In this article, the authors obtain the boundedness of the fractional Marcinkiewicz integral with variable kernel on Morrey-Herz spaces with variable exponents \(\alpha\) and \(p\). The corresponding boundedness for commutators generalized by the Lipschitz function is also considered.
In \(1938\) Marcinkiewicz [1] introduced the Marcinkiewicz integral. Later, Stain [2] studied the bounded of Marcinkiewicz integral on \(L^{p}(\mathbb{R}^{n})\) for any \( p\in (0,1]\) and bounded from \(L^{1}(\mathbb{R}^{n})\) to \(L^{1,\infty}(\mathbb{R}^{n})\). Torchinsky and Wang in [3] discussed the boundedness for the commutator generated by the Marcinkiewicz integral \(\mu_{\Omega}\) and \(BMO(\mathbb{R}^{n})\) function on Lebesgue spaces \(L^{p}(\mathbb{R}^{n})\). Pan and Wang [4] established the boundedness of fractional Marcinkiewicz integrals with variable kernels on Hardy type spaces.
Moving in another direction, Kov\(\acute{a}\check{c}\)ik and R\(\acute{a}\)kosn\(\acute{i}\)k [5] introduced the class of variable exponent Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^{n})\), after that many authors has been interested in studying the function spaces with variable exponents [6, 7, 8, 9, 10, 11]. Izuki [12] and [13] introduced the class of variable exponent Herz-Morrey space \( {M\dot{K}_{q,p(\cdot)}^{\alpha,\lambda}(\mathbb{R}^{n})}\) and the boundedness of the sublinear operator satisfying size condition and fractional integral on those spaces were proved. Hongbin Wang [14] studied the commutator of Marcinkiewicz integrals on Herz spaces with variable exponent. In recent years, Yan Lu and Yue Ping [15] introduced the class of \( {M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\) and also established the boundedness of multilinear Calder\'{o}n-Zygmund singular operators on those spaces.
In this paper, we consider the boundedness of the fractional Marcinkiewicz integral with variable kernel \([\mu_{\Omega,\gamma}]\) and its commutators \([b^{m}, \mu_{\Omega,\gamma}]\) on \(M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})\).
Now assume that \(S^{n-1} (n\geq2)\) the unit sphere in \(\mathbb{R}^{n}\) with the normalized Lebesgue measure \( d\sigma(x’)\). Let \(\Omega\in{L}^{\infty}(\mathbb{R}^{n})\times{L^{r}(S^{n-1})}(r\geq1)\) be homogeneous of degree zero and satisfy the vanishing condition on \( S^{n-1}\), that is
Definition 1.1. [5] Let \(p(\cdot): E \rightarrow {[1,\infty)}\) be a measurable function. The Lebesgue space with variable exponent \(L^{p(\cdot)}(E)\) is defined by \[ L^{p(\cdot)}(E)= \{{ f~ \mbox{is measurable}: \int\limits_{E}\left(\frac{|f(x)|}{\eta}\right)^{p(x)} dx < \infty}~ \mbox{for some constant } \eta > 0\}.\] The space \(L _{loc}^{p(\cdot)} {(E)}\) is defined by $$ L_{loc}^{p(\cdot)} {(E)}= \{ \mbox {\(f\) is measurable}: f\in {L^{p(\cdot)} {(K)}} \mbox{ for all compact}~ K\subset{E}\}. $$ The Lebesgue spaces \(L^{p(\cdot)} {(E)}\) is a Banach spaces with the norm defined by $$ \|f\|_{L^{p(\cdot)}(E)}= \inf\{\eta> 0 : \int\limits_{E}\left(\frac{|f(x)|}{\eta}\right)^{p(x)}dx \leq 1\}. $$
We denote \(p_{-}=\) essinf \(\{p(x): x \in E\} , \) \( p_{+}=\) esssup\( \{p(x): x \in E\} \). Then \(\mathcal{P}(E)\) consists of all \(p(\cdot)\) satisfying \(p_{-} > 1\) and \(p_{+} 0\) such that $$ | \alpha(x)-\alpha(0)|\leq \frac{C_{log}}{log(e + \frac{1}{|x|})},\;\;\;\;\;\;\; \forall{x}\in \mathbb{R}^{n}.$$ If for some \(\alpha_{\infty}\in\mathbb{R} \) and \(C_{log}> 0\), we have $$ | \alpha(x)-\alpha_{\infty}|\leq \frac{C_{log}}{log(e + {|x|})},\;\;\;\;\;\;\;\forall{x}\in \mathbb{R}^{n}.$$ Then \(\alpha(\cdot)\) is called log-Hölder continuous at infinity (or has a log decay at infinity).
By \( \mathcal{P}_{0}^{log}(\mathbb{R}^{n}) \) and \( \mathcal{P}_{\infty}^{log}(\mathbb{R}^{n}) \) we denote the class of all exponents \(p\in \mathcal{P}(\mathbb{R}^{n})\) which have a log decay at the origin and at infinity, respectively. It is worth noting that if \( p(\cdot)\in \mathcal{P}_{0}^{log}(\mathbb{R}^{n}) \cap \mathcal{P}_{\infty}^{log}(\mathbb{R}^{n}) \), then we have \(p(\cdot)\in \mathfrak{B}(\mathbb{R}^{n}).\)
Let \(B_{k}=\{ x\in\mathbb{R}^{n} : |x|\leq 2^{k}\}, C_{k}= B_{k}\backslash B_{k-1}, \chi_{k}= \chi_{B_{k}}, k \in{\mathbb{Z}}.\) Almeida and Direhem in [1] introduced the following definition.
