Proposition 2.2.
The Kauffman polynomial is invariant under second and third Reidemeister moves but not under the first Reidemeister move.
3. Main Results
In this section we shall give the Kauffman bracket of the links \(\widehat{x_{1}^{n}}\) and \(\widehat{x_{1}^{b}x_{2}^{m}}\), and show that \(\langle\widehat{x_{1}^{b}x_{2}^{m}}\rangle=\langle\widehat{x_{1}^{b}}\rangle\langle\widehat{x_{2}^{m}}\rangle\).
The links \(\widehat{x_{1}^{n}}\) fall into two categories, the two-component links when \(n\) is even and the one-component links (means knots) when \(n\) is odd. When \(n\) is even, we have:
Proposition 3.1.
The Kauffman bracket of the link \(\widehat{x_{1}^{n}}\), when \(n\geq2\) is even, is
\begin{equation}\label{eq3.1}
= -a^{3n-2}+a^{3n-6}-a^{3n-10}+a^{3n-14}-\cdots-a^{-n+6}-a^{-n-2}.
\end{equation}
(1)
Proof.
We prove it by induction on \(n\).
When \(n = 2\),
Similarly, we have
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber \langle \widehat{x_{1}^{4}} \rangle &=& -a^{10}+a^{6}-a^{2}-a^{-6} \\
&=& -a^{3(4)-2} + a^{3(4)-6} + a^{-2}\langle \widehat{x_{1}^{2}} \rangle
\end{eqnarray}
(3)
and
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber\langle \widehat{x_{1}^{6}} \rangle &=& -a^{16}+a^{12}-a^{8}+a^{4}-a^{0}-a^{-8} \\
&=& -a^{3(6)-2} + a^{3(6)-6} + a^{-2}\langle \widehat{x_{1}^{4}} \rangle.
\end{eqnarray}
(4)
We now assume the result holds for \(n = k\), that is
\begin{equation}\label{eq3.5}
\langle \widehat{x_{1}^{k}} \rangle = -a^{3k-2}+a^{3k-6}-a^{3k-10}+a^{3k-14}-\cdots-a^{6-k}-a^{-k-2}.
\end{equation}
(5)
Now for \(n=k+1\), we, following Equations (3) and (4), write
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{k+2}} \rangle &=& -a^{3(k+2)-2} + a^{3(k+2)-6} + a^{-2}\langle \widehat{x_{1}^{k}} \rangle \\
&=& -a^{3(k+2)-2} + a^{3(k+2)-6}+ a^{-2}\Big[-a^{3k-2}+a^{3k-6}-a^{3k-10}\\
&& +a^{3k-14}-\cdots-a^{6-k}-a^{-k-2}\Big]\\
&=& -a^{3(k+2)-2} + a^{3(k+2)-6}-a^{3k-4}+a^{3k-8}-a^{3k-12}+a^{3k-16}\\
&&-\cdots-a^{4-k}-a^{-k-4}\\
&=& -a^{3(k+2)-2} + a^{3(k+2)-6}-a^{3(k+2)-10}+a^{3(k+2)-14}-a^{3(k+2)-18}\\
&&+a^{3(k+2)-22}-\cdots-a^{6-(k+2)}-a^{-(k+2)-2}
\end{eqnarray*}
This completes the proof.
Proposition 3.2.
The Kauffman bracket of the knots \(\widehat{x_{1}^{n}}\), when \(n\) is odd, is
\begin{equation}\label{eq3.6}
\langle \widehat{x_{1}^{n}} \rangle = -a^{3n-2}+a^{3n-6}-a^{3n-10}+a^{3n-14}-\cdots-a^{-n+6}-a^{-n-2}.
\end{equation}
(6)
Proof.
Similar to the proof of Proposition 3.1.
Proposition 3.3.
The Kauffman bracket of the braid link \(\widehat{x_{1}^{b} x_{2}^{b}}\), when \(b\) is even, is
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{b} x_{2}^{b}} \rangle &=& \sum_{i=1}^{b-1}i(-1)^{i+1}a^{6b-4i}+\sum_{i=1}^{b}(-1)^{i+1}(b-i)a^{2b-4i}-(b-2)a^{2b}\\
&&+a^{4-2b}+a^{-2b-4}.
