Contents

To the boundedness of the \(l-\mathfrak{M}\)-index of functions analytic in the unit disk and represented by series in systems of functions

Myroslav M. Sheremeta1
1Ivan Franko National University of Lviv, Lviv, Ukraine
Copyright © Myroslav M. Sheremeta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(f(z) = \sum\limits_{k=0}^{\infty} f_k z^k\) be an entire transcendental function, and let \((\lambda_n)\) be a sequence of positive numbers increasing to \(+\infty\). Suppose that the series \(A(z) = \sum\limits_{n=1}^{\infty} a_n f(\lambda_n z)\) is regularly convergent in \(\mathbb{D} = \{ z : |z| < 1 \}\), i.e., \(\mathfrak{M}(r, A) := \sum\limits_{n=1}^{\infty} |a_n| M_f(r \lambda_n) < +\infty\) for all \(r \in [0, 1)\). For a positive function \(l\) continuous on \([0, 1)\), the function \(A\) is said to be of bounded \(l\)\(\mathfrak{M}\)-index if there exists \(N \in \mathbb{Z}_+\) such that \[\frac{\mathfrak{M}(r, A^{(n)})}{n! \, l^n(r)} \leq \max \left\{ \frac{\mathfrak{M}(r, A^{(k)})}{k! \, l^k(r)} : 0 \leq k \leq N \right\},\] for all \(n \in \mathbb{Z}_+\) and all \(r \in [0, 1)\). The growth of bounded \(l\)\(\mathfrak{M}\)-index functions is studied. In particular, under the conditions \(a_n \geq 0\) and \(f_k \geq 0\), it is proved that the function \(A\) is of bounded \(l\)\(\mathfrak{M}\)-index with \(l(r) = p(1 – r)^{-(p+1)}\), \(p > 0\), if and only if \[\lim\limits_{r \uparrow 1} (1 – r)^p \ln \mathfrak{M}(r, A) < +\infty.\] This condition is satisfied if and only if \[\lim\limits_{k \to \infty} k^{-p} \left( \ln^+ (f_k \mu_D(k)) \right)^{p+1} < +\infty,\] where \(\mu_D(k) = \max\{ a_n \lambda_n^k : n \geq 1 \}\).

Keywords: function of bounded index, regularly converging series

1. Introduction

According to Lepson [1], an entire function \(a(z)\) is called of bounded index if there exists \(N\in{\Bbb Z}_+\) such that \(|a^{(n)}(z)|/n!\le\max\{|a^{(k)}(z)|/k!:\,0\le k\le N\}\) for all \(n\in{\Bbb Z}_+\) and all \(z\in {\Bbb C}\). Different authors (S.M. Shah, W. Hayman, G. Fricke, and others) investigated the properties of entire functions of bounded index and their applications (a survey of results can be found in [2]).

For a positive function \(l\) continuous on \([0,\,+\infty)\), Kuzyk and Sheremeta [3] introduced the concept of an entire function of bounded \(l\)-index. An entire function \(a(z)\) is called of bounded \(l\)-index if there exists \(N\in{\Bbb Z}_+\) such that \[\frac{|a^{(n)}(z)|}{n!l^n(|z|)}\le\max\left\{\frac{|a^{(k)}(z)|}{k!l^k(|z|)}:\,0\le k\le N\right\},\] for all \(n\in{\Bbb Z}_+\) and all \(z\in {\Bbb C}\). Subsequently, this definition was extended to analytic functions in any complex domain, and the results obtained are summarized in the monograph [4]. At the beginning of this century, thanks mainly to O.B. Skaskiv and A.I. Bandura, many results were obtained on the boundedness of the \(L\)-index of holomorphic functions of several complex variables (see, for example, [5] and [6]).

Let \(M_a(r)=\max\{|a(z)|:\,|z|=r\}\) and \(l\) be a positive function continuous on \([0,\,+\infty)\). The entire function \(a(z)\) is said [7] to be of bounded \(M\)-index if there exists \(N\in{\Bbb Z}_+\) such that \(M_{a^{(n)}}(r)/n!\le\max\{M_{a^{(k)}}(r)/k!:\,0\le k\le N\}\) for all \(n\in{\Bbb Z}_+\) and all \(r\in [0,+\infty)\).