Definition 1.2. Let \( 0< q \leq \infty , p(\cdot)\in \mathcal{P} (\mathbb{R}^{n})\) and \(\alpha(\cdot):\mathbb{R}^{n}\longrightarrow \mathbb{R}\) with \(\alpha \in L^{\infty}(\mathbb{R}^{n})\).
Definition 1.3. Let \( 0< q \leq \infty , p(\cdot)\in \mathcal{P} (\mathbb{R}^{n})\),\(0\leq\lambda< \infty\) and \(\alpha(\cdot):\mathbb{R}^{n}\longrightarrow \mathbb{R}\) with \(\alpha \in L^{\infty}(\mathbb{R}^{n})\). The homogeneous Morrey-Herz space \(M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})\) is defined as the set of all \( f \in {L^{p(\cdot)}_{loc}}(\mathbb{R}^{n} \setminus\{0\})\) such that $$ \|f\|_{M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}:= \sup_{L\in\mathbb{Z}}2^{-L\lambda}\left( \sum_{k=-\infty}^{L}\|2^{k\alpha(\cdot)}f\chi_{k}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q} \right)^{1/q}< \infty, $$ with the usual modification when \(q=\infty.\)
Remark 1.1. If \(\alpha(\cdot)\) is constant, then \({M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}={M\dot{K}_{q,p(\cdot)}^{\alpha,\lambda}(\mathbb{R}^{n})}\). If \(\lambda=0\), then \({M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}={\dot{K}_{q,p(\cdot)}^{\alpha(\cdot)}(\mathbb{R}^{n})}\). If both \(\alpha(\cdot)\) and \(p(\cdot)\) are constant and \(\lambda=0\), then \({M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}={\dot{K}_{q,p}^{\alpha}(\mathbb{R}^{n})}\) is the classical Herz space introduced in [17].
Definition [18] For \(0< \beta \leq 1\), the Lipschitz space \(Lip_{\beta}(\mathbb{R}^{n})\) is defined by $$ Lip_{\beta}(\mathbb{R}^{n})= \left\{ f : \|f\|_{Lip_{\beta}}= \sup\limits_{x,y\in\mathbb{R}^{n}, x\neq y }\frac{|f(x)-f(y)|}{|x-y|^{\beta}} < \infty\right\}. $$
Lemma 2.1. Let \(0< q \leq \infty\), \(p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\),\(0\leq\lambda< \infty\) and \(\alpha \in L^{\infty}(\mathbb{R}^{n})\). If \(\alpha(\cdot)\) is log-Hölder continuous both at the origin and at infinity, then $$ \begin{array}{ll} \| f\|_{M\dot{K}_{q,p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\approx max \left\{{\sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda } \left(\sum\limits_{k=-\infty}^{k_{0}}2^{k\alpha(0)q} \left\|f\chi_{k}\right\|^{q}_{L^{p(\cdot)}(\mathbb{R}^{n})}\right)^{1/q}}, \right.\\ \left. \sup\limits_{k_{0}\geq 0,k_{0}\in \mathbb{Z}} \left[2^{-k_{0}\lambda } \left(\sum\limits_{k=-\infty}^{-1} 2^{k\alpha(0)q}\left\|f\chi_{k}\right\|^{q}_{L^{p(\cdot)}(\mathbb{R}^{n})}\right)^{1/q}\right] \right.\\ \left. + \left[2^{-k_{0}\lambda }\left( \sum\limits_{k=0}^{k_{0}}2^{k\alpha_{\infty}q} \left\|f\chi_{k}\right\|^{q}_{L^{p(\cdot)}(\mathbb{R}^{n})}\right)^{1/q}\right]\right\}. \end{array} $$
Lemma 2.2. [10]
Lemma 2.3. [19] Suppose that \(p_{1}(\cdot)\in \mathfrak{B}(\mathbb{R}^{n})\), \(\Omega\in{L}^{\infty}(\mathbb{R}^{n})\times{L^{r}(S^{n-1})}\). Let \(0< \gamma\leq\frac{n}{( p_{1})_{+}} \), and define \(p_{2}(\cdot)\) by: \(\frac{1}{p_{1}(x)} – \frac{1}{p_{2}(x)} = \frac{\gamma}{n}\), then for all \(f \in L^{p_{1}(\cdot)}(\mathbb{R}^{n})\), we have $$\|T_{\Omega , \gamma} f\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C \| f\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}.$$
Lemma 2.4. [20] Suppose that \(p_{1}(\cdot)\in \mathfrak{B}(\mathbb{R}^{n})\), \( b\in Lip_{\beta}(\mathbb{R}^{n})\), \(0 < \beta\leq1\), \(\Omega\in{L}^{\infty}(\mathbb{R}^{n})\times{L^{r}(S^{n-1})}\). Let \(0< \gamma+ m\beta\leq\frac{n}{( p_{1})_{+}} \), and define \(p_{2}(\cdot)\) by : \(\frac{1}{p_{1}(x)} – \frac{1}{p_{2}(x)} = \frac{\gamma + m\beta}{n}\). Then for all \(f \in L^{p_{1}(\cdot)}(\mathbb{R}^{n})\), we have $$ \|[ b^{m} ,T_{\Omega, \gamma}] f\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C \|b\|^{m}_{Lip_{\beta}} \| f\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}. $$
Lemma 2.5.
