On Graph Invariants of Oxide Network

Author(s): Muhammad Imran1,2, Asima Asghar1,2, Abdul Qudair Baig1,2
1Department of Mathematical Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, UAE.; (M.I)
2Department of Mathematics, The University of Lahore, Pakpattan Campus, Pakpattan 57400, Pakistan.; (A.A & A.Q.B)
Copyright © Muhammad Imran, Asima Asghar, Abdul Qudair Baig. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The application of graph theory in chemical and molecular structure research far exceeds people’s expectations, and it has recently grown exponentially. In the molecular graph, atoms are represented by vertices and bonded by edges. In this report, we study the several Zagreb polynomials and Redefined Zagreb indices of Oxide Network.

Keywords: Zagreb index; Randic index; Polynomial; Degree; Graph

1. Introduction

Many studies have shown that there is a strong intrinsic link between the chemical properties of chemical compounds and drugs (such as boiling point and melting point) and their molecular structure. The topological index defined on the structure of these chemical molecules can help researchers better understand the physical characteristics, chemical reactivity and biological activity. Therefore, the study of topological indices of chemical substances and chemical structures of drugs can make up for the lack of chemical experiments and provide theoretical basis for the preparation of drugs and chemical substances.

In the past two decades, a large number of graph invariants (topological indices) have been defined and used for correlation analysis in theoretical chemistry, pharmacology, toxicology and environmental chemistry.

The first and second Zagreb indices are one of the oldest and most well-known topological indices defined by Gutman in 1972 and are given different names in the literature, such as the Zagreb group index, Sag. Loeb group parameters and the most common Zagreb index. The Zagreb index is one of the first indices introduced and has been used to study molecular complexity, chirality, ZE isomers and heterogeneous systems. The Zagreb index shows the potential applicability of deriving multiple linear regression models.

The first and the second Zagreb indices [1] are defined as \begin{equation*} M_{1}(G)=\prod\limits_{u\in E(G)}(d_{u}+d_{v}), \end{equation*} \begin{equation*} M_{2}(G)=\prod\limits_{uv\in E(G)}d_{u}\times d_{u}. \end{equation*} For details see [2]. Considering the Zagreb indices, Fath-Tabar ([3]) defined first and the second Zagreb polynomials as $$M_{1}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}+d_{v}}$$ and $$M_{2}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}.d_{v}}$$ The properties of \(M_{1}(G,x)\) and \(M_{2}(G,x)\) for some chemical structures have been studied in the literature [4, 5]. After that, in [6], the authors defined the third Zagreb index $$M_{3}(G)=\sum\limits_{uv\in E(G)}(d_{u}-d_{v}),$$ and the polynomial $$M_{3}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}-d_{v}}.$$ In the year 2016, [7] following Zagreb type polynomials were defined $$M_{4}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}(d_{u}+d_{v})},$$ $$M_{5}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{v}(d_{u}+d_{v})},$$ $$M_{a,b}(G,x)=\sum\limits_{uv\in E(G)}x^{ad_{u}+bd_{v}},$$ $$M’_{a,b}(G,x)=\sum\limits_{uv\in E(G)}x^{(d_{u}+a)(d_{v}+b)}.$$ Ranjini et al. [8] redefined the Zagreb indices, i.e, the redefined first, second and third Zagreb indices of graph \(G\). These indicators appear as $$Re ZG_{1}(G)=\sum\limits_{uv\in E(G)}\frac{d_{u}+d_{v}}{d_{u}d_{v}},$$ $$Re ZG_{2}(G)=\sum\limits_{uv\in E(G)}\frac{d_{u}.d_{v}}{d_{u}+d_{v}},$$ and $$Re ZG_{3}(G)=\sum\limits_{uv\in E(G)}(d_{u}+d_{v})(d_{u}.d_{v}).$$ For details about topological indices and its applications we refer [9, 10, 11, 12, 13, 14, 15, 16, 17]. In this paper we aim to compute Zagreb polynomials and redefined Zagreb indices of Oxide networks shown in Figure 1.

2. Main Results

In this section we give our main computational results.
In this section, we present our computational results.

Theorem 2.1. Let \(OX_{n}\) be the Oxide network. Then

  1. \(M_{3}(OX_{n},x)=12nx^{2}+(18n^{2}-12),\)
  2. \(M_{4}(OX_{n},x)= 12nx^{12}+(18n^{2}-12)x^{32},\)
  3. \(M_{5}(OX_{n},x)=12nx^{24}+(18n^{2}-12)x^{32},\)
  4. \(M_{a,b}(OX_{n},x)=12nx^{2a+4b}+(18n^{2}-12)x^{4(a+b)},\)
  5. \(M’_{a,b}(OX_{n},x)=12nx^{(2+a)(4+b)}+(18n^{2}-12)x^{(4+a)(4+b)}\).