By combining the definitions of bounded \(M\)-index functions and bounded \(l\)-index functions, [8] introduced the following definition. An entire function \(a(z)\) is called of bounded \(l\)\(M\)-index if there exists \(N\in{\Bbb Z}_+\) such that \[\dfrac{M_{a^{(n)}}(r)}{n!l^n(r)}\le\max\left\{\dfrac{M_{a^{(k)}}(r)}{k!l^k(r)}:\,0\le k\le N\right\},\] for all \(n\in{\Bbb Z}_+\) and all \(r\in [0,+\infty)\).

Let \[f(z)=\sum\limits_{k=0}^{\infty}f_kz^k, \label{t1} \tag{1}\] be an entire transcendental function, \(M_f(r)=\max\{|f(z)|:\,|z|=r\}\), \((\lambda_n)\) be a sequence of positive numbers increasing to \(+\infty\), and \[A(z)=\sum\limits_{n=1}^{\infty}a_nf(\lambda_nz), \label{t2} \tag{2}\] be the series in the system \({f(\lambda_nz)}\).

Let \(R[A]\) be the radius of regular convergence of the series (2), i.e., \[\mathfrak{M}(r,A)=\sum\limits_{n=1}^{\infty} |a_n|M_f(r\lambda_n)<+\infty, \label{t3} \tag{3}\] holds for \(r<R[A]\) and does not hold for \(r>R[A]\). Denote \(\Gamma_f(r)=\dfrac{d\ln\,M_f(r)}{d\ln\,r}\) (in points where the derivative does not exist, \(\dfrac{d\ln\,M_f(r)}{d\ln\,r}\) denotes the right-hand derivative). Since the function \(\ln\, M_f(r)\) is logarithmically convex, we have \(\Gamma_f(r)\nearrow+\infty\) as \(r\to+\infty\). It is known [9] that if \(\Gamma_f(cr)\asymp \Gamma_f(r)\) as \(r\to+\infty\) for each \(c\in (0,\,+\infty)\) and \(\ln\,n=o(\Gamma_f(\lambda_n))\) as \(n\to\infty\), then \(R[A]=\varliminf\limits_{n\to\infty}\dfrac{1}{\lambda_n}M^{-1}_f\left(\dfrac{1}{|a_n|}\right)\).

For a positive function \(l\) continuous on \([0,+\infty)\), the entire function (2) (i.e., \(R[A]=+\infty\)) is said [10] to be of bounded \(l\)\(\mathfrak{M}\)-index if there exists \(N\in{\Bbb Z}_+\) such that \[\frac{\mathfrak{M}(r,A^{(n)})}{n!l^n(r)}\le\max\left\{\frac{\mathfrak{M}(r,A^{(k)})}{k!l^k(r)}:\,0\le k\le N\right\}, \label{t4} \tag{4}\] for all \(n\in{\Bbb Z}_+\) and all \(r\in [0,+\infty)\). The least such integer \(N\) is called the \(l\)\(\mathfrak{M}\)-index of \(A\) and is denoted by \(N(A; l,\mathfrak{M})\). The growth of entire functions of bounded \(l\)\(\mathfrak{M}\)-index and the behavior of the coefficients \(a_n\) were studied.

Here, we will consider the case \(R[A]=1\) and assume that a positive continuous function \(l\) on \([0, \,1)\) satisfies the condition \(l(r)(1-r)\ge q>1\) for all \(r\in [r_0, \,1)\). We will call the function \(A\) of bounded \(l\)\(\mathfrak{M}\)-index if (4) is satisfied for all \(n\in{\Bbb Z}_+\) and all \(r\in [0,\,1)\).

2. Growth of functions of bounded \(l\)\(\mathfrak{M}\)-index

We need the following lemmas.

Lemma 1.[4, p. 76] Let \(g_1,\dots,g_n\) be positive absolutely continuous functions on \([a,\,b]\) and \(g(x):=\max\{g_k(x):\, 1\le k\le n\}\). Suppose that \(g'_k(x)\le \varphi(x)g(x)\) almost everywhere on \([a,\,b]\) for all \(1\le k\le n\), where \(\varphi\) is a positive continuous function on \([a,\,b]\). Then for all \(x\in [a,\,b]\) \[\ln\,g(x)\le \ln\,g(a)+\int\limits_{a}^{x}\varphi(t)\,dt. \label{t5}\]

Lemma 2. [4, p. 76] At the points where the derivative \(M'_f(r)\) exists, the inequality \(M'_f(r)\le M_{f'}(r)\) holds.

Using these lemmas, we first prove the following statement.

