Engineering and Applied Science Letters (EASL) (2617-9709 Online, 2617-9695 Print) is an international and fully open-access journal from the publishers of Ptolemy Research Press. We publish scientifically valid primary research from all areas of the Engineering and Applied Sciences. We publish one volume containing four issues in March, June, September and December each year. The accepted papers will be published online immediately in the currently running issue.
In this paper we introduce an approach to increase density of field-effect heterotransistors in the framework of the three-stage differential amplifier. In the framework of the approach we consider manufacturing the amplifier in heterostructure with specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that dopant and radiation defects should by annealed framework optimized scheme. We also consider an approach to decrease value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport in heterostructures during manufacturing of integrated circuits with account mismatch-induced stress.
Muga silk is the most important composite material used in textile manufacturing in India. Muga silk is derived from the Muga silkworms, namely Antheraea assamensis Helfer. The golden yellow silk yarn is the fanciest because it has strange properties like being able to handle different textures well, being bright, and lasting a long time. Fibrin (a fibrous protein) and sericin (a globular protein) are the two most important protein units that make up silk. To make silk usable in the textile business, sericin, a gum, has to be cleaned off the surface of the silk. Generally, surface active agents are used in the extraction of sericin from silk material. The present research describes a comparison between the degumming activity of a natural surfactant saponin isolated from Sapindus laurifolia and Sapindus laurifolia-\(Na_{2}CO_{3}\) mixed system. The effect of the salt \(Na_{2}CO_{3}\) on the degumming ability of Sapindus laurifolia is systematically studied and reported. The surface morphology of the raw and degummed silk fibers is compared using scanning electron microscope.
Gas Tungsten Arc welding (GTAW) widely uses for many welding applications, especially for good quality welds in fabrication, manufacturing, and construction industries. Perfection level exhibits by the weld are associated with the entire volume of the weld, its profile, surface appearance, and microstructure and show the quality of that weld. Several controllable process parameters may affect the quality of weld in terms of weld shape, bead, imperfections, and desire mechanical/chemical properties. Therefore effect of some important parameters like current, travel speed, and gas flow rate on the final weld structure and its quality for SS TP304L material are studied through different experiments and analyses by using a design of experiment-based advanced statistical tools. Joints weld by using several levels of these parameters and then weld quality of these joints analyze in terms of ultimate tensile strength, and hardness. The optimization results of different statistical techniques compare to find the accuracy of this study. Moreover, the microstructure of final weldment welded based on optimal results is also analyzed. Therefore this study finds out the best welding conditions for the quality weld after optimizing these process parameters.
The optimal selection of a site for cement plant development is a multifaceted decision-making process that demands careful consideration of environmental, economic, and social dimensions. This research delves into the utilization of Circular Intuitionistic Fuzzy Soft Sets (CIFSS) as an advanced mathematical framework to enhance the precision and reliability of sustainable decision-making in cement plant site selection. The CIFSS approach adeptly manages the inherent uncertainties and ambiguities associated with evaluating potential locations, offering a comprehensive methodology for assessing various criteria. By embedding CIFSS within the context of sustainable development, this technique provides decision-makers with a robust and adaptable tool for identifying the most appropriate site, thereby ensuring long-term viability and minimizing environmental impacts. The results underscore the effectiveness of CIFSS in facilitating complex, multi-criteria decision-making in industrial site selection, underscoring its broader applicability in sustainable infrastructure planning.
This research investigates the influence of the Cattaneo-Christov double diffusive flow of ferromagnetic hybrid nanofluids, taking into account heterogeneous-homogeneous chemical reactions, heat radiative flux, and the Soret-Dufour effect. The mathematical modeling of the system of equations results in the formulation of partial differential equations (PDEs). These PDEs were subsequently transformed into total differential equations (ODEs) via the application of similarity transformation. The resultant modified ODEs were addressed utilizing an innovative approach known as the spectral relaxation method (SRM). This methodology was employed to solve the system of ODEs in an iterative manner, following the Gauss-Seidel procedure. The findings of this investigation indicate that the heterogeneous-homogeneous chemical reaction significantly influences the fluid concentration, leading to a reduction in the concentration profile. An elevated level of thermal radiation was found to enhance both the fluid temperature and the velocity contour. Conversely, an increase in the magnetic field strength was noted to diminish the velocity contour. The current analysis was compared with previous studies and was found to exhibit a strong correlation.
