This short paper introduces the notions of parametric equivalence, isomorphism and uniqueness in graphs. Results for paths, cycles and certain categories (or types) of trees with regards to minimum confluence sets are presented.
Concepts, notation and graph parameters without formal definitions can be clarified in [1,2,3]. Unless stated otherwise, graphs will be finite, undirected and connected simple graphs. A shortest path having end vertices \(u\) and \(v\) is denoted by \(u-v_{(in~G)}\). If \(d_G(u,v)\geq 2\) then a vertex \(w\) on \(u-v_{(in~G)}\), \(w\neq u\), \(w\neq v\) is called an internal vertex on \(u-v_{(in~G)}\). When the context is clear the notation such as \(d_G(u,v)\), \(deg_G(v)\) can be abbreviated to \(d(u,v)\), \(deg(v)\) and so on.
Numerous graph or element parameters have been studied over years. These parameters can be categorized into two main groups. These are (i) graph structural properties such as, vertex degree, open and closed neighborhoods, graph diameter, connectivity, independence, domination and so on and (ii) derivative parameters stemming from a variety of vertex and/or edge labeling regimes or measure conditions. The latter is the study of the existence of vertex and/or edge subsets which establish graphical compliance with the definition of the stated labeling regime or measure condition.
Let \(\rho\) denote some minimum or maximum graph parameter related to subsets \(V(G)\) of graph \(G\). A minimum dominating set \(X\subset V(G)\) (therefore \(\rho=\gamma(G)=|X|\)) serves as an example. Let \(X\), \(Y\) be distinct subsets of \(V(G)\) which satisfy \(\rho\). Then \(X\) and \(Y\) is said to be parametric equivalent or \(\rho\)-equivalent denoted by, \(X\equiv_\rho Y\). Furthermore, if \(X\equiv_\rho Y\) and the induced graphs \(\langle V(G)\backslash X\rangle\), \(\langle V(G)\backslash Y\rangle\) are isomorphic then \(X\) and \(Y\) are said to be parametric isomorphic. This isomorphic relation is denoted by \(X \cong_\rho Y\). Let all the vertex subsets of graph \(G\) which satisfy \(\rho\) be \(X_1, X_2, X_3,\dots, X_k\). If \(X_1 \cong_\rho X_2 \cong_\rho X_3 \cong_\rho \cdots \cong_\rho X_k\) then \(X_i\), \(1\leq i \leq k\) are said to be parametric unique or \(\rho\)-unique. The graph \(G\) is said to have a parametric unique or \(\rho\)-unique solution (or parametric unique \(\rho\)-set). An interesting interpretation is that if \(G\) has a unique (exactly one) \(\rho\)-set \(X\), then \(X\) is a parametric unique \(\rho\)-set. The converse does not necessarily hold true. The notion of uniqueness has now been generalized for graph parameter studies.
The motivation is that in many real life application the choice between \(\rho\)-sets are often subject to additional conditions such as centrality, accessibility, domination, conflict with regards to transportation or data flow or clustering within social networks.
Theorem 1. [4] For a path \(P_n\), \(n\geq 1\), \begin{equation*} \zeta(P_n) = \begin{cases} 0, & \mbox{if \(n= 1\) or \(2\)};\\ \lfloor \frac{n}{3}\rfloor, & \mbox{if \(n \geq 3\)}.\\ \end{cases} \end{equation*}
Theorem 2. [4] For a cycle \(C_n\), \(n\geq 3\), \begin{equation*} \zeta(C_n) = \begin{cases} 0, & \mbox{if \(n=3\)};\\ 1, & \mbox{if \(n=4\)};\\ \lceil\frac{n}{3}\rceil, & \mbox{if \(n \geq 5\)}.\\ \end{cases} \end{equation*} The path \(P_3= v_1v_2v_3\) has confluence sets \(X_1=\{v_1\}\), \(X_2=\{v_2\}\), \(X_3=\{v_3\}\). Hence, \(X_1\equiv_\zeta X_2 \equiv_\zeta X_3\). Clearly, \(X_1 \cong_\zeta X_3\) because \(\langle (V(P_3)\backslash \{v_1\}\rangle \cong \langle V(P_3)\backslash \{v_3\}\rangle\). However, since \(X_1 \ncong_\zeta X_2 \ncong_\zeta X_3\) the path \(P_3\) does not have a parametric unique \(\zeta\)-set. Similar reasoning shows that path \(P_5 =v_1v_2v_3v_4v_5\) has a parametric unique \(\zeta\)-set. From [5] it is known that a path \(P_n\), \(n=5+3i\), \(i=0,1,2,\dots\) has a unique \(\zeta\)-set. Therefore, it has a parametric unique \(\zeta\)-set.
