( \frac{1}{f_2},\frac{1}{g_1}\right)+J^{\alpha,\beta}_{f_2-,g_1+}(\prod\circ \Omega)\left( \frac{1}{f_1},\frac{1}{g_2}\right) +J^{\alpha,\beta}_{f_2-,g_2-}(\prod\circ \Omega)\left( \frac{1}{f_1},\frac{1}{g_1}\right) \Bigg] \notag\\ &\leq \frac{\Gamma(\alpha+1)}{4}\left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\Bigg[J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left( \frac{1}{f_1},g_2\right) +J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left( \frac{1}{f_1},g_1\right) \notag\\ &\hspace{0.5cm}+J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left( \frac{1}{f_2},g_1\right) +J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left( \frac{1}{f_2},g_1\right)\Bigg] \notag\\ &\hspace{0.5cm}+\frac{\Gamma(\beta+1)}{4}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\alpha}\Big[J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left( f_1,\frac{1}{g_2}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left( f_2,\frac{1}{g_2}\right) \notag\\ &\hspace{0.5cm}+J^{\alpha}_{1/g_2+}(\prod\circ \Omega_{2})\left(f_1,\frac{1}{g_1}\right) +J^{\alpha}_{1/g_2+}(\prod\circ \Omega_{2})\left( f_2,\frac{1}{g_1}\right)\Big]\notag\\ &\leq\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4}, \end{align}
(12)
where \(\Omega(x,y)=\left(\frac{1}{x},\frac{1}{y} \right) \), \(\Omega_{1}(x,y)=\left(\frac{1}{x},y \right) \) and \(\Omega_{2}(x,y)=\left(x,\frac{1}{y} \right) \) for all \((x,y)\in \left( [\frac{1}{f_2},\frac{1}{f_1}],[\frac{1}{g_2},\frac{1}{g_1}]\right) \).

Proof. Since \(\prod\) is co-ordinated harmonically convex on \(\Delta\) then we have \(\prod_{\frac{1}{x}}:[f_1,f_2]\rightarrow \mathbb{R}\), \(\prod_{\frac{1}{x}}(y)=\prod(\frac{1}{x},y)\), is harmonically convex on \([g_1,g_2]\) for all \(x\in \left[ \frac{1}{f_2},\frac{1}{f_1}\right] \). Then from inequality (4), we have