\end{eqnarray*}
Proof.
We prove it by induction on \(b\).
When \(b = 2\), we have
as required.
Similarly, we get
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle &=& a^{20}-2a^{16}+3a^{12}-2a^{8}+3a^{4}-2+2a^{-4}+a^{-12} \\
\nonumber&=& \big[a^{20}-2a^{16}+3a^{12}\big]+\big[3a^{4}-2+a^{-4}\big]-2a^{8}+\big[a^{-4}+a^{-12}\big] \\
\nonumber&=& \sum_{i=1}^{3}i(-1)^{i+1}a^{24-4i}+\sum_{i=1}^{4}(-1)^{i+1}(4-i)a^{8-4i}-2a^{8}\\
\nonumber &&+a^{-4}+a^{-12}.
\end{eqnarray}
(7)
In order to manage the proof, we reorganize (7):
\begin{eqnarray}
%% \nonumber to remove numbering (before each equation)
\nonumber\langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle &=& \big[a^{4}+2a^{-4}+a^{-12}\big]-[a^{4}]+[a^{20}]-2+\big[-2a^{16}+3a^{12}\big]\\
\nonumber&&+\big[-2a^{8}+3a^{4}\big]\\
\nonumber &=& a^{-4}\big[\langle \widehat{x_{1}^{2} x_{2}^{2}}\rangle\big]-\sum_{i=1}^{1}i(-1)^{i+1}a^{8-4i}+\sum_{i=1}^{1}i(-1)^{i+1}a^{24-4i}-2\\
&&+\sum_{i=2}^{3}i(-1)^{i+1}a^{24-4i}-2a^{8}+3a^{4}
\end{eqnarray}
(8)
Similarly,
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber \langle \widehat{x_{1}^{6} x_{2}^{6}} \rangle &=& a^{32}-2a^{28}+3a^{24}-4a^{20}+5a^{16}-4a^{12}+5a^{8}-4a^{4}+3-2a^{-4}\\
\nonumber&&+2a^{-8}+a^{-16} \\
\nonumber &=& a^{-4}\big[\langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle\big]-\sum_{i=1}^{3}i(-1)^{i+1}a^{20-4i}+\sum_{i=1}^{3}i(-1)^{i+1}a^{36-4i}-2a^{4}\\
&&+\sum_{i=4}^{5}i(-1)^{i+1}a^{36-4i}-4a^{12}+5a^{8}
\end{eqnarray}
(9)
Deducting from Equations (9) and (10), we can write
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber\langle \widehat{x_{1}^{b} x_{2}^{b}} \rangle &=& a^{-4}\big[\langle \widehat{x_{1}^{b-2} x_{2}^{b-2}} \rangle\big]-\sum_{i=1}^{b-3}i(-1)^{i+1}a^{6b-4i-16}+\sum_{i=1}^{b-3}i(-1)^{i+1}a^{6b-4i}\\
\nonumber&&-2a^{2b-8}+\sum_{i=b-2}^{b-1}i(-1)^{i+1}a^{6b-4i}-(b-2)a^{2b}+(b-1)a^{2b-4}.
\end{eqnarray}
We now assume the result holds for \(b=k\), that is
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber \langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle &=& \sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i}+\sum_{i=1}^{k}(-1)^{i+1}(k-i)a^{2k-4i}-(k-2)a^{2k}\\
&&+a^{4-2k}+a^{-2k-4}.
\end{eqnarray}
(10)
Now for \(b=k+2\), we have
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{k+2} x_{2}^{k+2}} \rangle &=& a^{-4}\big[\langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle\big]-\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}+\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i+12}\\
&&-2a^{2k-4}+\sum_{i=k}^{k+1}i(-1)^{i+1}a^{6k-4i+12}-ka^{2k+4}+(k+1)a^{2k}\\
&=&\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}+\sum_{i=1}^{k}(-1)^{i+1}(k-i)a^{2k-4i-4}\\
&&-(k-2)a^{2k-4}+a^{-2k}+a^{-2k-8}\\
&&-\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}+\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i+12}-2a^{2k-4}\\
&&+\sum_{i=k}^{k+1}i(-1)^{i+1}a^{6k-4i+12}-ka^{2k+4}+(k+1)a^{2k}\\
&=&\sum_{i=1}^{k+1}i(-1)^{i+1}a^{6k-4i+12}+\sum_{i=-1}^{k}(-1)^{i+1}(k-i)a^{2k-4i-4}\\
&&+a^{-2k}+a^{-2k-8}-ka^{2k+4}\\
&=&\sum_{i=1}^{k+1}i(-1)^{i+1}a^{6k-4i+12}+\sum_{i=1}^{k+2}(-1)^{i+1}(k+2-i)a^{2k-4i+4}\\
&&+a^{-2k}+a^{-2k-8}-ka^{2k+4},
\end{eqnarray*}
and the induction is completed.