Proposition 1. Let \(l\) be a positive, continuously differentiable, and non-decreasing function on \([0,1)\) such that \(l(r)(1-r)\ge q>1\) for all \(r\in [r_0, \,1)\) and \[\varlimsup\limits_{r\to+\infty}\frac{(-l'(r))^+}{l^2(r)}=\eta<+\infty, \quad (x^+=\max\{x,\,0\}). \label{t6} \tag{6}\]

If \(N(A; l,\mathfrak{M})=N\), then \[\varlimsup\limits_{r\uparrow 1}\frac{\ln\,\mathfrak{M}(r,A)}{L(r)}\le (1+\eta)(N+1), \quad \left(L(r)=\int\limits_{0}^{r}l(t)\,dt\right). \label{t7} \tag{7}\]

Proof. First, we note that \[L(r) \ge q \int\limits_{r_0}^{r} \frac{dt}{1-t} = q\left(\ln\,\frac{1}{1-r} – \ln\,\frac{1}{1 – r_0}\right) \to +\infty \quad (r \uparrow 1).\]

Since \(A'(z) = \sum\limits_{n=1}^{\infty} a_n \lambda_n f'(\lambda_n z)\), by Lemma 2, at points where the derivative \(M'_f(r)\) exists, we have \[\mathfrak{M}(r, A') = \sum\limits_{n=1}^{\infty} |a_n| \lambda_n M_{f'}(r \lambda_n) \ge \sum\limits_{n=1}^{\infty} |a_n| \lambda_n M'_f(r \lambda_n) = \mathfrak{M}'(r, A).\]

Let \(g_k(r) = \dfrac{\mathfrak{M}(r, A^{(k)})}{k!l^k(r)}\) for \(0 \le k \le N\) and \(g(r) = \max\{g_k(r):\, 0 \le k \le N\}\). Then, almost everywhere on \([r_0,\,1)\), \[\begin{aligned} g'_k(r) &= \dfrac{\mathfrak{M}'(r, A^{(k)})}{k!l^k(r)} – \dfrac{\mathfrak{M}(r, A^{(k)})}{k!l^{k+1}(r)} k l'(r) \\ &\le \dfrac{\mathfrak{M}(r, A^{(k+1)})}{(k+1)!l^{k+1}(r)} (k+1)l(r) + \dfrac{\mathfrak{M}(r, A^{(k)})}{k!l^k(r)} k \frac{(-l'(r))^+}{l(r)} \\ &\le g(r) \left((k+1)l(r) + k \frac{(-l'(r))^+}{l(r)}\right) \le g(r)(N+1)l(r)\left(1 + \frac{(-l'(r))^+}{l^2(r)}\right). \end{aligned}\]

Setting \(\varphi(r) = (N+1)l(r)\left(1 + \dfrac{(-l'(r))^+}{l^2(r)}\right)\), by Lemma 1 and using (5), we get \[\ln\,g(r) \le \ln\,g(r_0) + (N+1)\int\limits_{r_0}^{r} l(r)(1 + \eta + o(1))\,dr, \quad r \uparrow 1,\] and since \(\ln\,\mathfrak{M}(r, A) \le \ln\,g(r)\), in view of (6) we obtain (7). ◻

To obtain the inverse statement, we denote by \(\Omega(0)\) a class of positive functions unbounded on \((-\infty, 0)\), where each function \(\Phi\) has a positive, continuously differentiable, and strictly increasing derivative \(\Phi'\) on \((-\infty, 0)\). Let \(\Psi(x) = x – \Phi(x)/\Phi'(x)\) be the function associated with \(\Phi\) in the sense of Newton. Then \(\Psi\) is [4, p.75] continuously differentiable and increasing to \(+\infty\) on \((-\infty, 0)\). Theorem 4.3 from [4p. 79] implies the following statement.