\begin{align}\label{t2e2} &\prod_{\frac{1}{x}}\left(\frac{2g_1g_2}{g_1+g_2}\right) \leq\frac{\Gamma(\beta+1)}{2} \left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \left[J^{\beta}_{1/c-}(\prod_{\frac{1}{x}}\circ \Omega_{2}) \left( \frac{1}{g_2}\right) +J^{\beta}_{1/g_2+}(\prod_{\frac{1}{x}}\circ \Omega_{2})\left( \frac{1}{g_1}\right) \right] \notag\\ &\leq \frac{\prod_{\frac{1}{x}}(g_1)+\prod_{\frac{1}{x}}(g_2)}{2}. \end{align}
(13)
In other words,
\begin{align}\label{t2e3} &\prod\left(\frac{1}{x},\frac{2g_1g_2}{g_1+g_2}\right)\leq\frac{\beta}{2} \left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}\left[\int_{1/g_2}^{1/g_1}\left(y-\frac{1}{g_2}\right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right) {\text d}y\right.\notag\\ &\hspace{0.5cm}\left.+\int_{1/g_2}^{1/g_1}\left(\frac{1}{g_1}-y \right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right){\text d}y\right] \leq \frac{\prod\left( \frac{1}{x},g_1\right) +\prod\left( \frac{1}{x},g_2\right) }{2}, \end{align}
(14)
for all \(x\in\left[ \frac{1}{f_2},\frac{1}{f_1}\right] \). Now by multiplying (14) by \(\frac{\alpha(x-1/f_2)^{\alpha-1}}{2}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\) and \(\frac{\alpha(1/f_1-x)^{\alpha-1}}{2}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\), and then integrating with respect to \(x\) over \([1/f_2,1/f_1]\), respectively, we find
\begin{align} \label{t2e4} &\frac{\alpha}{2}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\int_{1/f_2}^{1/f_1}\left( x-\frac{1}{f_2}\right) ^{\alpha-1}\prod\left(\frac{1}{x},\frac{2g_1g_2}{g_1+g_2}\right){\text d}x \leq\frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha} \left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \notag\\ &\hspace{0.5cm}\times\Bigg[\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( x-\frac{1}{f_2}\right) ^{\alpha-1}\left(y-\frac{1}{g_2}\right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x \notag\\ &\hspace{0.5cm}+\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( x-\frac{1}{f_2}\right) ^{\alpha-1}\left(\frac{1}{g_1}-y \right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x\Bigg] \notag\\ &\leq \frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\Bigg[\int_{1/f_2}^{1/f_1}\left( x-\frac{1}{f_2}\right) ^{\alpha-1}\prod\left( \frac{1}{x},g_1\right) {\text d}x +\int_{1/f_2}^{1/f_1}\left( x-\frac{1}{f_2}\right) ^{\alpha-1}\prod\left( \frac{1}{x},g_2\right) {\text d}x\Bigg], \end{align}
(15)
and
\begin{align} \label{t2e5} &\frac{\alpha}{2}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\int_{1/f_2}^{1/f_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\prod\left(\frac{1}{x},\frac{2g_1g_2}{g_1+g_2}\right){\text d}x \leq\frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha} \left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \notag\\ &\hspace{0.5cm}\times \Bigg[\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\left(y-\frac{1}{g_2}\right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x \notag\\ &\hspace{0.5cm}+\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\left(\frac{1}{g_1}-y \right)^{\beta-1} \prod\left( \frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x\Bigg] \notag\\ &\leq \frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\Bigg[\int_{1/f_2}^{1/f_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\prod\left( \frac{1}{x},g_1\right) {\text d}x +\int_{1/f_2}^{1/f_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\prod\left( \frac{1}{x},g_2\right) {\text d}x\Bigg]. \end{align}
(16)
Again by similar arguments for \(\prod_{\frac{1}{y}}:[f_1,f_2]\rightarrow \mathbb{R}\), \(\prod_{\frac{1}{y}}(x)=\prod(x,\frac{1}{y})\), we get
\begin{align*} &\frac{\beta}{2}\left( \frac{g_1g_2}{g_2-g_1}\right) ^{\beta}\int_{1/g_2}^{1/g_1}\left( y-\frac{1}{g_2}\right) ^{\beta-1}\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{1}{y}\right){\text d}y\\ &\leq\frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha} \left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \Bigg[\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( u-\frac{1}{f_2}\right) ^{\alpha-1}\left(y-\frac{1}{g_2}\right)^{\beta-1} \prod\left(\frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x \notag\\ &\hspace{0.5cm}+\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\left(y-\frac{1}{g_2} \right)^{\beta-1} \prod\left(\frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x\Bigg]\end{align*} \begin{align} \label{t2e6} &\leq \frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\Bigg[\int_{1/g_2}^{1/g_1}\left( y-\frac{1}{g_2}\right) ^{\alpha-1}\prod\left( f_1,\frac{1}{y}\right) {\text d}y+\int_{1/g_2}^{1/g_1}\left( y-\frac{1}{g_2}\right) ^{\beta-1}\prod\left( f_2,\frac{1}{y}\right) {\text d}y\Bigg] , \end{align}
(17)
and
\begin{align} \label{t2e7} &\frac{\beta}{2}\left( \frac{g_1g_2}{g_2-g_1}\right) ^{\beta}\int_{1/g_2}^{1/g_1}\left( \frac{1}{g_1}-y\right) ^{\beta-1}\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{1}{y}\right){\text d}y \notag\\&\leq\frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha} \left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \Bigg[\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( x-\frac{1}{f_2}\right) ^{\alpha-1}\left(\frac{1}{g_1}-y\right)^{\beta-1} \prod\left(\frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x \notag\\ &\hspace{0.5cm}+\int_{1/f_2}^{1/f_1}\int_{1/g_2}^{1/g_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\left(\frac{1}{g_1}-y \right)^{\beta-1} \prod\left(\frac{1}{x},\frac{1}{y}\right){\text d}y{\text d}x\Bigg] \notag\\ &\leq \frac{\alpha\beta}{4}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\Bigg[\int_{1/g_2}^{1/g_1}\left( \frac{1}{g_1}-y\right) ^{\alpha-1}\prod\left( f_1,\frac{1}{y}\right) {\text d}y +\int_{1/g_2}^{1/g_1}\left( \frac{1}{g_1}-y\right) ^{\beta-1}\prod\left( f_2,\frac{1}{y}\right) {\text d}y\Bigg]. \end{align}