Proposition 3.4.
The Kauffman bracket of the braid link \(\widehat{x_{1}^{b} x_{2}^{b}}\), when \(b\) is odd, is
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{b} x_{2}^{b}} \rangle &=& \sum_{i=1}^{b-1}i(-1)^{i+1}a^{6b-4i}+\sum_{i=1}^{b}(-1)^{i}(b-i)a^{2b-4i}+(b-2)a^{2b}\\
&&+a^{4-2b}+a^{-2b-4}.
\end{eqnarray*}
Proof.
Similar to the proof of proposition 3.3.
Proposition 3.5.
The Kauffman bracket of \(\widehat{x_{1}^{b} x_{2}^{m}}\), when \(b>m\geq2\), is
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{b} x_{2}^{m}} \rangle &=& \sum_{i=1}^{m-1}(-1)^{b+m+1-i}(i)a^{3(b+m)-4i}+(-1)^{b+1}(m-1)a^{3b-m}\\
&&+m\sum_{i=1}^{b-m-1}(-1)^{b+1-i}a^{3b-m-4i}+(-1)^{m+1}(m-1)a^{-b+3m}\\
&&+\sum_{i=1}^{m-2}(-1)^{m+1-i}(m-i)a^{-b+3m-4i}+2a^{-b-m+4}+a^{-b-m-4}.
\end{eqnarray*}
Proof.
We first verify the result for arbitrary \(b\) and \(m=2\):
Resolving all \(2^{3+2}\) crossings as were resolved for \(\langle \widehat{x_{1}^{2} x_{2}^{2}} \rangle\) in Proposition 3.3, we get
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{3} x_{2}^{2}} \rangle &=& -a^{11}+a^{7}-a^{3}+2a^{-1}+a^{-9}
\end{eqnarray*}
Similarly, we get
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber\langle \widehat{x_{1}^{4} x_{2}^{2}} \rangle &=& a^{14}-a^{10}+2a^{6}-a^{2}+2a^{-2}+a^{-10} \\
&=& -a^{3}\langle \widehat{x_{1}^{3} x_{2}^{2}} \rangle+a^{6}+a^{2}+2a^{-2}+a^{-10}+a^{-6}\\
\end{eqnarray}
(11)
\begin{eqnarray}
\nonumber\langle \widehat{x_{1}^{5} x_{2}^{2}} \rangle &=& -a^{17}+a^{13}-2a^{9}+2a^{5}-a+2a^{-3}+a^{-11}\\
&=& -a^{3}\langle \widehat{x_{1}^{4} x_{2}^{2}} \rangle+a^{5}+a+2a^{-3}+a^{-11}+a^{-7}
\end{eqnarray}
(12)
\begin{eqnarray}
\nonumber\langle \widehat{x_{1}^{6} x_{2}^{2}} \rangle &=& a^{20}-a^{16}+2a^{12}-2a^{8}+2a^{4}-1+2a^{-4}+a^{-12}\\
&=& -a^{3}\langle \widehat{x_{1}^{5} x_{2}^{2}} \rangle+a^{4}+1+2a^{-4}+a^{-8}+a^{-12}
\end{eqnarray}
(13)
It follows from (11), (12), and (13) that
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\nonumber \langle \widehat{x_{1}^{b} x_{2}^{2}} \rangle &=& -a^{3}\langle\widehat{x_{1}^{b-1} x_{2}^{2}}\rangle+a^{-b+10}+a^{-b+6}+2a^{-b+2}+a^{-b-2}+a^{-b-6}.