Proof.
Lemma 2.6. [21] If \(0< \gamma< n\) and \(p(\cdot), q(\cdot)\in \widetilde{B}\) such that \(p^{+}< \frac{n}{\gamma}\) and define $$ \frac{1}{p(x)}-\frac{1}{q(x)}=\frac{\gamma}{n}, ~~~~~~~~~ x\in \mathbb{R}^{n}, $$ we have $$ \|\chi_{B}\|_{L^{q(\cdot)}(\mathbb{R}^{n})}\sim |B|^{-\frac{\gamma}{n}}\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}. $$
Lemma 2.7. [8] If \(p(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\), then there exist constants \(\delta_{1},\delta_{2},C > 0 \) such that for all balls \(B\) in \(\mathbb{R}^{n}\) and all measurable subset \(S\subset B\) $$ \frac{\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}} {\|\chi_{S}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}} \leq C \frac{|B|}{|S|} ,~ \frac{\|\chi_{S}\|_{L^{p’_{1}(\cdot)}(\mathbb{R}^{n})}} {\|\chi_{B}\|_{L^{p’_{1}(\cdot)}(\mathbb{R}^{n})}} \leq C \left(% \begin{array}{ccc} \frac{|S|}{|B|}\end{array}\right)^{\delta_{1}}, ~ \frac{\|\chi_{S}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}} {\|\chi_{B}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}} \leq C \left(% \begin{array}{ccc} \frac{|S|}{|B|}\end{array}\right)^{\delta_{2}}. $$
Lemma 2.8. [6] If \(p(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\), there exists constant \(C > 0\) such that for any balls B in \(\mathbb{R}^{n}\), we have $$ \frac{1}{|B|}\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \|\chi_{B}\|_{L^{p'(\cdot)}(\mathbb{R}^{n})}\leq C. $$
Lemma 2.9.[7] Let \(b\in Lip_{\beta}(\mathbb{R}^{n})\), \(m\) be a positive integer, and there exist constants \(C> 0\), such that for any \( l,j \in\mathbb{Z}\) with \(l>j\) \( (1)~ C^{-1}\|b\|^{m}_{Lip_{\beta}}\leq |B|^{-m\beta/n}\|\chi_{B}\|^{-1}_{L^{p(\cdot)}(\mathbb{R}^{n})}\|( b- b_{B})^{m}\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \leq C \|b\|^{m}_{Lip_{\beta}}\) \( (2)~\|( b- b_{B_{j}})^{m}\chi_{B_{k}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \leq C |B_{k}|^{m\beta/n} \|b\|^{m}_{Lip_{\beta}}\| \chi_{B_{k}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}.\)
Theorem 3.1. Suppose that \( 0< \gamma< n,0< q\leq\infty\) and \(\Omega\in{L}^{\infty}(\mathbb{R}^{n})\times{L^{r}(S^{n-1})}\) \((1< r\leq \infty)\). Let \(p_{1}(\cdot), p_{2}(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\), \(1\leq r' < (p_{1})_{-}\leq (p_{1})_{+} < \frac{n}{\gamma}\), \(\frac{1}{p_{1}(x)} – \frac{1}{p_{2}(x)} = \frac{\gamma}{n}\) and let \(\alpha(x)\in L^{\infty}(\mathbb{R}^{n})\) be log-Hölder continuous both at the origin and at infinity, such that
\({M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\) to \({M\dot{K}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\).