(18)
By adding inequalities (15)-(18), we have
\begin{align} \label{t2e8} \begin{split} &\frac{\Gamma(\alpha+1)}{4}\left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left[J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left( \frac{1}{f_1},\frac{2g_1g_2}{g_1+g_2}\right) +J^{\alpha}_{1/c_1-}(\prod\circ \Omega_{1})\left( \frac{1}{f_2},\frac{2g_1g_2}{g_1+g_2}\right) \right] \\ & \hspace{0.5cm}+\frac{\Gamma(\beta+1)}{4}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \left[J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{g_1}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{g_2}\right) \right] \\ &\leq \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{2} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \times \Bigg[J^{\alpha,\beta}_{f_1+,g_1+}(\prod\circ \Omega)\left( \frac{1}{f_2},\frac{1}{g_1}\right) +J^{\alpha,\beta}_{f_1+,g_2-}(\prod\circ \Omega)\left( \frac{1}{f_2},\frac{1}{g_1}\right) \\ &\hspace{0.5cm}+J^{\alpha,\beta}_{f_2-,g_1+}(\prod\circ \Omega)\left( \frac{1}{f_1},\frac{1}{g_2}\right) +J^{\alpha,\beta}_{f_2-,g_2-}(\prod\circ \Omega)\left( \frac{1}{f_1},\frac{1}{g_1}\right) \Bigg] \\ &\leq \frac{\Gamma(\alpha+1)}{4}\left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\Big[J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left( \frac{1}{f_1},g_2\right) +J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left( \frac{1}{f_1},g_1\right) \\ &\hspace{0.5cm}+J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left( \frac{1}{f_2},g_1\right) +J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left( \frac{1}{f_2},g_1\right)\Big] \\ &\hspace{0.5cm}+\frac{\Gamma(\beta+1)}{4}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\alpha}\Big[J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left( f_1,\frac{1}{g_2}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left( f_2,\frac{1}{g_2}\right) \\ &\hspace{0.5cm}+J^{\alpha}_{1/g_2+}(\prod\circ \Omega_{2})\left(f_1,\frac{1}{g_1}\right) +J^{\alpha}_{1/g_2+}(\prod\circ \Omega_{2})\left( f_2,\frac{1}{g_1}\right)\Big]. \end{split} \end{align}
(19)
This completes the second and third inequality of (12). Now again using (4), we have
\begin{align} \label{t2e9} &\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right) \leq \frac{\alpha}{2}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\Bigg[\int_{1/f_2}^{1/f-1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\prod\left( \frac{1}{x},\frac{2g_1g_2}{g_1+g_2}\right) {\text d}x \notag\\ &\hspace{0.5cm}+\int_{1/f_2}^{1/f_1}\left( x-\frac{1}{f_2}\right) ^{\beta-1}\prod\left( \frac{1}{x},\frac{2g_1g_2}{g_1+g_2}\right) {\text d}x\Bigg], \end{align}
(20)
\begin{align} \label{t2e10} &\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right) \leq \frac{\beta}{2}\left( \frac{g_1g_2}{g_2-g_1}\right) ^{\beta}\Bigg[\int_{1/g_2}^{1/g_1}\left( \frac{1}{g_1}-y\right) ^{\beta-1}\prod\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{y}\right) {\text d}y \notag\\ &\hspace{0.5cm}+\int_{1/g_2}^{1/g_1}\left( y-\frac{1}{g_2}\right) ^{\beta-1}\prod\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{y}\right) {\text d}y\Bigg]. \end{align}
(21)
Adding (20) and (21), we get
\begin{align} &\prod\left(\frac{2f_1f_2}{f_1+f_2},\frac{2g_1g_2}{g_1+g_2}\right)\notag\\ &\leq \frac{\Gamma(\alpha+1)}{4}\left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha} \left[J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left( \frac{1}{f_1},\frac{2g_1g_2}{g_1+g_2}\right) +J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left( \frac{1}{f_2},\frac{2g_1g_2}{g_1+g_2}\right) \right] \notag\\ &\hspace{0.5cm}+\frac{\Gamma(\beta+1)}{4}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \times\left[J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{g_1}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left( \frac{2f_1f_2}{f_1+f_2},\frac{1}{g_2}\right) \right]. \end{align}
(22)
This completes the first inequality of (12). For the last inequality by using (4), we have \begin{align*} \begin{split} &\frac{\alpha}{2}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\left[\int_{1/f_2}^{1/f_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\prod\left( \frac{1}{x},g_1\right) {\text d}x+\int_{1/f_2}^{1/f_1}\left( x-\frac{1}{f_2}\right) ^{\beta-1}\prod\left( \frac{1}{x},g_1\right) {\text d}x\right] \\ &\leq \frac{\prod(f_1,g_1)+\prod(f_2,g_1)}{2},\\ &\frac{\alpha}{2}\left( \frac{f_1f_2}{f_2-f_1}\right) ^{\alpha}\left[\int_{1/f_2}^{1/f_1}\left( \frac{1}{f_1}-x\right) ^{\alpha-1}\prod\left( \frac{1}{x},g_2\right) {\text d}x+\int_{1/f_2}^{1/f_1}\left( x-\frac{1}{f_2}\right) ^{\beta-1}\prod\left( \frac{1}{x},g_2\right) {\text d}x\right] \\ &\leq \frac{\prod(f_1,g_2)+\prod(f_2,g_2)}{2},\\ &\frac{\beta}{2}\left( \frac{g_1g_2}{g_2-g_1}\right) ^{\beta}\left[\int_{1/g_2}^{1/g_1}\left( \frac{1}{g_1}-y\right) ^{\beta-1}\prod\left( f_1,\frac{1}{y}\right) {\text d}y+\int_{1/g_2}^{1/g_1}\left( y-\frac{1}{g_2}\right) ^{\beta-1}\prod\left( f_1,\frac{1}{y}\right) {\text d}y\right] \\ &\leq \frac{\prod(f_1,g_1)+\prod(f_1,g_2)}{2},\\ &\frac{\beta}{2}\left( \frac{g_1g_2}{g_2-g_1}\right) ^{\beta}\left[\int_{1/g_2}^{1/g_1}\left( \frac{1}{g_1}-y\right) ^{\beta-1}\prod\left( f_2,\frac{1}{y}\right) {\text d}y+\int_{1/g_2}^{1/g_1}\left( y-\frac{1}{g_2}\right) ^{\beta-1}\prod\left( f_2,\frac{1}{y}\right) {\text d}y\right] \\ &\leq \frac{\prod(f_2,g_1)+\prod(f_2,g_2)}{2}. \end{split} \end{align*} Thus by adding all above inequalities, we get the last inequality of (12). Hence the proof is completed.