\end{eqnarray*}
Now suppose the result is true for \(b=t\) and \(m=2\), that is
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber\langle \widehat{x_{1}^{t} x_{2}^{2}} \rangle &=& (-1)^{-t+2}a^{3t+2}+(-1)^{t+1}a^{3t-2}+2\sum_{i=1}^{t-3}(-1)^{t+1-i}a^{3t-2-4i}\\
&&-a^{-t+6}+2a^{-t+2}+a^{-t-6}.
\end{eqnarray}
(14)
For \(b=t+1\), we have
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{t+1} x_{2}^{2}} \rangle &=& -a^{3}\langle\widehat{x_{1}^{t} x_{2}^{2}}\rangle+a^{-t+9}+a^{-t+5}+2a^{-t+1}+a^{-t-3}+a^{-t-7}\\
&=&-a^{3}\Big[(-1)^{-t+2}a^{3t+2}+(-1)^{t+1}a^{3t-2}+2\sum_{i=1}^{t-3}(-1)^{t+1-i}a^{3t-2-4i}\\
&&-a^{-t+6}+2a^{-t+2}+a^{-t-6}\Big]+a^{-t+9}+a^{-t+5}+2a^{-t+1}\\
&&+a^{-t-3}+a^{-t-7}\\
&=&(-1)^{t+3}a^{3t+5}+(-1)^{t+2}a^{3t+1}+2\sum_{i=1}^{t-3}(-1)^{t+2-i}a^{3t+1-4i}\\
&&+a^{-t+9}-2a^{-t+5}-a^{-t-3}+a^{-t+9}+a^{-t+5}+2a^{-t+1}\\
&&+a^{-t-3}+a^{-t-7}\\
&=&(-1)^{t+3}a^{3t+5}+(-1)^{t+2}a^{3t+1}\\
&&+\Big[2\sum_{i=1}^{t-3}(-1)^{t+2-i}a^{3t+1-4i}+2a^{-t+9}\Big]\\
&&-a^{-t+5}+2a^{-t+1}+a^{-t-7}\\
&=&(-1)^{(t+1)+2}a^{3(t+1)+2}+(-1)^{(t+1)+1}a^{3(t+1)-2}\\
&&+2\sum_{i=1}^{(t+1)-3}(-1)^{(t+1)+1-i}a^{3(t+1)-2-4i}\\
&&-a^{-(t+1)+6}+2a^{-(t+1)+2}+a^{-(t+1)-6}.
\end{eqnarray*}
Similarly, we get
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{b} x_{2}^{3}} \rangle &=& \sum_{i=1}^{2}(-1)^{b+4-i}(i)a^{3b+9-4i}+(-1)^{b+1}2a^{3b-3}\\
&&+3\sum_{i=1}^{b-4}(-1)^{b+1-i}a^{3b-3-4i}+2a^{-b+9}\\
&&-a^{-b+5}+2a^{-b+1}+a^{-b-7}
\end{eqnarray*}
and
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{b} x_{2}^{4}} \rangle &=& \sum_{i=1}^{3}(-1)^{b+5-i}(i)a^{3b+12-4i}+(-1)^{b+1}3a^{3b-4}\\
&&+4\sum_{i=1}^{b-5}(-1)^{b+1-i}a^{3b-4-4i}-3a^{-b+12}\\
&&+\sum_{i=1}^{2}(-1)^{5-i}(4-i)a^{-b+12-4i}+2a^{-b}+a^{-b-8}.