Proof. If \(f \in {M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\), we applying $$\left[ \sum\limits_{j=1}^{\infty}a_{j}\right]^{q_{1}/q_{2}}\leq \sum\limits_{j=1}^{\infty}a_{j}^{q_{1}/q_{2}}, \,\,\,\,\,\,\, a_{1}, a_{2} ….\geq 0.$$ \begin{align*} \left\|\mu_{\Omega, \gamma} f_{j}\right\|^{q_{1}}_{M\dot{K}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}&= \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \left\{\sum_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\mu_{\Omega,\gamma} (f)\chi_{k}\right\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}^{q_{2}}\right\}^{q_{1}/q_{2}}\\ &\leq \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\mu_{\Omega,\gamma} (f)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}. \end{align*} If we denote $$ f(x) = \sum_{j=-\infty}^{\infty}f(x)\chi_{j}= {\sum_{j=- \infty}^{ \infty}} f_{j}(x). $$ Then, we have \begin{align*} & \left\|\mu_{\Omega,\gamma} f_{j}\right\|^{q_{1}}_{M\dot{K}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\\ &\leq \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=-\infty}^{\infty}|\mu_{\Omega,\gamma} f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\\ &\leq \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=-\infty}^{k-2}|\mu_{\Omega,\gamma} f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\\ &\quad+ \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=k-1}^{k+1}|\mu_{\Omega,\gamma} f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\\ &\quad+ \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=k+2}^{\infty}|\mu_{\Omega,\gamma} f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})},\\ &L_{11}+ L_{12}+L_{13}. \end{align*} Therefore, we have
\sigma +\alpha_{-} \), we obtain that \begin{align*} F &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} 2^{k\alpha(0)q_{1}}\sum\limits_{j=k+2}^{\infty}2^{(k-j)\sigma q_{1}} \|f_{j}\|^{q_{1}}_{L^{p_{1}(\cdot)}}\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} 2^{k\alpha(0)q_{1}}\sum\limits_{j=k+2}^{k_{0}-1}2^{(k-j)\sigma q_{1}} \|f_{j}\|^{q_{1}}_{L^{p_{1}(\cdot)}}\\ &~~~~+ \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} 2^{k\alpha(0)q_{1}}\sum\limits_{j=k_{0}}^{\infty}2^{(k-j)\sigma q_{1}} \|f_{j}\|^{q_{1}}_{L^{p_{1}(\cdot)}}\\ &= F_{1}+F_{2}. \end{align*} For \(F_{1} \), we haveFor \(F_{2} \), since \( \lambda-\sigma-\alpha(0)< \lambda-\sigma-\alpha_{-}\), we obtain that\begin{align} F_{1} &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{j=-\infty}^{k_{0}-1} 2^{j\alpha(0)q_{1}}\|f_{j}\|^{q_{1}}_{L^{p_{1}(\cdot)}} \sum\limits_{k=-\infty}^{j-2}2^{(k-j)(\sigma + \alpha(0)) q_{1}}\nonumber\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{j=-\infty}^{k_{0}-1} 2^{j\alpha(0)q_{1}}\|f_{j}\|^{q_{1}}_{L^{p_{1}(\cdot)}} \nonumber\\ &\leq C\| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{align}(24)Case 2: If \(1< q_{1}< \infty\), we get \begin{align*} F &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} 2^{k\alpha(0)q_{1}}\left(\sum\limits_{j=k+2}^{k_{0}}2^{(k-j)\sigma \|f_{j}\|_{L^{p_{1}(\cdot)}}}\right)^{q_{1}}\\ &+ \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} 2^{k\alpha(0)q_{1}}\left(\sum\limits_{j=k_{0}+1}^{\infty}2^{(k-j)\sigma \|f_{j}\|_{L^{p_{1}(\cdot)}}}\right)^{q_{1}}\\ &= F_{3} + F_{4}. \end{align*} For \(F_{3}\), using Hölder's inequality, we have\begin{align} F_{2} &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} 2^{k\alpha(0)q_{1}}\sum\limits_{j=k_{0}}^{\infty}2^{(k-j)\sigma q_{1}} 2^{-j\alpha(0)q_{1}} 2^{j\lambda q_{1}}\nonumber\\ &\qquad \times 2^{-j\lambda q_{1}}\sum\limits_{m=-\infty}^{j}2^{m\alpha(0)q_{1}} \|f_{m}\|^{q_{1}}_{L^{p_{1}(\cdot)}}\nonumber\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}}\left( \sum\limits_{k=-\infty}^{k_{0}} 2^{k(\sigma+\alpha(0))q_{1}}\right)\nonumber\\ &\times\left(\sum\limits_{j=k_{0}}^{\infty}2^{j(\lambda-\sigma -\alpha(0))q_{1}} \right) \| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\nonumber\\ &\leq C \| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{align}(25)For \(F_{4}\), we have\begin{align} F_{3} &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \sum\limits_{j=k+2}^{k_{0}}2^{j\alpha(0)q_{1}} \|f_{j}\|_{L^{p_{1}(\cdot)}} 2^{(k-j)(\sigma+\alpha(0))q_{1}/2}\nonumber\\ &\quad\times\left( \sum\limits_{j=k+2}^{k_{0}} 2^{(k-j)(\sigma+\alpha(0))q'_{1}/2}\right)^{q_{1}/q'_{1}}\nonumber\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \sum\limits_{j=k+2}^{k_{0}}2^{j\alpha(0)q_{1}} \|f_{j}\|_{L^{p_{1}(\cdot)}} 2^{(k-j)(\sigma+\alpha(0))q_{1}/2}\nonumber\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{j=-\infty}^{k_{0}} 2^{j\alpha(0)q_{1}} \|f_{j}\|_{L^{p_{1}(\cdot)}}\sum\limits_{k=-\infty}^{j-2} 2^{(k-j)(\sigma+\alpha(0))q_{1}/2}\nonumber\\ &\leq C \| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{align}(26)We can omit the estimate of \(G \) since it is essentially similar to that of \(F\). Hence the proof of Theorem 3.1 is completed.\begin{align} F_{4}&\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}}\nonumber\\ &\times\left(\sum\limits_{j=k_{0}+1}^{\infty} 2^{j\alpha(0)}\|f_{j}\|_{L^{p_{1}(\cdot)}} 2^{(k-j)(\sigma+\alpha(0)+\lambda)/2} 2^{(k-j)(\sigma+\alpha(0)-\lambda)/2}\right)^{q_{1}}\nonumber\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \sum\limits_{j=k_{0}+1}^{\infty} 2^{j\alpha(0)}\|f_{j}\|_{L^{p_{1}(\cdot)}} 2^{(k-j)(\sigma+\alpha(0)+\lambda)q_{1}/2}\nonumber\\ \qquad &\times \left(\sum\limits_{j=k_{0}+1}^{\infty}2^{(k-j)(\sigma+\alpha(0)-\lambda)q_{1}'/2}\right)^{q_{1}/q'_{1}}\nonumber\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \sum\limits_{j=k_{0}+1}^{\infty} 2^{j\alpha(0)}\|f_{j}\|_{L^{p_{1}(\cdot)}} 2^{(k-j)(\sigma+\alpha(0)+\lambda)q_{1}/2}\nonumber\\ &\leq C \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \sum\limits_{j=k_{0}+1}^{\infty} 2^{(k-j)(\sigma+\alpha(0)+\lambda)q_{1}/2} 2^{j\lambda q_{1}} \times 2^{-j\lambda q_{1}}\nonumber\\ &\times \sum\limits_{m=-\infty}^{j} 2^{m\alpha(0)q_{1}}\|f_{m}\|^{q_{1}}_{L^{p_{1}(\cdot)}}\nonumber\\ &\leq C \ \sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} 2^{k\lambda q_{1}} \sum\limits_{j=k_{0}+1}^{\infty} 2^{(k-j)(\sigma+\alpha(0)-\lambda)q_{1}/2} \| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\nonumber\\ &\leq C \| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{align}(27)Theorem 3.2. Suppose that \(b\in Lip_{\beta}(\mathbb{R}^{n})\), \( m\in\mathbb{N}\), \( 0< \gamma< n,0< q\leq\infty,\) and \(\Omega\in{L}^{\infty}(\mathbb{R}^{n})\times{L^{r}(S^{n-1})} \) \((1< r \leq \infty) \). Let \(p_{1}(\cdot), p_{2}(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\), \(1\leq r' < (p_{1})_{-}\leq (p_{1})_{+} < \frac{n}{\gamma+m\beta}\), \(\frac{1}{p_{1}(x)} – \frac{1}{p_{2}(x)}= \frac{\gamma+m\beta}{n}\) and let \(\alpha(x)\in L^{\infty}(\mathbb{R}^{n})\) be log-Hölder continuous both at the origin and at infinity and satisfying (1.7). Then \([b^{m},\mu_{\Omega,\gamma}]\) is bounded from \({M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\) to \({M\dot{K}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\).
Proof. If \(f \in {M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\), we applying \(\left[ \sum\limits_{j=1}^{\infty}a_{j}\right]^{q_{1}/q_{2}}\leq \sum\limits_{j=1}^{\infty}a_{j}^{q_{1}/q_{2}}\), \( a_{1} , a_{2} …. \geq 0.\) \begin{align*} &\left\|[b^{m},\mu_{\Omega , \gamma} ]f_{j}\right\|^{q_{1}}_{M\dot{K}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\\&= \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \left\{\sum_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}[b^{m},\mu_{\Omega,\gamma}] (f)\chi_{k}\right\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}^{q_{2}}\right\}^{q_{1}/q_{2}}\\ &\leq \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}[b^{m},\mu_{\Omega,\gamma}] (f)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}. \end{align*} If we denote $$ f(x) = \sum_{j=-\infty}^{\infty}f(x)\chi_{j}= {\sum_{j=- \infty}^{ \infty}} f_{j}(x). $$ Then we have \begin{align*} &\left\|[b^{m},\mu_{\Omega,\gamma} ]f_{j}\right\|^{q_{1}}_{M\dot{K}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\\ &\leq \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=-\infty}^{\infty}|[b^{m},\mu_{\Omega,\gamma}] f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\\ &\leq \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=-\infty}^{k-2}|[b^{m},\mu_{\Omega,\gamma}] f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\\ &\quad+ \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=k-1}^{k+1}|[b^{m},\mu_{\Omega,\gamma}] f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\\ &\quad+ \sup\limits_{k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(\cdot)}\left(\sum\limits_{j=k+2}^{\infty}|[b^{m},\mu_{\Omega,\gamma}] f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\\ &=L_{21}+ L_{22}+L_{23}. \end{align*} First, we consider \(L_{22}\). Noting that \([ b^{m} ,\mu_{\Omega,\gamma}]\) is bounded on \(L^{p(\cdot)}(\mathbb{R}^{n})\) (Lemmas 2.5), as argued about \(L_{12}\) in the proof of Theorem 3.1, immediately get
Now we consider \(L_{21}\), we have \begin{align*} |[b^{m},\mu_{\Omega,\gamma}f(x)]| &\leq \left(\int\limits_{0}^{|x|}\left|\int_{|x-y|\leq t}\frac{\Omega(x, x-y )}{|x -y|^{n-\gamma-1}}[b(x) – b(y)]f_{j}(y)dy\right|^{2}\frac{dt}{t^{3}}\right)^{\frac{1}{2}}\\ &\quad+ \left(\int\limits_{|x|}^{\infty}\left|\int_{|x-y|\leq t}\frac{\Omega(x, x-y )}{|x -y|^{n-\gamma-1}}[b(x) – b(y)]f_{j}(y)dy\right|^{2}\frac{dt}{t^{3}}\right)^{\frac{1}{2}}\\ &= J_{1}+ J_{2}. \end{align*} Noting that \( x \in C_{k}\), \(j \leq k-2 \), then \( | x- y|\sim |x|\sim |2^{k}|\). By (10) and Minkowski inequality, we show that \begin{align*} J_{1}&\leq C \int_ {\mathbb{R}^{n}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma-1}}|b(x)- b(y)|^{m}|f_{j}(y)| \left(\int\limits_{|x-y|}^{|x|}\frac{dt}{t^{3}}\right)^{\frac{1}{2}}dy\\ &\leq C \int_{ \mathbb{R}^{n}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma-1}}|b(x)- b(y)|^{m}|f_{j}(y)| \left|\frac{1}{|x-y|^{2}}-\frac{1}{|x|^{2}}\right|^{\frac{1}{2}}dy\\ &\leq C \int_{ \mathbb{R}^{n}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma-1}}|b(x)- b(y)|^{m}|f_{j}(y)| \frac{|y|^{\frac{1}{2}}}{|x-y|^{\frac{3}{2}}}dy\\ &\leq C 2^{(j-k)\frac{1}{2}} \int\limits_{ C_{j}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma}}|b(x)- b(y)|^{m}|f_{j}(y)| dy\\ &\leq C \int\limits_{ C_{j}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma}}|b(x)- b(y)|^{m}|f_{j}(y)| dy. \end{align*} Similarly, we estimate \(J_{1}\). By the Minkowski inequality, we have \begin{align*} J_{2}&\leq C \int_ {\mathbb{R}^{n}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma-1}}|b(x)- b(y)|^{m}|f_{j}(y)| \left(\int\limits_{|x|}^{\infty}\frac{dt}{t^{3}}\right)^{\frac{1}{2}}dy\\ &\leq C \int\limits_ {C_{j}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma-1}}|b(x)- b(y)|^{m}|f_{j}(y)| \frac{1}{|x|}dy\\ &\leq C \int\limits_{ C_{j}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma}}|b(x)- b(y)|^{m}|f_{j}(y)| dy. \end{align*} So, we obtain that \begin{align*} |[b^{m},\mu_{\Omega,\gamma}f(x)]| &\leq C \int\limits_{ C_{j}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma}}|b(x)- b(y)|^{m}|f_{j}(y)| dy\\ &\leq C 2^{-k(n-\gamma)}\int\limits_{ C_{j}}|\Omega(x, x-y )||b(x)- b(y)|^{m}|f_{j}(y)| dy\\ &\leq C 2^{-k(n-\gamma)}|b(x)- b_{j}|^{m}\int\limits_{ C_{j}}|\Omega(x, x-y )||f_{j}(y)| dy\\ &\quad+ 2^{-k(n-\gamma)}\int\limits_{ C_{j}}|\Omega(x, x-y )||b(y)- b_{j}|^{m}|f_{j}(y)| dy\\ &= A_{1} + A_{2} \end{align*} For \(A_{1}\), it is easy to check that $$A_{1}\leq C 2^{-k(n-\gamma)}2^{(k-j)\frac{n}{r}}|b(x)- b_{j}|^{m} \|f_{j}(y)\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\|\chi_{B_{j}}\|_{L^{p’_{1}(\cdot)}(\mathbb{R}^{n})}. $$ Now we consider \(A_{2}\). By the generalized Hölder’s inequality, we have $$A_{2}\leq C 2^{-k(n-\gamma)}\|\Omega(x, x-y )\|_{L^{r}(\mathbb{R}^{n})}\|f_{j}(y)(b(y)- b_{j})^{m}\|_{L^{r’}(\mathbb{R}^{n})} $$ Similar to (13), (14) and applying Lemma 2.9, we have \begin{align*} &\quad\|f_{j}(y)(b(y)- b_{j})^{m}\|_{L^{r’}(\mathbb{R}^{n})}\\ &\leq \|f_{j}\|_{L^{p_{1}(\cdot)}} \|(b(y)-b_{j})^{m}\chi_{B_{j}}\|_{L^{\widetilde{p_{1}}(\cdot)}}\\ &\leq C \|b\|^{m}_{Lip_{\beta}} \|f_{j}\|_{L^{p_{1}(\cdot)}} |B_{j}|^{\frac{m\beta}{n}} \|\chi_{B_{j}}\|_{L^{\widetilde{p_{1}}(\cdot)}}\\ &\leq C \|b\|^{m}_{Lip_{\beta}} |B_{j}|^{-\frac{1}{r}} \|f_{j}\|_{L^{p_{1}(\cdot)}}|B_{j}|^{\frac{m\beta}{n}} \|\chi_{B_{j}}\|_{L^{{p’_{1}}(\cdot)}}. \end{align*} Thus, we obtain $$A_{2}\leq C \|b\|^{m}_{Lip_{\beta}} 2^{-k(n-\gamma)} 2^{(k-j)\frac{n}{r}} \|f_{j}\|_{L^{p_{1}(\cdot)}}|B_{j}|^{\frac{m\beta}{n}} \|\chi_{B_{j}}\|_{L^{{p’_{1}}(\cdot)}}$$ From \(A_{1}, A_{2}\) and again applying Lemma 2.9, we have \begin{align*} &\quad\left\| 2^{k\alpha(\cdot)}\sum\limits_{j=-\infty}^{k-2}[b^{m},\mu_{\Omega,\gamma}]f_{j},\chi_{k}\right\|_{L^{p_{2}(\cdot)}}\\ &\leq C \sum\limits_{j=-\infty}^{k-2} 2^{-k(n-\gamma)} 2^{(k-j)\frac{n}{r}}2^{(k-j)\alpha_{+}} \|2^{j\alpha(\cdot)}f_{j}\|_{L^{p_{1}(\cdot)}}\\&~\times \left[\|(b(x)- b_{j})^{m}\chi_{k}\|_{L^{p_{2}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} +\|b\|^{m}_{Lip_{\beta}}|B_{j}|^{\frac{m\beta}{n}} \|\chi_{j}\|_{L^{{p_{1}’}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}\right]\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=-\infty}^{k-2} 2^{-k(n-\gamma)} 2^{(k-j)\frac{n}{r}}2^{(k-j)\alpha_{+}} \|2^{j\alpha(\cdot)}f_{j}\|_{L^{p_{1}(\cdot)}}\\&~\times \left[|B_{k}|^{\frac{m\beta}{n}}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{k}\|_{L^{{p_{2}}(\cdot)}} +|B_{j}|^{\frac{m\beta}{n}} \|\chi_{j}\|_{L^{{p_{1}’}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}\right]. \end{align*} Noting that, if \(\frac{1}{p_{1}(\cdot)}-\frac{1}{p_{2}(\cdot)}=\frac{\gamma+m\beta}{n}\), then \(C_{1}|B|^{\frac{\gamma+m\beta}{n}}\|\chi_{B}\|_{L^{p_{2}(\cdot)}}\leq \|\chi_{B}\|_{L^{p_{1}(\cdot)}} \leq C_{2}|B|^{\frac{\gamma+m\beta}{n}}\|\chi_{B}\|_{L^{p_{2}(\cdot)}}\) (see[22],p.370).\begin{equation} L_{22}\leq C \|b\|^{m q_{1}}_{Lip_{\beta}(\mathbb{R}^{n})} \| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{equation}(28)
From this, and using Lemmas 2.7-2.8, we haveFurthermore, when \(\alpha_{+} < n\delta_{1}-\frac{n}{r}\), then the same arguments as \(L_{11}\) before, we can conclude that for all \(0< q< \infty\),\begin{align} &\left\| 2^{k\alpha(\cdot)}\sum\limits_{j=-\infty}^{k-2}[b^{m},\mu_{\Omega,\gamma}]f_{j},\chi_{k}\right\|_{L^{p_{2}(\cdot)}}\nonumber\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=-\infty}^{k-2} 2^{-kn} 2^{(k-j)\frac{n}{r}}2^{(k-j)\alpha_{+}} \|2^{j\alpha(\cdot)}f_{j}\|_{L^{p_{1}(\cdot)}}\nonumber\\ &\quad\times \left[\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{{p_{1}}(\cdot)}} +\frac{|B_{j}|^{\frac{m\beta}{n}}}{|B_{k}|^{\frac{m\beta}{n}}} \|\chi_{j}\|_{L^{{p_{1}’}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}\right]\nonumber\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=-\infty}^{k-2} 2^{-kn} 2^{(k-j)\frac{n}{r}}2^{(k-j)\alpha_{+}} \|2^{j\alpha(\cdot)}f_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_j}\|_{L^{{p_{1}’}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}\nonumber\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=-\infty}^{k-2} 2^{-kn} 2^{(k-j)\frac{n}{r}}2^{(k-j)\alpha_{+}} \|2^{j\alpha(\cdot)}f_{j}\|_{L^{p_{1}(\cdot)}} |B_{k}|\frac{\|\chi_{B_j}\|_{L^{{p_{1}’}(\cdot)}}}{\|\chi_{B_{k}}\|_{L^{p_{1}'(\cdot)}}} \nonumber\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=-\infty}^{k-2} 2^{(j-k)(n\delta_{1}- \frac{n}{r}-\alpha_{+} )} \|2^{j\alpha(\cdot)} f_{j}\|_{L^{p_{1}(\cdot)}}. \end{align}(29)Finally, we consider \(L_{23}\). Again by Lemma 2.1, we have \begin{align*} L_{23}&\approx max \left\{{\sup\limits_{k_{0}< 0,k_{0}\in \mathbb{Z}} 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{k_{0}} \left\|2^{k\alpha(0)}\left(\sum\limits_{j=k+2}^{\infty}|[b^{m},\mu_{\Omega ,\gamma}] f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}},\right.