Lemma 1. Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) be a partial differentiable mapping on \(\Delta\) with \(0< f_1 < f_2\) and \(0< g_1< g_2\). If \(\partial^{2} \prod/\partial t_1\partial t_2\in L_1(\Delta)\), then following holds:

\begin{align} \label{L1e1} &\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4} +\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \notag\\ &\hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_2+,1/g_1+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ &\hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right)\Bigg]-\Xi \notag\\ &=\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4}\Bigg[\int_{0}^{1}\int_{0}^{1}\frac{r_1^{\alpha}r_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \notag\\ &\hspace{0.5cm}-\int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2{\text d}t_1 -\int_{0}^{1}\int_{0}^{1}\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1\notag\\&+\int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \Bigg], \end{align}
(23)
where
\begin{align} \Xi&=\frac{\Gamma(\alpha+1)}{4}\left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\bigg[J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left(\frac{1}{f_1},g_2 \right)+J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left(\frac{1}{f_2},g_2 \right)+J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left(\frac{1}{f_1},g_1 \right) \notag\\ &\hspace{0.5cm}+J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left(\frac{1}{f_2},g_1 \right) \bigg] +\frac{\Gamma(\beta+1)}{4}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta}\bigg[J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left(f_2,\frac{1}{g_1}\right) \notag\\ &\hspace{0.5cm}+J^{\beta}_{1/d_2+}(\prod\circ \Omega_{2})\left(f_1,\frac{1}{g_1}\right) +J^{\beta}_{1/d_1-}(\prod\circ \Omega_{2})\left(f_2,\frac{1}{g_2}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left(f_1,\frac{1}{g_2}\right) \bigg], \end{align}
(24)
and \(A_{t_1}=t_1f_1+(1-t_1)f_2\), \(B_{t_2}=t_2 c+(1-t_2)d\). Also, \(g(x,y)=(\frac{1}{x},\frac{1}{y})\), \(g_{1}(x,y)=(\frac{1}{x},y)\), and \(g_{2}(x,y)=(x,\frac{1}{y})\) for all \((x,y)\in \Delta\).

Proof. By integration by parts and using the change of variable \(x=\frac{A_{t_1}}{f_1f_2}\) and \(y=\frac{B_{t_2}}{g_1g_2}\), we find that