\end{eqnarray*}
Now with the assumption that the result is true for an arbitrary \(m\), we have
\begin{eqnarray*}
&&\\ &&\langle \widehat{x_{1}^{b} x_{2}^{m+1}} \rangle\\
=&& -a^3\langle \widehat{x_{1}^{b} x_{2}^{m}}\rangle+(-1)^{b}a^{3b-(m+1)+4}+\sum_{i=1}^{b-3}(-1)^{b+1-i}(i)a^{3b-(m+1)-4i}\\
&&+2a^{-b-(m+1)+4}+a^{-b-(m+1)}+a^{-b-(m+1)-4}
\end{eqnarray*}
\begin{eqnarray*}=&&\sum_{i=1}^{m-1}(-1)^{b+m+2-i}(i)a^{3(b+m)+3-4i}+(-1)^{b+2}(m-1)a^{3b-m+3}\\
&&+m\sum_{i=1}^{b-m-1}(-1)^{b+2-i}a^{3b-m+3-4i}+(-1)^{m+2}(m-1)a^{-b+3m+3}\\ &&+\sum_{i=1}^{m-2}(-1)^{m+2-i}(m-i)a^{-b+3m+3-4i}-2a^{-b-m+7}-a^{-b-m-1}
\end{eqnarray*}
\begin{eqnarray*}&&+(-1)^{b}a^{3b-(m+1)+4}+\sum_{i=1}^{b-3}(-1)^{b+1-i}(i)a^{3b-(m+1)-4i}\\
&&+2a^{-b-(m+1)+4}+a^{-b-(m+1)}+a^{-b-(m+1)-4}
\end{eqnarray*}
\begin{eqnarray*}=&&\sum_{i=1}^{(m+1)-1}(-1)^{b+(m+1)+1-i}(i)a^{3(b+(m+1))-4i}\\
&&+m\sum_{i=1}^{b-m-1}(-1)^{b+2-i}a^{3b-m+3-4i}+(-1)^{m+2}(m-1)a^{-b+3m+3}\\ &&+\sum_{i=1}^{m-2}(-1)^{m+2-i}(m-i)a^{-b+3m+3-4i}-2a^{-b-m+7}
\end{eqnarray*}
\begin{eqnarray*}&&+\sum_{i=1}^{b-3}(-1)^{b+1-i}(i)a^{3b-(m+1)-4i}+2a^{-b-(m+1)+4}+a^{-b-(m+1)-4}
\end{eqnarray*}
\begin{eqnarray*}=&&\sum_{i=1}^{(m+1)-1}(-1)^{b+(m+1)+1-i}(i)a^{3(b+(m+1))-4i}\\
&&+\Big[(-1)^{b+1}m a^{3b-m-1}+(-1)^{b}m a^{3b-m-5}+(-1)^{b-1}m a^{3b-m-9}\\
&&+\cdots+(-1)^{m+3}m a^{-b+3m+7}+\Big]+(-1)^{m+2}(m-1)a^{-b+3m+3}\\
&&+\Big[(-1)^{m+1}(m-1) a^{-b+3m-1}+(-1)^{m}(m-1) a^{-b+3m-5}\\
&&+(-1)^{m-1}(m-3) a^{-b+3m-9}+\cdots+(-1)^{4}2 a^{-b-m+11}+\Big]\\
&&-2a^{-b-m+7}
\end{eqnarray*}
\begin{eqnarray*}&&+\Big[\Big((-1)^{b}a^{3b-m-5}+(-1)^{b-1}a^{3b-m-9}+\cdots+(-1)^{m+3}a^{-b+3m+7}\Big)\\
&&+\Big((-1)^{m+2}a^{-b+3m+3}+(-1)^{m+1}a^{-b+3m-1}+(-1)^{m}a^{-b+3m-5}\\
&&+\cdots+(-1)^{4}a^{-b-m+11}\Big)\Big]+2a^{-b-(m+1)+4}+a^{-b-(m+1)-4}
\end{eqnarray*}
Now collecting terms of same exponents, we get
\begin{eqnarray*}=&&\sum_{i=1}^{(m+1)-1}(-1)^{b+(m+1)+1-i}(i)a^{3(b+(m+1))-4i}+(-1)^{b+1}m a^{3b-m-1}\\
&&+\Big[+(-1)^{b}(m+1) a^{3b-m-5}+(-1)^{b-1}(m+1)a^{3b-m-9}\\
&&+\cdots+(-1)^{m+3}(m+1)a^{-b+3m+7}+\Big]+(-1)^{m+2}(m)a^{-b+3m+3}\\
&&+\Big[(-1)^{m+1}(m)a^{-b+3m-1}+(-1)^{m}(m-1)a^{-b+3m-5}\\
&&+\cdots+(-1)^{4}3 a^{-b-m+11}-2a^{-b-m+7}\Big]\\
&&+2a^{-b-(m+1)+4}+a^{-b-(m+1)-4}
\end{eqnarray*}
which finally, in terms of summation form, is the required result.
Theorem 3.6.