Proposition 1. A path \(P_n\) has a parametric unique \(\zeta\)-set if and only if \(n=1,2\) or \(n=4+3i\) or \(n=5+3i\), \(i=0,1,2,\dots\).
Proof. Part 1. The cases \(n=1,2\) follow from the fact that both \(P_1\), \(P_2\) are complete. Thus \(\mathcal{C}_{P_1}= \mathcal{C}_{P_2}=\emptyset\) and is respectively, unique. Therefore parametric unique.
For \(n=4+3i\), \(i=0,1,2,\dots\), the result follows from the fact that, without loss of generality, the \(\zeta\)-sets \(X_1=\{v_3, v_6,v_9,\dots,v_{n-1}\}\), \(X_2=\{v_3, v_6,v_9,\dots,v_{n-4},v_{n-2}\}\), \(X_3=\{v_3, v_6,v_9,\dots v_{n-7},v_{n-5},v_{n-2}\}\) and so on through back stepping until \(X_{\zeta(P_n)+1}=\{v_2, v_5,v_8,\dots v_{n-8},v_{n-5},v_{n-2}\}\), are all parametric isomorphic.
For \(n=5+3i\), \(i=0,1,2,\dots\), the result follows from the fact that \(P_n\) has a unique \(\zeta\)-set [5].
Part 2. If \(P_n\) has a parametric unique \(\zeta\)-set we use elimination through induction to prove the converse. It is easy to verify that \(P_n\) could be \(P_1\) or \(P_2\). For more valid converse options it is easy to verify that \(P_n\) could be \(n=4+3i\), \(n=5+3i\), \(i=0,1,2,\dots\). It is easy to verify that \(P_3\) does not have a parametric unique \(\zeta\)-set. For \(P_6\), \(\zeta(P_6)=2\). Obviously and amongst others, the sets \(X_1=\{v_3,v_5\}\) and \(X_2=\{v_3,v_6\}\) are \(\zeta\)-sets. Since, \(X_1 \ncong_\zeta X_2\) the converse does not hold for \(P_6\). Through immediate induction it follows that the converse does not hold for \(P_{3i}\), \(i=2,\dots\). Since, \(\mathbb{N}\backslash \{x \in \mathbb{N}: x=3i, i=1,2,\dots\} = \{y \in \mathbb{N}: y= 4+3i\), \(i=0,1,2,\dots\}\cup \{y \in \mathbb{N}: y= 5+3i\), \(i=0,1,2,\dots\}\cup \{1,2\}\) the converse follows.Let a cycle \(C_n\), \(n\geq 3\) have vertex set \(V(C_n)=\{v_i: i=1,2,3,\dots,v_n\}\) and edge set \(E(C_n)=\{v_iv_{i+1}:1\leq i\leq n-1\}\cup \{v_1v_n\}\).
Proposition 2. A cycle \(C_n\) has a parametric unique \(\zeta\)-set if and only if \(n=3,4\) or \(n=5+3i\) or \(n=6+3i\), \(i=0,1,2,\dots\).
Proof. Part 1. The case \(n=3\) follows from the fact that \(C_3\) is complete. For \(n=4\) we have \(\{v_i\}\), \(1\leq i \leq 4\) a \(\zeta\)-set and \(\{v_i\}\cong_\zeta \{v_j\}\).