\begin{align} \label{L1e2} \begin{split} I_{1}&=\int_{0}^{1}\int_{0}^{1}\frac{t_1^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \\ &= \int_{0}^{1}\frac{t_2^{\beta}}{B_{t_2}^{2}}\Bigg\{\frac{t_1^{\alpha}}{f_1f_2(f_2-f_1)}\frac{\partial \prod}{\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right)\Bigg|_{0}^{1} - \frac{\alpha}{f_1f_2(f_2-f_1)}\int_{0}^{1} t_1^{\alpha-1}\frac{\partial \prod}{\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_1 \Bigg\}{\text d}t_2 \\ &=\frac{1}{f_1f_2(f_2-f_1)}\int_{0}^{1}\frac{t_2^{\beta}}{B_{t_2}^{2}}\frac{\partial \prod}{\partial t_2}\left(f_2,\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 - \frac{\alpha}{f_1f_2(f_2-f_1)}\int_{0}^{1}t_1^{\alpha-1}\left\lbrace \int_{0}^{1} \frac{t_2^{\beta}}{B_{t_2}^{2}}\frac{\partial \prod}{\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2\right\rbrace {\text d}t_1 \\ &=\frac{1}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\prod(f_2,g_2) -\frac{\beta}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\int_{0}^{1}t_2^{\beta-1}\prod\left(f_2,\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 \\ &\hspace{0.5cm}-\frac{\alpha}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\int_{0}^{1}t_1^{\alpha-1}\prod\left(\frac{f_1f_2}{A_{t_1}},d\right){\text d}t_1 \\ &\hspace{0.5cm}+\frac{\alpha\beta}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\int_{0}^{1}t_1^{\alpha-1}t_2^{\beta-1}\prod\left(\frac{f_1f_2}{A_{r_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 \\ &=\frac{1}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)} \times \bigg[\prod(f_2,g_2)-\Gamma(\beta+1)\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left(f_2,\frac{1}{g_1}\right) \\ &\hspace{0.5cm}-\Gamma(\alpha+1)\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left(\frac{1}{f_1},g_2 \right)+\Gamma(\alpha+1)\Gamma(\beta+1) \\ &\hspace{0.5cm}\times\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\alpha,\beta}_{1/f_2+,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right) \bigg]. \end{split} \end{align}
(25)
Similarly, we can have
\begin{align} \label{L1e3} I_{2}&=\int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2{\text d}t_1 \notag\\ &=\frac{1}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\bigg[-\prod(f_1,g_1) +\Gamma(\beta+1)\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left(f_1,\frac{1}{g_1}\right) \notag\\ &\hspace{0.5cm}+\Gamma(\alpha+1)\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left(\frac{1}{f_2},g_2 \right)-\Gamma(\alpha+1)\Gamma(\beta+1) \notag\\ &\hspace{0.5cm}\times\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\alpha,\beta}_{1/f_2+,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right) \bigg]. \end{align}
(26)
\begin{align*} I_{3}&=\int_{0}^{1}\int_{0}^{1}\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \end{align*} \begin{align} \label{L1e4} &=\frac{1}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\bigg[-\prod(f_2,g_1) +\Gamma(\beta+1)\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left(f_2,\frac{1}{g_2}\right) \notag\\ &\hspace{0.5cm}+\Gamma(\alpha+1)\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left(\frac{1}{f_1},g_1 \right)-\Gamma(\alpha+1)\Gamma(\beta+1) \notag\\ &\hspace{0.5cm}\times\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha}\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right) \bigg]. \end{align}
(27)
\begin{align} \label{L1e5} I_{4}&=\int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \notag\\ &=\frac{1}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\bigg[\prod(f_1,g_2) -\Gamma(\beta+1)\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left(f_1,\frac{1}{g_2}\right) \notag\\ &\hspace{0.5cm}-\Gamma(\alpha+1)\left( \frac{f_1f_2}{f_1-f_1}\right)^{\alpha}J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left(\frac{1}{f_2},g_1 \right)+\Gamma(\alpha+1)\Gamma(\beta+1) \notag\\ &\hspace{0.5cm}\times\left( \frac{f_1f_2}{f_1-f_1}\right)^{\alpha}\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta}J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right) \bigg]. \end{align}
(28)
Thus from equalities (25)-(28), we have
\begin{align} \label{L1e6} &I_{1}-I_{2}-I_{3}+I_{4} =\frac{\prod(f_2,g_2)+\prod(f_1,g_1)+\prod(f_2,g_1)+\prod(f_1,g_2)}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)} -\frac{\Gamma(\beta+1)}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\left( \frac{g_1g_2}{g_2-g_1}\right)^{\beta} \notag\\ &\hspace{0.5cm}\times\bigg[J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left(f_2,\frac{1}{g_1}\right) +J^{\beta}_{1/g_2+}(\prod\circ \Omega_{2})\left(f_1,\frac{1}{g_1}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\left(f_2,\frac{1}{g_2}\right) +J^{\beta}_{1/g_1-}(\prod\circ \Omega_{2})\notag\\ &\hspace{0.5cm}\times\left(f_1,\frac{1}{g_2}\right) \bigg] -\frac{\Gamma(\alpha+1)}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}\left( \frac{f_1f_2}{f_2-f_1}\right)^{\alpha} \bigg[J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left(\frac{1}{f_1},g_2 \right)+J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1}) \notag\\ &\hspace{0.5cm}\times\left(\frac{1}{f_2},g_2 \right)+J^{\alpha}_{1/f_2+}(\prod\circ \Omega_{1})\left(\frac{1}{f_1},g_1 \right)+J^{\alpha}_{1/f_1-}(\prod\circ \Omega_{1})\left(\frac{1}{f_2},g_1 \right)\bigg] +\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)} \notag\\ &\hspace{0.5cm}\times\bigg[J^{\alpha,\beta}_{1/f_2+,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ &\hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right) \bigg]. \end{align}
(29)
Multiplying both sides of equality (29) by \(\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4}\), we get the desired equality (23).

Theorem 13. Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) be a partial differentiable mapping on \(\Delta\) with \(0< f_1< f_2\) and \(0< g_1< g_2\). If \(\left| \partial^{2} \prod/\partial t_1\partial t_2\right| \) is a harmonically convex on the co-ordinates on \(\Delta\), then following holds:

\begin{align} \label{tt1e1} & \Bigg|\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4} +\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \notag\\ & \hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_2+,1/g_1+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ & \hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right)\Bigg]-\Xi\Bigg| \notag\\ & \leq\frac{f_1g_1(f_2-f_1)(g_2-g_1)}{4f_2g_2(\alpha+1)(\beta+1)(\alpha+2)(\beta+2)}\Bigg[\vartheta_{1} \left| \frac{\partial^{2} \prod}{\partial t_1\partial t_2} (f_1,g_1)\right|+\vartheta_{2}\left| \frac{\partial^{2} \prod}{\partial t_1\partial t_2} (f_1,g_2)\right|\notag\\ & \hspace{0.5cm}+\vartheta_{3}\left| \frac{\partial^{2} \prod}{\partial t_1\partial t_2} (f_2,g_1)\right|+\vartheta_{4}\left| \frac{\partial^{2} \prod}{\partial t_1\partial t_2} (f_2,g_2)\right| \Bigg] , \end{align}
(30)
where
\begin{align} \vartheta_{1}& =(\alpha+1)(\beta+1)\ _{2}F_{1}\left( 2,\alpha+2;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+2;\beta+3;1-\frac{g_1}{g_2}\right) \notag\\ & \hspace{0.5cm}+(\beta+1)\ _{2}F_{1}\left( 2,2;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+2;\beta+3;1-\frac{g_1}{g_2}\right) +\ _{2}F_{1}\left( 2,\alpha+2;\alpha+3;1-\frac{f_1}{f_2}\right) \notag\\ & \hspace{0.5cm}\times \ _{2}F_{1}\left( 2,2;\beta+3;1-\frac{g_1}{g_2}\right) +\ _{2}F_{1}\left( 2,2;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,2;\beta+3;1-\frac{g_1}{g_2}\right),\\ \end{align}
(31)
\begin{align} \vartheta_{2}&=(\beta+1)\ _{2}F_{1}\left( 2,\alpha+1;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+2;\beta+3;1-\frac{g_1}{g_2}\right) \notag\\ & \hspace{0.5cm}+(\alpha+1)(\beta+1)\ _{2}F_{1}\left( 2,1;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+2;\beta+3;1-\frac{g_1}{g_2}\right) +\ _{2}F_{1}\left( 2,\alpha+1;\alpha+3;1-\frac{f_1}{f_2}\right)\notag\\ & \hspace{0.5cm}\times \ _{2}F_{1}\left( 2,2;\beta+3;1-\frac{g_1}{g_2}\right) +\ _{2}F_{1}\left( 2,1;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,2;\beta+3;1-\frac{g_1}{g_2}\right),\\ \end{align}
(32)
\begin{align} \vartheta_{3}& =(\alpha+1)\ _{2}F_{1}\left( 2,\alpha+2;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+1;\beta+3;1-\frac{g_1}{g_2}\right) \notag\\ & \hspace{0.5cm}+(\beta+1)\ _{2}F_{1}\left( 2,2;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+1;\beta+3;1-\frac{g_1}{g_2}\right) +(\beta+1)\ _{2}F_{1}\left( 2,\alpha+2;\alpha+3;1-\frac{f_1}{f_2}\right)\notag\\ & \hspace{0.5cm}\times \ _{2}F_{1}\left( 2,1;\beta+3;1-\frac{g_1}{g_2}\right) +\ _{2}F_{1}\left( 2,2;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,1;\beta+3;1-\frac{g_1}{g_2}\right),\\ \end{align}
(33)
\begin{align} \vartheta_{4}&=\ _{2}F_{1}\left( 2,\alpha+1;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+1;\beta+3;1-\frac{g_1}{g_2}\right) \notag\\ & \hspace{0.5cm}+(\alpha+1)\ _{2}F_{1}\left( 2,1;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,\beta+1;\beta+3;1-\frac{g_1}{g_2}\right) +(\beta+1)\ _{2}F_{1}\left( 2,\alpha+1;\alpha+3;1-\frac{f_1}{f_2}\right)\notag\\ & \hspace{0.5cm}\times \ _{2}F_{1}\left( 2,1;\beta+3;1-\frac{g_1}{g_2}\right) +(\alpha+1)(\beta+1)\ _{2}F_{1}\left( 2,1;\alpha+3;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2,1;\beta+3;1-\frac{g_1}{g_2}\right) . \end{align}
(34)

Proof. Using Lemma 1, we have

\begin{align} \label{tt1e2} & \frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4}+\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \notag\\ & \hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_2+,1/g_1+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ & \hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right)\Bigg]-\Xi \notag\\ & =\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4}\Bigg[\int_{0}^{1}\int_{0}^{1}\frac{r_1^{\alpha}r_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \notag\\ & \hspace{0.5cm}+\int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2{\text d}t_1 +\int_{0}^{1}\int_{0}^{1}\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \notag\\ & \hspace{0.5cm}+\int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\frac{\partial^{2}\prod}{\partial t_1\partial t_2}\left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right){\text d}t_2 {\text d}t_1 \Bigg]. \end{align}
(35)
Now using co-ordinated harmonically convexity of \(\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2}\right| \), we get
\begin{align} \label{tt1e3} & \Bigg|\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4} +\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta}\notag\\& \hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_2+,1/g_1+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ & \hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right)\Bigg]-\Xi\Bigg| \notag\\ & \leq\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4}\Bigg[\int_{0}^{1}\int_{0}^{1}\Bigg\lbrace \frac{t_1^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}} \notag\\ & \hspace{0.5cm}+\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\Bigg\rbrace \Bigg\lbrace t_1t_2\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_1)\right|+(1-t_1)t_2\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_1)\right| \notag\\ & \hspace{0.5cm}+t_1(1-t_2)\left|\frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_2)\right| +(1-t_1)(1-t_2)\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_2)\right|\Bigg\rbrace {\text d}t_2 {\text d}t_1\Bigg] \notag\\ & =\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4} \Bigg[\int_{0}^{1}\int_{0}^{1}t_1t_2\left\lbrace \frac{t_1^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\right\rbrace\notag\\ & \hspace{0.5cm}\times \left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_1)\right|{\text d}t_1{\text d}t_2 +\int_{0}^{1}\int_{0}^{1}(1-t_1)t_2\left\lbrace \frac{t_1^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\right\rbrace\notag\\ & \hspace{0.5cm}\times \left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_1)\right|{\text d}t_1{\text d}t_2 +\int_{0}^{1}\int_{0}^{1}t_1(1-t_2)\left\lbrace \frac{t_1^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\right\rbrace \notag\\& \hspace{0.5cm}\times\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_2)\right|{\text d}t_1{\text d}t_2+\int_{0}^{1}\int_{0}^{1}(1-t_1)(1-t_2) \notag\\ & \hspace{0.5cm}\times\Bigg\lbrace \frac{t_1^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{(1-t_1)^{\alpha}t_2^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}+\frac{t_1^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}} +\frac{(1-t_1)^{\alpha}(1-t_2)^{\beta}}{A_{t_1}^{2}B_{t_2}^{2}}\Bigg\rbrace \left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_2)\right|{\text d}t_1{\text d}t_2 \Bigg]. \end{align}
(36)
After calculating above integrations, we get the required result.