Lemma 3. Let \(f\) be an analytic function in \({\Bbb D} = \{z:\,|z|<1\}\), and let the function \(\Phi \in \Omega(0)\) satisfy the conditions \(x + \beta(x) := x + \dfrac{\ln\,\Phi'(\Psi^{-1}(x))}{\Phi'(\Psi^{-1}(x))} < 0\) for \(x \in [x_0,\,0)\) and \(\Phi'(\Psi^{-1}(x + \beta(x))) = O(\Phi'(x))\) as \(x \uparrow 0\). Suppose that \(\Phi'(x) > \alpha/|x|\) for \(x < 0\) and \(\Phi'(x + \alpha/\Phi'(x)) = O(\Phi'(x))\) as \(x \uparrow 0\) for some \(\alpha > 1\). If \[\varlimsup\limits_{r \uparrow 1} \frac{\ln\,M_f(r)}{\Phi(\ln\,r)} < +\infty, \label{t8} \tag{8}\] then for every \(r_0 \in (0,\,1)\) there exists \(n_0 = n_0(r_0) \in {\Bbb Z}_{+}\) such that \[\frac{M_{f^{(n)}}(r)}{n!M_f(r)} \le \left(\frac{\Phi'(\ln\,r)}{r}\right)^n \label{t9} \tag{9}\] for all \(n \ge n_0\) and all \(r \in [r_0,\,1)\).

Using Lemma 3, we prove the following statement.

Proposition 2. Let \(R[A] = 1\) and suppose that the function \(\Phi\) satisfies the conditions of Lemma 3. Assume that \(f_k \ge 0\) and \(a_n \ge 0\) for all \(k\) and \(n\). If \[\varlimsup\limits_{r \uparrow 1} \dfrac{\ln\, \mathfrak{M}(r,A)}{\Phi(\ln\,r)} < +\infty, \label{t10} \tag{10}\] then the function (2) is of bounded \(l\)\(\mathfrak{M}\)-index with \(l(r) = \dfrac{\Phi'(\ln\,r)}{r}\) for \(r \in [r_0,\,1)\).

Proof. It is clear that if \(M_A(r) = \max\{|A(z)|:\,|z| = r\}\), then \(M_A(r) \le \mathfrak{M}(r,A)\), and if \(f_k \ge 0\) and \(a_n \ge 0\) for all \(k\) and \(n\), then \(M_A(r) = \mathfrak{M}(r,A)\). Therefore, (10) implies (8), and by Lemma 3, for every \(r_0 > 0\) there exists \(n_0 = n_0(r_0) \in {\Bbb Z}_0\) such that for all \(n \ge n_0\) and \(r \in [r_0,\,1)\), \[\frac{\mathfrak{M}(r,A^{(n)})}{n!\mathfrak{M}(r,A)} \le \left(\frac{\Phi'(\ln\,r)}{r}\right)^n.\]

Setting \(l(r) = \Phi'(\ln\,r)/r\) for \(r \ge r_0\), we obtain \[\dfrac{\mathfrak{M}(r,A^{(n)})}{n!l^n(r)} \le \mathfrak{M}(r,A),\] and thus, the function \(A\) is of bounded \(l\)\(\mathfrak{M}\)-index. ◻

Combining Propositions 1 and 2, we arrive at the following theorem.

Theorem 1. Let the function \(\Phi \in \Omega(0)\), and let the coefficients \(f_k\) and \(a_n\) satisfy the conditions of Proposition 2. Then the function (2) is of bounded \(l\)\(\mathfrak{M}\)-index with \(l(r) = \Phi'(\ln\,r)/r\) for \(r \ge r_0\) and \(l(r) = \Phi'(\ln\,r_0)/r_0\) for \(0 \le r \le r_0\) if and only if (10) holds.

Indeed, if \(l(r) = \Phi'(\ln\,r)/r\), then \(L(r) = (1 + o(1)) \Phi(\ln\,r)\) as \(r \to +\infty\), \[l(r) \ge \frac{\alpha}{r|\ln\,r|} = (1 + o(1)) \frac{\alpha}{1 – r}, \quad r \uparrow 1,\] for some \(\alpha > 1\), i.e., \(l(r)(1 – r) \ge q > 1\) for some \(q > 1\) and all \(r \in [r_0,\,1)\). Thus, \[\varlimsup\limits_{r \to +\infty} \frac{(-l'(r))^+}{l^2(r)} = \varlimsup\limits_{r \to +\infty} \frac{(\Phi'(\ln\,r) – \Phi''(\ln\,r))^+}{(\Phi'(\ln\,r))^2 r} \le \varlimsup\limits_{r \to +\infty} \frac{\Phi'(\ln\,r)^+}{(\Phi'(\ln\,r))^2 r} = 0,\] because \(\Phi''(x) \ge 0\) for all \(x\). Therefore, if the function (2) is of bounded \(l\)\(\mathfrak{M}\)-index, then by Proposition 1, (10) holds. The converse follows from Proposition 2.

