Enhancement of heat and mass transfer heat over rotating plates in industrial processes is a major area of research recently due to several attempts to find cost-effective means. In this study, the flow of Williamson fluid is considered because of its ability to exhibit pseudo-plastic and shear-thinning properties. A theoretical analysis of the effect of Coriolis force and the angle inclination on the magnetohydrodynamic flow of Williamson fluid is considered. The flow is modelled by including Coriolis force and angle of inclination in the Navier-Stokes equation. By adopting a suitable similarity transformation, the system of governing partial differential equations is reduced to a system of ordinary differential equations which are solved using bvp4c solver in MATLAB. The simulations are depicted as graphs and it is found that velocity increases with increasing Coriolis force while it decreases as the magnetic field strength and inclination angle increases. Also, the local skin friction reduces as the rotation increases. Hence, to boost heat and mass transfer in the flow of fluid over a rotating inclined plate in a magnetic field, it is recommended that rotation should be increased and magnetic field strength should be reduced.
This study focused on line integral and its applications. The study was designed to show the areas where line integral is applicable and point out the role of line integral in solving practical problems. The study found out that space curves, and the concepts of scalar and vector fields are basic concepts to deal line integral. Also, the study found out that line integral is used to calculate mass, center of mass and moments of inertia of a wire, work done by a force on an object moving in a vector field, magnetic field around a conduct, voltage generated in a loop, length of a curve, area of a region bounded by a closed curve, and volume of a solid formed by rotating a closed curve about the \(x-\)axis.
In this paper, by using \(t\)-norms, we introduce fuzzy subalgebras and fuzzy \(d\)-ideals of \(d\)-algebra and investigate some properties of them. Moreover, we define the cartesian product and intersection of fuzzy subalgebras and fuzzy \(d\)-ideals of \(d\)-algebra. Finally, by homomorphisms of \(d\)-algebras, we consider the image and pre-image of them.
Water scarcity comes with its attendant socio-economic effects. This paper evaluated the potential water supply and sanitation facilities in Dagbolu-Nigeria to boost economy. Facilities survey was carried out for the study including information from water, sanitation and health institutions across the State. GIS approach was used to depict the groundwater recharge potential of the study area.15.3% of the populace have access to potable water while 32.5% have access to good sanitation. Water-related diseases in the area are preponderantly malaria (81.2%), diarrhoea (8.41%), typhoid fever (3.40%), dysentery (3.22%) and cholera (2.76%). Annual loss due to unproductive downtime sickness in the Nigeria is estimated to be N 414,763,442,768:00. Improve management through effective policies of water resources leading to good water supply, hygiene and sanitation will enhance development or our underdeveloped countries.
Wastewater discharged by dye manufacturing and textile finishing industries has become an environmental concern. The textile dyeing plants utilize a variety of synthetic dyes and dump massive amounts of dyeing effluent because the uptake of these dyes by fabrics is very low. The plant’s photosynthetic activity is significantly harmed by this highly colored textile dyeing effluent, impairs aquatic life because of its low light penetration and oxygen consumption. Owing to the presence of heavy metallic materials and chlorine in synthetic dyes, it could also be harmful to some aquatic creatures. Therefore, these textile wastewaters need to be treated before their discharge. Various techniques for dealing with textile dyeing effluent have been discussed in this paper. Treatment techniques presented in this study include oxidation methods, physical methods, and biological methods. Also, the paper is prepared to compile all the updated data on textile dyeing effluents’ characterization and their impact on the environment from various journals and websites and some from personal communication with some factories. Since an extensive range of synthetic dyes, namely, azo dye, vat dye, reactive dye, disperse dye, is widely used in the textile industry, some of the dyeing effluents’ physicochemical parameters surpassed their standard limits. Hence, these days, the proper monitoring and corrective steps such as the elimination process have become the most thoughtful tasks globally, particularly the developing and transition economies. It is crucial to take immediate action to minimize environmental emissions due to the discharge of untreated textile dye waste.