For \(n=5+3i\), \(i=0,1,2,\dots\), a valid minimum confluence set selection procedure is as follows. Let \(X_1=\{v_1,v_4,v_7,\dots,v_{n-1}\}\). It is easy to verify without loss of generality, that with \(v_1\) the initiation vertex the procedure yields a unique \(\zeta\)-set. Applying the procedure through consecutive modular counting for each \(v_i\), \(1\leq i\leq n\) yields unique sets \(X_i\) in respect of the initiation vertex \(v_i\). For each set \(X_i\) it follows that \[\langle V(C_n)\backslash X_i\rangle = \underbrace{P_2\cup P_2\cup\cdots \cup P_2}_{\lfloor \frac{n}{3}\rfloor~times} \cup P_1 = \lfloor\frac{n}{3}\rfloor P_2 \cup P_1.\] Hence, \(X_i\cong_\zeta X_j\) for all pairs of \(\zeta\)-sets. In fact the modular counting results in some identical \(\zeta\)-sets which need not be replicated. We conclude that cycles \(C_n\), \(n=5+3i\), \(i=0,1,2,\dots\) have parametric unique \(\zeta\)-sets.
For \(n=6+3i\), \(i=0,1,2,\dots\) the reasoning is similar.
Part 2. If \(C_n\) has a parametric unique \(\zeta\)-set we use elimination through induction to prove the converse. It is easy to verify that \(C_n\) could be \(C_3\) or \(C_4\). For more valid converse options it is easy to verify that \(C_n\) could be \(n=5+3i\), \(i=0,1,2,\dots\) or \(n=6+3i\), \(i=0,1,2,\dots\). For \(C_n\), \(n=7+3i\), \(i=0,1,2,\dots\) we note that \(C_7\) has at least the \(\zeta\)-sets, \(X_1=\{v_1,v_4,v_7\}\) and \(X_2=\{v_1,v_4, v_6\}\). Also, \(\langle V(C_7)\backslash X_1\rangle \ncong \langle V(C_7)\backslash X_2\rangle\) hence, \(X_1\ncong_\zeta X_2\). Therefore the converse does not hold for \(C_7\). Through immediate induction it follows that the converse does not hold for \(C_{(7+3i)}\), \(i=0,1,2,\dots\). Since, \(\mathbb{N}_{\geq 3}\backslash \{x \in \mathbb{N}: x=7 +3i\), \(i=0,1,2,\dots\} = \{y \in \mathbb{N}: y= 5+3i\), \(i=0,1,2,\dots\} \cup \{z \in \mathbb{N}: z= 6+3i\), \(i=0,1,2,\dots\} \cup \{3,4\}\) the converse follows.Corollary 1. For a cycle \(C_n\) which has a parametric unique \(\zeta\)-set and with regards to vertex labeling let \(t\) be the number of parametric isomorphic \(\zeta\)-sets which originates from \(v_i\in V(C_n)\). Then \(C_n\) has \(\kappa(C_n)=\frac{nt}{\zeta(C_n)}\) distinct parametric isomorphic \(\zeta\)-sets. This implies that
Proof. The claim \(\kappa(C_n)=\frac{nt}{\zeta(C_n)}\) is trivial.
Proposition 3. A \(\ell\)-star \(S_{\ell,n\star m}\), \(\ell \geq 2\), \(n,m\geq 2\) has a parametric unique \(\zeta\)-set if and only if \(P_{\ell-2}=v_2v_3v_4\cdots v_{\ell-1}\), has \(\ell-2=4+3i\) or \(\ell-2=5+3i\), \(i=0,1,2,\dots\).
Proof. If \(\ell=2\), then \(\ell-2=0\), thus \(P_{\ell-2}=\emptyset\). For both \(\ell=3,4\) the paths \(P_1\), \(P_2\) are complete. For \(\ell-2=4+3i\) or \(\ell-2=5+3i\), \(i=0,1,2,\dots\), the result is a direct consequence of the proof found in Proposition 1 and the fact that both \(\langle N_p[v_2]\rangle\), \(\langle N_p[v_{\ell-1}]\rangle\) are stars.
Proposition 4. A spider \(S^\ast_n\), \(n\geq 3\) has a parametric unique \(\zeta\)-set if and only if, either (a) each \(P_{m_i}\), \(1\leq i\leq n\) has a parametric \(\zeta\)-set or (b) each \(P_{m_i}\), \(m_i=3j\), \(j=1,2,3,\dots\). Furthermore,
Proof. It is known that a leaf need not be in a \(\zeta\)-set of any graph. See Lemma 8 in [5]. From the proof of Proposition 1 it follows that if a path has a parametric unique \(\zeta\)-set, an end-vertex cannot be in such set. Therefore \(v_0\) is in all \(\zeta\)-sets of \(S^\ast_n\) if each \(P_{m_i}\), \(1\leq i\leq n\) has a parametric \(\zeta\)-set. Hence, if all paths have a parametric unique \(\zeta\)-set then the spider has same. Hence, \(\zeta(S^\ast_n)=1+\sum\limits_{i=1}^{n}\zeta(P_{m_i})\).