Proof. Let \(OX_{n}\) be the oxide network. It is clear that \(OX_{n}\) has two partitions of vertex set i.e, \(V_{1}=\{v\in V(OX_{n}): d_{v}=2\}\) and \(V_{2}=\{v\in V(OX_{n}): d_{v}=4\}\). The edge set of \(OX_{n}\) has following two partitions, $$E_{1}=E_{2,4}=\{e=uv\in E(OX_{n}): d_{u}=2, d_{v}=4\},$$ $$E_{1}=E_{4,4}=\{e=uv\in E(OX_{n}): d_{u}=4, d_{v}=4\}.$$ Such that $$\mid E_{1}(OX_{n})\mid=12n,$$ $$\mid E_{2}(OX_{n})\mid=18n^{2}-12n.$$

    1. \begin{eqnarray*} M_{3}(OX_{n},x)&=& \sum\limits_{uv\in E(G)}x^{d_{u}-d_{v}}\\ &=&\sum\limits_{uv\in E_{1}(OX_{n})}x^{4-2}+\sum\limits_{uv\in E_{2}(OX_{n})}x^{4-4}\\ &=&\mid E_{2}(OX_{n})\mid x^{2}+\mid E_{2}(OX_{n})\mid \\ &=& 12nx^{2}+\left(18n^2-12n\right). \end{eqnarray*} 2. \begin{eqnarray*} M_{4}(OX_{n},x)&=& \sum\limits_{uv\in E(OX_{n})}x^{d_{u}(d_{u}+d_{v})}\\ &=&\sum\limits_{uv\in E_{1}(OX_{n})}x^{2(2+4)}+\sum\limits_{uv\in E_{2}(OX_{n})}x^{4(4+4)}\\ &=&\mid E_{2}(OX_{n})\mid x^{12}+\mid E_{2}(OX_{n})\mid x^{32}\\ &=& 12nx^{12}+\left(18n^2-12n\right)x^{32}. \end{eqnarray*} 3. \begin{eqnarray*} M_{5}(OX_{n},x)&=& \sum\limits_{uv\in E(OX_{n})}x^{d_{v}(d_{u}+d_{v})}\\ &=&\sum\limits_{uv\in E_{1}(OX_{n})}x^{4(2+4)}+\sum\limits_{uv\in E_{2}(OX_{n})}x^{4(4+4)}\\ &=&\mid E_{2}(OX_{n})\mid x^{24}+\mid E_{2}(OX_{n})\mid x^{32}\\ &=& 12nx^{24s}+\left(18n^2-12n\right)\mid x^{32}. \end{eqnarray*} 4. \begin{eqnarray*} M_{a,b}(OX_{n},x)&=& \sum\limits_{uv\in E(OX_{n})}x^{ad_{u}+bd_{v}}\\ &=&\sum\limits_{uv\in E_{1}(OX_{n})}x^{2a+4b}+\sum\limits_{uv\in E_{2}(OX_{n})}x^{2a+4b}\\ &=&\mid E_{2}(OX_{n})\mid x^{2a+4b}+\mid E_{2}(OX_{n})\mid x^{2a+4b}\\ &=& 12nx^{(2a+4b)}+\left(18n^2-12n\right)x^{4(a+b)}. \end{eqnarray*} 5. \begin{eqnarray*} M’_{a,b}(OX_{n},x)&=& \sum\limits_{uv\in E(OX_{n})}x^{(d_{u}+a)(d_{v}+b)}\\ &=&\sum\limits_{uv\in E_{1}(OX_{n})}x^{(2+a)(4+b)}+\sum\limits_{uv\in E_{2}(OX_{n})}x^{(4+a)(4+b)}\\ &=&\mid E_{2}(OX_{n})\mid x^{(2+a)(4+b)}+\mid E_{2}(OX_{n})\mid x^{(4+a)(4+b)}\\ &=& 12nx^{(2+a)(4+b)}+\left(18n^2-12n\right)x^{(4+a)(4+b)}. \end{eqnarray*}

Theorem 2.2. Let \(OX_{n}\) be the Oxide network. Then,

  1. \(Re ZG_{1}(OX_{n})=9n^{2}+3n\),
  2. \(Re ZG_{2}(OX_{n})= 36n^{2}-8n\),
  3. \(Re ZG_{3}(OX_{n})=2304n^{2}-960n\).

Proof.