3. Analytic functions of the finite order

Let \(p > 0\) and \(\Phi(x) = |x|^{-p}\) for \(x < 0\). Then \(\Phi \in \Omega(0)\), \(\Phi'(x) = p|x|^{-p-1}\), \(\Psi(x) = \dfrac{p+1}{p}x\) and \(\Psi^{-1}(x) = \dfrac{p}{p+1}x\) for \(x < 0\). Therefore, \[\Phi'(\Psi^{-1}(x)) = \frac{p}{|\Psi^{-1}(x)|^{p+1}} = \frac{A_p}{|x|^{p+1}}, \quad A_p = \frac{(p+1)^{p+1}}{p^p} > 1,\] i.e., \[x + \beta(x) = \dfrac{\ln\,\Phi'(\Psi^{-1}(x))}{\Phi'(\Psi^{-1}(x))} + x = \frac{|x|^{p+1} \ln\,({A_p}{|x|^{p+1}})}{A_p} – |x| = -|x|\left(1 – \frac{|x|^p \ln\,(A_p |x|^{p+1})}{A_p}\right) < 0,\] for \(x \in [x_0, 0)\), and \[\Phi'(\Psi^{-1}(x + \beta(x))) = \frac{A_p}{|x|^{p+1}} \left(1 – \frac{|x|^p \ln\,({A_p}{|x|^{p+1}})}{A_p}\right)^{-p-1} = \frac{A_p(1 + o(1))}{|x|^{p+1}} = O(\Phi'(x)),\] as \(x \uparrow 0\). Similarly, \(\Phi'(x + \alpha/\Phi'(x)) = O(\Phi'(x))\) as \(x \uparrow 0\) for each \(\alpha > 1\). Therefore, Theorem 1 implies the following corollary.

Corollary 1. Let \(R[A] = 1\) and \(a > p > 0\). Suppose that \(f_k \ge 0\) and \(a_n \ge 0\) for all \(k\) and \(n\). Then the function (2) is of bounded \(l\)\(\mathfrak{M}\)-index with \(l(r) = \dfrac{p}{(1 – r)^{p+1}}\) if and only if \[\varlimsup\limits_{r \uparrow 1}(1 – r)^p \ln\,\mathfrak{M}(r, A) = \varlimsup\limits_{r \uparrow 1}(1 – r)^p \ln\,M_A(r) < +\infty. \label{t11} \tag{11}\]

Indeed, by Theorem (1), the function (2) is of bounded \(l\)\(\mathfrak{M}\)-index with \(l(r)=\dfrac{p}{r|\ln\,r|^{p+1}}\) for \(r \in [r_0, 1)\) if and only if \(\varlimsup\limits_{r\uparrow 1}\dfrac{\ln\,\mathfrak{M}(r,A)}{|\ln\,r|^{-p}}<+\infty\). Since \(r|\ln\,r|^{p+1}=(1+o(1))(1-r)^{p+1}\) as \(r\uparrow 1\) and \(\dfrac{p}{(1-r)^{p+1}}\ge \dfrac{a}{1-r}\) for every \(a>1\) and all \(r \in [r_0(a),\,1)\), we get the required result.

Let’s find out under what conditions on \(f_k \ge 0\) and \(a_n \ge 0\) equality (11) holds.

For a function \(g(z)=\sum\limits_{k=0}^{\infty}g_k z^k\) analytic in the unit disk, let \(M_g(r)=\max\{|g(z)|:\,|z|=r<1\}\) and \(\mu_g(r)=\max\{|g_k|r^k:\,k\ge 0\}\) be the maximal term. The order of \(g\) is determined by the formula \(p=\varlimsup\limits_{r\uparrow 1}\dfrac{\ln\,\ln\,M_g(r)}{\ln\,(1/(1-r))}\) and the type is determined by the formula
\(T=\varlimsup\limits_{r\uparrow 1}(1-r)^p\ln\,M_g(r)\) (see, for example, [11]). It is known [11] that \[T= \varlimsup\limits_{r\uparrow 1}(1-r)^p\ln\,\mu_g(r)= \frac{p^p}{(p+1)^{p+1}}\varlimsup\limits_{k \to \infty}\frac{(\ln^+|g_k|)^{p+1}}{k^p}. \label{t12} \tag{12}\]