\\ &\left.\sup\limits_{k_{0}\geq 0,k_{0}\in \mathbb{Z}} \left[2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=-\infty}^{-1} \left\|2^{k\alpha(0)}\left(\sum\limits_{j=k+2}^{\infty}|[b^{m},\mu_{\Omega ,\gamma}] f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\right.\right.\\ &\left.\left. + 2^{-k_{0}\lambda {q_{1}}} \sum\limits_{k=0}^{k_{0}} \left\|2^{k\alpha_\infty}\left(\sum\limits_{j=k+2}^{\infty}|[b^{m},\mu_{\Omega ,\gamma}] f_{j}|\right)\chi_{k}\right\|^{q_{1}}_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\right]\right\}\\ &= max\{L,M\}. \end{align*} New we can choose \(L\), then we have \begin{align*} |[b^{m},\mu_{\Omega,\gamma}f(x)]| &\leq \left(\int\limits_{0}^{|y|}\left|\int_{|x-y|\leq t}\frac{\Omega(x, x-y )}{|x -y|^{n-\gamma-1}}[b(x) – b(y)]f_{j}(y)dy\right|^{2}\frac{dt}{t^{3}}\right)^{\frac{1}{2}}\\ &\quad+ \left(\int\limits_{|y|}^{\infty}\left|\int_{|x-y|\leq t}\frac{\Omega(x, x-y )}{|x -y|^{n-\gamma-1}}[b(x) – b(y)]f_{j}(y)dy\right|^{2}\frac{dt}{t^{3}}\right)^{\frac{1}{2}}\\ &= J_{3}+ J_{4}. \end{align*} Similar to the estimates of \( J_{1} , J_{2} \), such that \( x \in C_{k}, j \geq k+2 \), we have \begin{align*} |[b^{m},\mu_{\Omega,\gamma}f(x)]| &\leq C \int\limits_{ C_{j}}\frac{|\Omega(x, x-y )|}{|x -y|^{n-\gamma}}|b(x)- b(y)|^{m}|f_{j}(y)| dy\\ &\leq C 2^{-j(n-\gamma)}\int\limits_{ C_{j}}|\Omega(x, x-y )||b(x)- b(y)|^{m}|f_{j}(y)| dy\\ &\leq C 2^{-j(n-\gamma)}|b(x)- b_{j}|^{m}\int\limits_{ C_{j}}|\Omega(x, x-y )||f_{j}(y)| dy\\ &\quad+ 2^{-j(n-\gamma)}\int\limits_{ C_{j}}|\Omega(x, x-y )||b(y)- b_{j}|^{m}|f_{j}(y)| dy\\ &= A_{3} + A_{4}. \end{align*} For \(A_{3}\), it is easy to check that $$ A_{3}\leq C 2^{-j(n-\gamma)}|b(x)- b_{j}|^{m} \|f_{j}(y)\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\|\chi_{B_{j}}\|_{L^{p'_{1}(\cdot)}(\mathbb{R}^{n})}. $$ By the same way which was used in \(A_{2}\), we obtain that $$ A_{4}\leq C \|b\|^{m}_{Lip_{\beta}} 2^{-j(n-\gamma)} \|f_{j}\|_{L^{p_{1}(\cdot)}}|B_{j}|^{\frac{m\beta}{n}} \|\chi_{j}\|_{L^{{p'_{1}}(\cdot)}}.$$ From \(A_{3}\) and \(A_{4}\), and also applying Lemmas 2.7-2.8, we show that\begin{equation} L _{21} \leq C \|b\|^{m q_{1}}_{Lip_{\beta}}\| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{equation}(30)Furthermore, when \(\alpha_{+}\leq\lambda- n\delta_{2}+\gamma\), the similar way to the estimate of \(L_{13}\) before, we can easily get for all \(0< q< \infty\),\begin{align} &\qquad\left\|\sum\limits_{j=k+2}^{\infty}[b^{m},\mu_{\Omega,\gamma}]f_{j},\chi_{k}\right\|_{L^{p_{2}(\cdot)}}\leq C \sum\limits_{j=k+2}^{\infty} 2^{-j(n-\gamma)} \|f_{j}\|_{L^{p_{1}(\cdot)}}\nonumber\\ &\quad\times \left[\|(b(x)- b_{j})^{m}\chi_{k}\|_{L^{p_{2}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} +\|b\|^{m}_{Lip_{\beta}}|B_{j}|^{\frac{m\beta}{n}} \|\chi_{B_{j}}\|_{L^{{p_{1}’}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}\right]\nonumber\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=k+2}^{\infty} 2^{-j(n-\gamma)}2^{-k\gamma} \|f_{j}\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{j}}\|_{L^{{p_{1}’}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}\nonumber\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=k+2}^{\infty} 2^{-j(n-\gamma)} 2^{-k\gamma} \|f_{j}\|_{L^{p_{1}(\cdot)}} |B_{j}| \frac{ \|\chi_{B_k}\|_{L^{{p_{1}}(\cdot)}}}{ \|\chi_{B_j}\|_{L^{{p_{1}}(\cdot)}}}\nonumber\\ &\leq C \|b\|^{m}_{Lip_{\beta}}\sum\limits_{j=k+2}^{\infty} 2^{(k-j)(n\delta_{2}-\gamma)} \|f_{j}\|_{L^{p_{1}(\cdot)}}. \end{align}(31)We can omit the estimate of \(M\) since it is essentially similar to that of \(L\). Hence the proof of Theorem \ref{3.2} is completed.\begin{equation} L _{23} \leq C \|b\|^{m q_{1}}_{Lip_{\beta}}\| f\|^{q_{1}}_{M\dot{K}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{equation}(32)Remark If the variable exponent \(\alpha(\cdot)\) is constant, our results of this paper all hold.
Competing Interests
The authors declare that they have no competing interests.