For any \(b,m\geq2\),
$$\langle \widehat{x_{1}^{b} x_{2}^{m}} \rangle = \langle \widehat{x_{1}^{b}} \rangle \langle \widehat{x_{1}^{m}} \rangle.$$
Proof.
Depending on \(b\) and \(m\), the proof is divided into three cases: when \(b,m\) are even and equal, when \(b,m\) are odd and equal, and when \(b,m\) are distinct.
Case I. (When \(b\) and \(m\) are even and equal. )
In this case, letting \(m=b\), we show that \(\langle \widehat{x_{1}^{b} x_{2}^{m}} \rangle = \langle \widehat{x_{1}^{b}} \rangle \langle \widehat{x_{1}^{m}} \rangle.\) So, we proceed as follows:
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{2} x_{2}^{2}} \rangle &=& a^{8} + 2 + a^{-8}= (-a^{4}-a^{-4})(-a^{4}-a^{-4})=\langle \widehat{x_{1}^{2}} \rangle \langle \widehat{x_{1}^{2}} \rangle.
\end{eqnarray*}
Also, we have
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle &=& a^{20}-2a^{16}+3a^{12}-2a^{8}+3a^{4}-2+2a^{-4}+a^{-12} \\
&=& (-a^{10}+a^{6}-a^{2}-a^{-6})(-a^{10}+a^{6}-a^{2}-a^{-6})\\
&=& \langle \widehat{x_{1}^{4}} \rangle \langle \widehat{x_{1}^{4}} \rangle
\end{eqnarray*}
and
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\langle \widehat{x_{1}^{6} x_{2}^{6}} \rangle &=& a^{32}-2a^{28}+3a^{24}-4a^{20}+5a^{16}-4a^{12}+5a^{8}-4a^{4}\\
&&+3-2a^{-4}+2a^{-8}+a^{-16} \\
&=& (-a^{16}+a^{12}-a^{8}+a^{4}-a^{0}-a^{-8})(-a^{16}+a^{12}-a^{8}\\
&&+a^{4}-a^{0}-a^{-8})=\langle \widehat{x_{1}^{6}} \rangle \langle \widehat{x_{1}^{6}} \rangle.
\end{eqnarray*}
Now we assume that the result is true for \(b=k\), that is
$$\langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle = \langle \widehat{x_{1}^{k}} \rangle \langle \widehat{x_{1}^{k}} \rangle.$$
Since
\(\langle \widehat{x_{1}^{n}} \rangle = -a^{3(n)-2} + a^{3(n)-6} + a^{-2}(\langle \widehat{x_{1}^{n-2}} \rangle)\), we have
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber\langle \widehat{x_{1}^{k+2}} \rangle \langle \widehat{x_{1}^{k+2}} \rangle &=&\big[-a^{3k+4}+a^{3k}+a^{-2}(\langle \widehat{x_{1}^{k}} \rangle)\big]\big[-a^{3k+4}+a^{3k}\\
\nonumber&&+a^{-2}(\langle \widehat{x_{1}^{k}} \rangle)\big]\\
\nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+a^{6k}-2a^{3k+2}\langle \widehat{x_{1}^{k}} \rangle\\
\nonumber&&+2a^{3k-2}\langle \widehat{x_{1}^{k}} \rangle\\
\nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+a^{6k}+2a^{6k}-2a^{6k-4}\\
\nonumber&&+2a^{6k-8}-2a^{6k-12}+\cdots-2a^{2k+12}+2a^{2k+8}+2a^{2k}\\
\nonumber&&-2a^{6k-4}+2a^{6k-8}-2a^{6k-12}+2a^{6k-16}-\cdots+2a^{2k+8}\\
\nonumber &&-2a^{2k+4}-2a^{2k-4}\\
\nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+3a^{6k}-4a^{6k-4}+4a^{6k-8}\\
\nonumber&&-4a^{6k-12}+4a^{6k-16}-\cdots+4a^{2k+8}-2a^{2k+4}+2a^{2k}\\
&&-2a^{2k-4}.