Theorem 14. Let \(\prod:\Delta=[f_1,f_2]\times [g_1,g_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) be a partial differentiable mapping on \(\Delta\) with \(0< f_1< f_2\) and \(0< g_1< g_2\). If \(\left| \partial^{2} \prod/\partial t_1\partial t_2\right|^{q} \), \(q>1\), is a harmonically convex on the co-ordinates on \(\Delta\), then following holds:

\begin{align} \label{tt2e1} &\Bigg|\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4} +\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \notag\\ &\hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_2+,1/g_1+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ &\hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right)\Bigg]-\Xi\Bigg| \notag\\ &\leq\frac{f_1g_1(f_2-f_1)(g_2-g_1)}{4f_2g_2[(p\alpha+1)(p\beta+1)]^{1/p}}\left[\psi_{1}^{1/p}+\psi_{2}^{1/p}+\psi_{3}^{1/p}+\psi_{4}^{1/p} \right] \notag\\ &\hspace{0.5cm}\times\left(\frac{\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_1)\right|^{q}+\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_2)\right|^{q}+\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_1)\right|^{q}+ \left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_2)\right|^{q}}{4} \right)^{1/q}, \end{align}
(37)
where
\begin{equation} \psi_{1}=\ _{2}F_{1}\left( 2p,p\alpha+1;p\alpha+2;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2p,p\beta+1;p\beta+2;1-\frac{g_1}{g_2}\right), \end{equation}
(38)
\begin{align} &\psi_{2}=\ _{2}F_{1}\left( 2p,1;p\alpha+2;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2p,p\beta+1;p\beta+2;1-\frac{g_1}{g_2}\right), \\ \end{align}
(39)
\begin{align} &\psi_{3}=\ _{2}F_{1}\left( 2p,p\alpha+1;p\alpha+2;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2p,1;p\beta+2;1-\frac{g_1}{g_2}\right), \\ \end{align}
(40)
\begin{align} &\psi_{4}=\ _{2}F_{1}\left( 2p,1;p\alpha+2;1-\frac{f_1}{f_2}\right) \ _{2}F_{1}\left( 2p,1;p\beta+2;1-\frac{g_1}{g_2}\right). \end{align}
(41)

Proof. Applying the Holder's inequality for double integrals in (35), we get

\begin{align} \label{tt2e2} &\Bigg|\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4} +\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \notag\\ &\hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_2+,1/g_1+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ &\hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right)\Bigg]-\Xi\Bigg| \notag\\ &\leq\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4}\Bigg[\left( \int_{0}^{1}\int_{0}^{1}\frac{t_1^{p\alpha}t_2^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} +\left( \int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{p\alpha}t_2^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} \notag\\ &\hspace{0.5cm}+\left( \int_{0}^{1}\int_{0}^{1}\frac{t_1^{p\alpha}(1-t_2)^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} +\left( \int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{p\alpha}(1-t_2)^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} \Bigg] \notag\\ &\hspace{0.5cm}\times\left(\int_{0}^{1}\int_{0}^{1}\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} \left(\frac{f_1f_2}{A_{t_1}},\frac{g_1g_2}{B_{t_2}}\right)\right|^{q} dt_1dt_2\right)^{1/q}. \end{align}
(42)
Using co-ordinated harmonically convexity of \(\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2}\right|^{q} \), we get
\begin{align*}\label{tt2e3} &\Bigg|\frac{\prod(f_1,g_1)+\prod(f_1,g_2)+\prod(f_2,g_1)+\prod(f_2,g_2)}{4}\hspace{0.5cm}+\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4} \left(\frac{f_1f_2}{f_2-f_1} \right)^{\alpha}\left(\frac{g_1g_2}{g_2-g_1} \right)^{\beta} \notag\\ &\hspace{0.5cm}\times\Bigg[J^{\alpha,\beta}_{1/f_2+,1/g_1+}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_1} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_2+}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_1} \right) \notag\\ &\hspace{0.5cm}+J^{\alpha,\beta}_{1/f_2+,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_1},\frac{1}{g_2} \right)+J^{\alpha,\beta}_{1/f_1-,1/g_1-}(\prod\circ \Omega)\left(\frac{1}{f_2},\frac{1}{g_2} \right)\Bigg]-\Xi\Bigg| \notag\\ &\leq\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4}\Bigg[\left( \int_{0}^{1}\int_{0}^{1}\frac{t_1^{p\alpha}t_2^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} +\left( \int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{p\alpha}t_2^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} \notag\\ &\hspace{0.5cm}+\left( \int_{0}^{1}\int_{0}^{1}\frac{t_1^{p\alpha}(1-t_2)^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} +\left( \int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{p\alpha}(1-t_2)^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} \Bigg] \notag\\ &\hspace{0.5cm}\times\Bigg(\int_{0}^{1}\int_{0}^{1} \Bigg\{ t_1t_2\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,f_2)\right|^{q}+(1-t_1)t_2\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_1)\right|^{q} \notag\\ &\hspace{0.5cm}+t_1(1-t_2)\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_2)\right|^{q}+(1-t_1)(1-t_2)\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_2)\right|^{q} \Bigg\}dt_2 dt_1\Bigg)^{1/q} \notag\\ &=\frac{f_1f_2g_1g_2(f_2-f_1)(g_2-g_1)}{4}\Bigg[\left( \int_{0}^{1}\int_{0}^{1}\frac{t_1^{p\alpha}t_2^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} +\left( \int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{p\alpha}t_2^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} \notag \end{align*} \begin{align} &\hspace{0.5cm}+\left( \int_{0}^{1}\int_{0}^{1}\frac{t_1^{p\alpha}(1-t_2)^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} +\left( \int_{0}^{1}\int_{0}^{1}\frac{(1-t_1)^{p\alpha}(1-t_2)^{p\beta}}{A_{t_1}^{2p}B_{t_2}^{2p}}dt_2 dt_1\right)^{1/p} \Bigg] \notag\\ &\hspace{0.5cm}\times\left(\frac{\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_1)\right|^{q}+\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_1,g_2)\right|^{q}+\left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_1)\right|^{q}+ \left| \frac{\partial^{2}\prod}{\partial t_1\partial t_2} (f_2,g_2)\right|^{q}}{4} \right)^{1/q} .\end{align}
(43)
By calculating all integrals, we get the required result (37).