If \(n\) copies of \(P_3\) are connected to \(v_0\) the \(\zeta\)-set is unique of order \(n\). Therefore the \(\zeta\)-set is parametric unique. Also \(v_0\) is not in the \(\zeta\)-set. However, \(P_3\) does not have a parametric unique \(\zeta\)-set. If some of the \(3\)-paths are substituted with paths of the form \(P_{m_i}\), \(m_i=3j\), \(j=2,3,\dots\), it follows easily through immediate induction that the \(\zeta\)-set is parametric unique and does not contain vertex \(v_0\). Hence, \(\zeta(S^\ast_n)=\sum\limits_{i=1}^{n}\zeta(P_{m_i})\), \(m_i=3j\), \(j=1,2,3,\dots\).
For paths \(P_{m_i}\), \(m_i=4+3j\), or \(m_i=5+3j\), \(j=0,1,2\dots\) the converse follows implicitly. For paths \(P_{m_i}\), \(m_i=3j\), \(j=1,2,3\dots\) the exclusion of \(v_0\) due to minimization results in a unique choice of a \(\zeta\)-set with regards to the paths.
Claim 1. For caterpillars \(C_{n_1\star n_2\star,\cdots \star n_k}\), \(n_i,k\geq 1\) a heuristic procedure will be described. This heuristic is adapted from the heuristic described for trees in [5].
Claim 2. For a lobster \(L_{T_1,T_2,T_3,\dots,T_\ell}\), \(T_i\in\{P_1,P_2,P_3, S_{1,n}\}\), \(\ell\geq 1\), a heuristic is described.
Proposition 5. A finite \((k,d)\)-regular tree \(T_{k,d}\), \(d\geq 3\), \(k\geq 1\) has a parametric unique \(\zeta\)-set and,
Proof. It follows easily that for \(k=0\) only \(v_0\) exists. For \(\ell \geq 1\), \(d \geq 3\) we have, level \(k=1 \Rightarrow d\) leafs, level \(k=2\Rightarrow d(d-1)\) leafs, \(\dots,\) level \(k=\ell \Rightarrow d(d-1)^{\ell-1}\) leafs.
Conjecture 1. Consider any \(\zeta\)-set \(\mathcal{C}\) of graph \(G\), \(\zeta(G)\geq 2\). If for all \(\zeta\)-sets \(\mathcal{C}’\) derived from \(\mathcal{C}\) such that \(\mathcal{C}\cap \mathcal{C}’\neq \emptyset\) we have that \(\mathcal{C} \cong_\zeta \mathcal{C}’\) then \(G\) has a parametric unique \(\zeta\)-set.
If the conjecture is proven to be valid it opens an avenue to develop an efficient algorithm to determine parametric uniqueness in a graph. The principles are; (a) determine a \(\zeta\)-set where-after, (b) find all derivative \(\zeta\)-sets by substituting say \(u\in \mathcal{C}(G)\) with \(v\in N_2(u)\) and verifying confluence as well as parametric isomorphism. If the condition of confluence and parametric isomorphism are affirmative then parametric uniqueness follows. If the next stronger conjecture holds then the efficiency of an algorithm can be improved significantly.
Conjecture 2. Consider any \(\zeta\)-set \(\mathcal{C}\) of graph \(G\), \(\zeta(G)\geq 2\). Let \(v\in \mathcal{C}\). If for all \(\zeta\)-sets \(\mathcal{C}’\) derived from \(\mathcal{C}\) such that \(v \in\mathcal{C}\cap \mathcal{C}’\), we have that \(\mathcal{C} \cong_\zeta \mathcal{C}’\) then \(G\) has a parametric unique \(\zeta\)-set.
Researching parametric uniqueness with regards to confluence remains open for a vast range of interesting graph families such as circulants, cycle related graphs such as, wheel graphs, helm graphs, sunlet graphs, sun graphs and so on. Other graph parametric sets such as dominating sets, independent sets and others can be studied in respect of parametric uniqueness.