Let’s return to the function \(A\). Put \(\mu_D(k)=\max\{a_n\lambda^k_n:\,n\ge 1\}\) and \(\mu_G(r)=\max\{|f_k|\mu_D(k)r^k:\,k\ge 0\}\). Since \[A(z)=\sum\limits_{n=1}^{\infty}a_n\sum\limits_{k=0}^{\infty}f_k(z\lambda_n)^k= \sum\limits_{k=0}^{\infty}f_k\left(\sum\limits_{n=1}^{\infty}a_n\lambda_n^k\right)z^k,\] we have \[M_A(r)\ge f_k\left(\sum\limits_{n=1}^{\infty}a_n\lambda_n^k\right)r^k\ge a_nf_k(\lambda_nr)^k,\] for all \(n\ge 1\), \(k\ge 0\) and \(r\in[0,1)\), whence it follows that \(M_A(r)\ge f_k\mu_D(k)r^k\), that is \(\mu_G(r)\le M_A(r)\).

On the other hand, since series (2) is regularly convergent in \({\Bbb D}\), for every \(r\in [0,1)\) we have \[M_A(r)\le \sum\limits_{n=1}^{\infty} |a_n|M_f(r\lambda_n)\le \mu_A\left(\frac{1+r}{2}\right)\sum\limits_{n=1}^{\infty}\frac{M_f(r\lambda_n)}{M_f\left(\dfrac{r+1}{2}\lambda_n\right)}, \label{t13} \tag{13}\] where \(\mu_A(r)=\max\{|a_n|M_f(r\lambda_n):\,n\ge 1\}\). Suppose that \(\ln\,\ln\,n=o(\ln\,\Gamma_f(c\lambda_n))\) as \(n\to\infty\) for some \(0<c<1\). Then \(\Gamma_f(c\lambda_n)\ge (\ln\,n)^{1/\varepsilon}=(\ln\,n)^{1/\varepsilon-1}\ln\,n\) for every \(\varepsilon \in (0,\,1)\) and all \(n\ge n^*(\varepsilon)\). We put \(n_0(r)=\left[\exp\left\{\left(\dfrac{8}{1-r}\right)^{\varepsilon/(1-\varepsilon)}\right\}\right]+1\). Then \(n_0(r)\ge n^*(\varepsilon)\) for \(r\in [r_0(\varepsilon),\,1)\) and for \(n\ge n_0(r)\) we get \[\frac{(1-r)\Gamma_f(c\lambda_n)}{4}\ge\frac{(1-r)(\ln\,n)^{1/\varepsilon-1}\ln\,n}{4}\ge \frac{(1-r)(\ln\,n_0(r))^{1/\varepsilon-1}\ln\,n}{4}=2\ln\,n.\]

Therefore, for \(r \in [r_0(\varepsilon),\,1) \subset [c, 1)\) and \(n \ge n_0(r)\) we have \[\begin{aligned} \ln\,M_f\left(\dfrac{r+1}{2}\lambda_n\right)-\ln\,M_f(r\lambda_n)=&\int\limits_{r\lambda_n}^{(r+1)\lambda_n/2}\Gamma_f(x)d\ln\,x\\ \ge&\Gamma_f(r\lambda_n)\ln\,\frac{1+r}{2r}\\ =& \Gamma_f(r\lambda_n)\ln\,\left(1+\frac{1-r}{2r}\right)\\ \ge& \frac{(1-r)\Gamma_f(c\lambda_n)}{4}\ge 2n. \end{aligned}\]

From this, it follows that \[\begin{aligned} \sum\limits_{n=1}^{\infty}\frac{M_f(r\lambda_n)}{M_f\left(\dfrac{r+1}{2}\lambda_n\right)}\le&\left(\sum\limits_{n=1}^{n_0(r)-1}+\sum\limits_{n_0(r)}^{\infty}\right)\exp\left\{-\frac{(1-r)\Gamma_f(r\lambda_n)}{4}\right\}\\ \le&\sum\limits_{n=1}^{n_0(r)-1}1+\sum\limits_{n=1}^{\infty}\frac{1}{n^2}\le n_0(r)+2\le \exp\left\{\left(\dfrac{8}{1-r}\right)^{\varepsilon/(1-\varepsilon)}\right\}+3. \end{aligned}\]

Thus, (13) implies \[M_A(r)\le \mu_A\left(\frac{1+r}{2}\right) \left(\exp\left\{\left(\dfrac{8}{1-r}\right)^{\varepsilon/(1-\varepsilon)}\right\}+3\right), \quad (r\in [r_0(\varepsilon),\,1)). \label{t14} \tag{14}\]