3. Conclusion

In Theorem 11 and 12, we have proved some new Hermite-Hadamard type inequalities for co-ordinated harmonically convex on a rectangle via Riemann-Liouville fractional integrals. In Lemma 1, we have proved a fractional integral identity and then with the help of this Lemma 1 we proved some fractional Hermite-Hadamard type inequalities on the co-ordinates.

Acknowledgments

The present investigation is supported by National University of Science and Technology(NUST), Islamabad, Pakistan.

Authors Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of interest

The authors declare no conflict of interest.

References

  1. Hadamard, J. (1893). Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann. Journal de Mathématiques Pures et Appliquées, 58, 171-216. [Google Scholor]
  2. Mehreen, N., & Anwar, M. (2020). Hermite-Hadamard type inequalities via exponentially \((p, h)\)-convex functions. IEEE Access, 8, 37589-37595. [Google Scholor]
  3. Mehreen, N., & Anwar, M. (2020). Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for \(p\)-convex functions via conformable fractional integrals. Journal of Inequalities and Applications, 2020, Article No. 107. [Google Scholor]
  4. Mehreen, N., & Anwar, M. (2019). Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for \(p\)-convex functions via new fractional conformable integral operators. Journal of Mathematics and Computer Science, 19(04), 230-240. [Google Scholor]
  5. Mehreen, N., & Anwar, M. (2019). Hermite-Hadamard type inequalities for exponentially \(p\)-convex functions and exponentially \(s\)-convex functions in the second sense with applications. Journal of Inequalities and Applications, 2019, Article No. 92. [Google Scholor]
  6. Mehreen, N., & Anwar, M. (2018). Integral inequalities for some convex functions via generalized fractional integrals. Journal of inequalities and applications, 2018, Article No. 208. [Google Scholor]
  7. Mehreen, N., & Anwar, M. (2019). Some inequalities via \(\phi\)-Riemann–Liouville fractional integrals. AIMS Mathematics, 4(5), 1403-1415.[Google Scholor]
  8. Mehreen, N., & Anwar, M. (2020). On some Hermite-Hadamard type inequalities for tgs \( tgs \)-convex functions via generalized fractional integrals. Advances in Difference Equations, 2020, Article No. 6. [Google Scholor]
  9. Noor, M. A., Noor, K. I., Iftikhar, S., & Ionescu, C. (2017). Hermite-Hadamard inequalities for co-ordinated harmonic convex functions. University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, 79, 25-34. [Google Scholor]
  10. Dragomir, S. S. (2001). On the Hadamard's inequlality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese Journal of Mathematics, 5(4) 775-788. [Google Scholor]
  11. Sarikaya, M. Z. (2014). On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms and Special Functions, 25(2), 134-147. [Google Scholor]
  12. Noor, M. A., Noor, K. I., & Awan, M. U. (2015). Integral inequalities for coordinated harmonically convex functions. Complex Variables and Elliptic Equations, 60(6), 776-786. [Google Scholor]
  13. Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations (Vol. 204). elsevier. [Google Scholor]
  14. Iscan, I., & Wu, S. (2014). Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Applied Mathematics and Computation, 238, 237-244. [Google Scholor]