Calculation of degree-based entropy measures for benzenoid planar octahedron networks

Author(s): Haidar Ali1, Barya Iftikhar1, Syed Asjad Naqvi2, Urooj Fatima1
1Department of Mathematics, Riphah International University, Faisalabad, Pakistan
2Department of Mathematics and Statistics, University of Agriculture, Faisalabad, Pakistan
Copyright © Haidar Ali, Barya Iftikhar, Syed Asjad Naqvi, Urooj Fatima. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Chemical graph theory, a branch of graph theory, uses molecular graphs for its representation. In QSAR/QSPR studies, topological indices are employed to evaluate the bioactivity of chemicals. Degree-based entropy, derived from Shannon’s entropy, is a functional statistic influenced by the graph and the probability distribution of its vertex set, with informational graphs forming the basis of entropy concepts. Planar octahedron networks have diverse applications in pharmacy hardware and system management. This article explores the Benzenoid Planar Octahedron Network (\(BPOH(n)\)), Benzenoid Dominating Planar Octahedron Network (BDPOH(n)), and Benzenoid Hex Planar Octahedron Network (\(BHPOH(n)\)). We compute degree-based entropies, including Randić entropy, atom bond connectivity (ABC), and geometric arithmetic (GA) entropy, for the Benzenoid planar octahedron network.