Also, we have \[\begin{aligned} \mu_A(r)\le\max\left\{a_n\sum\limits_{k=0}^{\infty}f_k(r\lambda_n)^k:\,n\ge 1\right\}\le& \sum\limits_{k=0}^{\infty}\max\{a_n\lambda^k_n:\,n\ge 1\}f_kr^k\\ =&\sum\limits_{k=0}^{\infty}\mu_D(k)f_k\left(\frac{1+r}{2}\right)^k\left(\frac{2r}{1+r}\right)^k\\ \le&\mu_G\left(\frac{1+r}{2}\right)\frac{1+r}{1-r}\le\frac{2}{1-r}\mu_G\left(\frac{1+r}{2}\right). \end{aligned}\]

Therefore, if \(\varepsilon < p/(p+1)\), then in view of (10) \[\ln\,\mu_G(r)\le\ln\,M_A(r)\le \ln\,\mu_G\left(\frac{3+r}{4}\right)+\ln\,\frac{4}{1-r}+ \left(\dfrac{8}{1-r}\right)^{\varepsilon/(1-\varepsilon)}+\ln\,6,\] whence \[\begin{aligned} \varlimsup\limits_{r\uparrow 1}(1-r)^p\ln\,\mu_G(r)\le \varlimsup\limits_{r\uparrow 1}(1-r)^p\ln\,M_A(r)\le \varlimsup\limits_{r\uparrow 1}(1-r)^p\ln\,\mu_G\left(\frac{3+r}{4}\right) =4^p\varlimsup\limits_{r\uparrow 1}(1-r)^p\ln\,\mu_G(r). \end{aligned}\]

In view of (12), we get that \(\varlimsup\limits_{r\uparrow 1}(1-r)^p\ln\,\mu_G(r)<+\infty\) if and only if \[\varlimsup\limits_{k \to \infty}k^{-p}(\ln^+(f_k\mu_D(k)))^{p+1}<+\infty. \label{t15} \tag{15}\]

Thus, the following theorem holds.

Theorem 2. If \(f_k \ge 0\) and \(a_n \ge 0\) for all \(k\) and \(n\), then the function (2) is of bounded \(l\)\(\mathfrak{M}\)-index with \(l(r) = \dfrac{p}{(1-r)^{p+1}}\) if and only if (15) holds.

References

  1. Lepson, B. (1968). Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index. Proceedings of Symposia in Pure Mathematics, 2, 298–307. American Mathematical Society, Providence, Rhode Island.

  2. Shah, S. M. (1977). Entire functions of bounded index. Lecture Notes in Mathematics, 589, 117–145.

  3. Kuzyk, A. D., & Sheremeta, M. M. (1986). Entire functions of bounded value \(l\)-distribution. Matematicheskie Zametki, 39(1), 3–13. (In Russian).

  4. Sheremeta, M. M. (1999). Analytic Functions of Bounded Index. Lviv: VNTL Publishers.

  5. Bandura, A., & Skaskiv, O. (2016). Entire Functions of Several Variables of Bounded Index. Lviv: Chyslo, Publisher I.E. Chyzhykov.

  6. Bandura, A. I. (2018). Properties of Classes of Holomorphic Functions of Bounded Index [Doctoral dissertation abstract, Lviv]. (In Ukrainian).

  7. Fricke, G. H., Shah, S. M., & Sisarcick, W. S. (1973). A characterisation of entire functions of exponential type and \(M\)-bounded index. Indiana University Mathematics Journal, 23, 405–412.

  8. Abuarabi, Sh., & Sheremeta, M. M. (1989). Entire functions of bounded \(l\)\(M\)-index. Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya A, 11, 3–5. (In Ukrainian).

  9. Sheremeta, M. M. (2022). On regularly converging series in systems of functions in a disk. Visnyk of the Lviv University. Series Mechanics and Mathematics, 94, 98–108.

  10. Sheremeta, M. M. (2024). On the \(l\)\(\mathfrak{M}\)-index boundedness of entire functions represented by series in systems of functions. Ukrainian Mathematical Journal, 76(4), 603–610. (In Ukrainian).

  11. Govorov, N. V. (1959). On the connection between the growth of a function analytic in a disk and the coefficients of its power development. Trudy Novocherkasskogo Polytechnic Institute, 100, 101–115. (In Russian).