    1. \begin{eqnarray*} Re ZG_{1}(OX_{n})&=&\sum\limits_{uv\in E(OX_{n})}\frac{d_{u}+d_{v}}{d_{u}d_{v}}\\ &=&\frac{3}{4}(12n)+\frac{1}{2}(18n^{2}-12n).\\ &=& 9n^{2}-3n \end{eqnarray*} 2. \begin{eqnarray*} Re ZG_{2}(OX_{n})&=&\sum\limits_{uv\in E(OX_{n})}\frac{d_{u}.d_{v}}{d_{u}+d_{v}}\\ &=&\frac{4}{3}(12n)+2(18n^{2}-12n).\\ &=& 36n^{2}-8n \end{eqnarray*} 3. \begin{eqnarray*} Re ZG_{3}(OX_{n})&=&\sum\limits_{uv\in E(OX_{n})}(d_{u}+d_{v})(d_{u}.d_{v})\\ &=&48(12n)+128(18n^{2}-12n).\\ &=&2304n^{2}-960n \end{eqnarray*}

Competing Interests

The authors declare that they have no competing interests.

References:

References

  1. Das, K. C., Xu, K., & Nam, J. (2015). Zagreb indices of graphs. Frontiers of Mathematics in China, 10(3), 567-582. [Google Scholor]
  2. Gutman, I., & Das, K. C. (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem, 50(1), 83-92. [Google Scholor]
  3. Fath-Tabar, G. H. (2011). Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem, 65(1), 79-84. [Google Scholor]
  4. Ranjini, P. S., Lokesha, V., Bindusree, A. R., & Raju, M. P. (2012). New bounds on Zagreb indices and the Zagreb co-indices. Boletim da Sociedade Paranaense de Matemática, 31(1), 51-55. [Google Scholor]
  5. Fath-Tabar, G. (2009). Zagreb Polynomial and Pi Indices of some Nano Structures. Digest Journal of Nanomaterials and Biostructures (DJNB), 4(1), 189-191. [Google Scholor]
  6. Bindusree, A. R., Cangul, I. N., Lokesha, V., & Cevik, A. S. (2016). Zagreb polynomials of three graph operators. Filomat, 30(7), 1979-1986.[Google Scholor]
  7. Ranjini, P. S., Lokesha, V., & Usha, A. (2013). Relation between phenylene and hexagonal squeeze using harmonic index. International Journal of Graph Theory, 1(4), 116-121.[Google Scholor]
  8. Alaeiyan, M., Farahani, M. R., & Jamil, M. K. (2016). Computation of the fifth geometric-arithmetic index for polycyclic aromatic hydrocarbons pahk. Applied Mathematics and Nonlinear Sciences, 1(1), 283-290.[Google Scholor]
  9. Jamil, M. K., Farahani, M. R., Imran, M., & Malik, M. A. (2016). Computing eccentric version of second zagreb index of polycyclic aromatic hydrocarbons pahkpahk. Applied Mathematics and Nonlinear Sciences, 1(1), 247-252. [Google Scholor]
  10. Zali, M. R., Jamil, M. K., & Imran, M. (2016). Vertex PIv Topological Index of Titania Carbon Nanotubes \(TiO2(m,n)\). Applied Mathematics and Nonlinear Sciences, 1(1), 170-176. [Google Scholor]
  11. Gao, W., & Zali, M. R. (2016). Degree-based indices computation for special chemical molecular structures using edge dividing method. Applied Mathematics and Nonlinear Sciences, 1(1), 94-117. [Google Scholor]
  12. Basavanagoud, B., Gao, W., Patil, S., Desai, V. R., Mirajkar, K. G., & Balani, P. (2017). Computing First Zagreb index and F-index of New C-products of Graphs. Applied Mathematics and Nonlinear Sciences, 2(1), 285-298.[Google Scholor]
  13. Lokesha, V., Deepika, T., Ranjini, P. S., & Cangul, I. N. (2017). Operations of nanostructures via SDD, ABC\(_{4}\) and GA\(_{5}\) indices. Applied Mathematics and Nonlinear Sciences, 2(1), 173-180. [Google Scholor]
  14. Hosamani, S. M., Kulkarni, B. B., Boli, R. G., & Gadag, V. M. (2017). QSPR analysis of certain graph theocratical matrices and their corresponding energy. Applied Mathematics and Nonlinear Sciences, 2(1), 131-150.[Google Scholor]
  15. Sardar, M. S., Zafar, S., & Zahid, Z. (2017). Computing topological indices of the line graphs of Banana tree graph and Firecracker graph. Applied Mathematics and Nonlinear Sciences, 2(1), 83-92. [Google Scholor]
  16. Basavanagoud, B., Desai, V. R., & Patil, S. (2017). \((\beta,\alpha)\)− Connectivity Index of Graphs. Applied Mathematics and Nonlinear Sciences, 2(1), 21-30. [Google Scholor]
  17. Ramane, H. S., & Jummannaver, R. B. (2016). Note on forgotten topological index of chemical structure in drugs. Applied Mathematics and Nonlinear Sciences, 1(2), 369-374. [Google Scholor]