\end{eqnarray}
(15)
Also
\begin{eqnarray}
% \nonumber to remove numbering (before each equation)
\nonumber\langle \widehat{x_{1}^{k+2} x_{2}^{k+2}} \rangle &=& a^{-4}\big[\langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle\big]-\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}\\
\nonumber &&+\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i+12}-2a^{2k-4}\\
\nonumber&&+\sum_{i=k}^{k+1}i(-1)^{i+1}a^{6k-4i+12}-ka^{2k+4}+(k+1)a^{2k}\\
\nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}-a^{6k-8}+2a^{6k-12}-3a^{6k-16}+4a^{6k-20}\\
\nonumber&&-\cdots-(k-3)(-1)^{k-2}a^{2k+8}-(k-2)(-1)^{k-1}a^{2k+4}\\
\nonumber &&-(k-1)(-1)^{k}a^{2k}+a^{6k+8}-2a^{6k+4}+3a^{6k}-4a^{6k-4}\\
\nonumber&&+5a^{6k-8}-6a^{6k-12}+7a^{6k-16}-8a^{6k-20}+\cdots\\
\nonumber&&+(k-3)(-1)^{k-2}a^{2k+24}+(k-2)(-1)^{k-1}a^{2k+20}\\
\nonumber&&+(k-1)(-1)^{k}a^{2k+16}-2a^{2k-4}+k(-1)^{k+1}a^{2k+12}\\
\nonumber &&+(k+1)(-1)^{k+2}a^{2k+8}-ka^{2k+4}+(k+1)a^{2k}\\
\nonumber &=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+3a^{6k}-4a^{6k-4}+4a^{6k-8}\\
\nonumber&&-4a^{6k-12}+4a^{6k-16}-\cdots+4a^{2k+8}-2a^{2k+4}+2a^{2k}\\
&&-2a^{2k-4}.
\end{eqnarray}
(16)
The result now follows from (15) and (16).
Case II. (When \(b\) and \(m\) are odd and equal. ) Similar to Case I.
Case III. (When \(b\) and \(m\) are distinct. )
In order to prove this part let us agree on the terminology:
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
\overline{x}_{n} &=& (-1)^{m+n}a^{3m-(4n-2)}, n=1,2,\ldots,m-1, \overline{x}_{m}=-a^{-m-2}\\
\overline{y}_{l} &=& (-1)^{b+l}a^{3b-(4l-2)}, l=1,2,\ldots,b-1, \overline{y}_{b}=-a^{-b-2}\\
i&=&1,2,\ldots,m, j=1,2,\ldots,b; b\geq2\\
\end{eqnarray*}
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
&&\langle \widehat{x_{1}^{b}} \rangle \langle \widehat{x_{1}^{m}}\rangle \\ &=&\sum_{i+j=2}^{m}\overline{x}_{i}\overline{y}_{j}+\sum_{i+j=m+1, i\neq m}\overline{x}_{i}\overline{y}_{j}+\Big[\sum_{i+j=m+2, i\neq m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{1}\\
&&+\sum_{i+j=m+3, i\neq m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{2}+\cdots+\sum_{i+j=b, i\neq m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m-1}\Big]\\
&&+\Big[\sum_{i+j=b+1, i\neq 1,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m}\Big]+
\Big[\Big(\sum_{i+j=b+2, i\neq 2,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m+1}+\overline{x}_{1}\overline{y}_{b}\Big)\\
&&+\Big(\sum_{i+j=b+3, i\neq 3,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m+2}+\overline{x}_{2}\overline{y}_{b}\Big)+\cdots\\
&&+\Big(\sum_{i+j=b+m-3, i\neq m-3,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-4}+\overline{x}_{m-4}\overline{y}_{b}\Big)\\
&&+\Big(\overline{x}_{m-1}\overline{y}_{b-1}+\overline{x}_{m}\overline{y}_{b-3}+\overline{x}_{m-3}\overline{y}_{b}\Big)
+\Big(\overline{x}_{m}\overline{y}_{b-2}+\overline{x}_{m-2}\overline{y}_{b}\Big)\Big]\\
&&+\Big(\overline{x}_{m}\overline{y}_{b-1}+\overline{x}_{m-1}\overline{y}_{b}\Big)+\overline{x}_{m}\overline{y}_{b}
\end{eqnarray*}
Since this agrees with the result of Proposition 3.5, the proof is finished.
Competing Interests
The author(s) do not have any competing interests in the manuscript.