In this paper, by using a new identity we establish some trapezoidal type inequalities for functions whose modulus of the first derivatives are \( \left( s,m\right)\)-preinvex via Caputo fractional derivatives.
This review provides a comprehensive overview of the synthesis process of nanoscale materials and highlights key characterization methods used for nanomaterials and biomaterials. It emphasizes the importance of effective techniques for investigating materials at the nanoscale, as these are too small for the human eye to detect. The review also explores various approaches to producing nanoscale materials and offers insights into the application, development, advantages, and limitations of different experimental methods for nanoparticle characterization. A particular focus is placed on advanced characterization techniques and their role in data interpretation, aiming to guide novice researchers in the field of nanoscience and nanotechnology.
We consider non oscillatory functions and prove an everywhere Fourier Inversion Theorem for functions of very moderate decrease. The proofs rely on some ideas in nonstandard analysis.
To solve the approximate analytic solutions of the quadratic Riccati differential equations, this study introduces a hybrid method that combines an accelerated variant of the Adomian decomposition method (AADM) proposed by I. El-Kalla with the Ramadan Group transform (RGT). This hybrid technique produces accurate and dependable results, outperforming the regular Adomian decomposition method (RADM) and the Newton- Raphson version of Adomian polynomials in terms of accuracy. Three examples are provided here to demonstrate good accuracy and fast convergence when compared to the exact solution and other recent analytical methods using Shifted Chebyshev polynomials, Variation of Parameters Method (VPM), Bezier polynomials, homotopy analysis method (HAM), and Newton – Raphson based modified Laplace Adomian decomposition method.
The performance of an antireflection coating entirely depends on the proportion of light energy transmitted or reflected by the coating material. To enhance the transmittance of an antireflection coating, evaluation of the amount of the light energy transmitted to generate charge carriers is very critical. Thus, in this paper, we demonstrate the effect of sputtering power and gas flow rate on the optical transmittance of aluminium oxide (Al\(_{2}\)O\(_{3}\)) and copper-doped zinc sulphide (ZnS:Cu) antireflection nanostructures. To this end, radiofrequency sputtering was used for the deposition of ZnS:Cu, using the ZnS:Cu target (94/6.0%) using argon (99.9% pure), and direct current sputtering was used for the deposition of Al\(_{2}\)O\(_{3}\) using the aluminium target (99.99% purity) and oxygen (99.9% pure). The gas flow rates of 40 to 100 sccm were used. The sputtering power values of 70 W to 140 W were used at a low process pressure of \(6.5 \times 10^{-3}\). The transmittance was observed to decrease with an increase in sputter power and deposition time. However, the transmittance of single-layer nanofilms was lower than that of the double-layer nanostructures. For photovoltaic applications, the Al\(_{2}\)O\(_{3}\)/ZnS:Cu(112.1 nm) nanostructure exhibited the highest transmittance of 96.9% at \(\lambda=780\) nm. The reflectance of the nanostructures increased with an increase in coating time and sputtering power, with the lowest value of 3.03% recorded at 360 nm. The nanostructures are crystalline, smooth, and dense but the crystallite sizes decreased from 0.02508 to 0.02071 \(\text{\AA}\) with an increase in gas flow rate. This decrease in crystallinity was due to the reduced adatom migration on the substrate. The optimal gas flow rate was 100 sccm, in which the Al\(_{2}\)O\(_{3}\)/ZnS:Cu(117 nm) had the highest transmittance of 97.7% at \(\lambda=741\) nm. The results demonstrate the potential use of Al\(_{2}\)O\(_{3}\)/ZnS:Cu nanostructures as antireflection materials for photovoltaic solar cells.