In this paper, we extend some estimates of the right hand side of a Hermite- Hadamard-Fejér type inequality for generalized convex functions whose derivatives absolute values are generalized convex via local fractional integrals.
Definition 1. [Convex function] The function \(f:[a,b]\subset R\rightarrow R\), is said to be convex if the following inequality holds \begin{equation*} f(tx+(1-t)y)\leq tf(x)+(1-t)f(y) \end{equation*} for all \(x,y\in \lbrack a,b]\) and \(t\in \left[ 0,1\right] .\) We say that \(f\) is concave if \((-f)\) is convex.
The classical Hermite-Hadamard inequality (1) which was first published in [1] gives us an estimate of the mean value of a convex function \(f:I\rightarrow \mathbb{R}\).Let \(f:I\subset \mathbb{R}\rightarrow \mathbb{R}\) be a convex function on the interval \(I\) of real numbers and \(a,b\in I\) with \(a< b.\) The inequality \begin{equation*}\label{1111} \frac{1}{b-a}\int_{a}^{b}f(x)dx\leq \frac{1}{2}\left[ f\left( \frac{a+b}{2}\right) +\frac{f(a)+f(b)}{2}\right]. \end{equation*} The history of Bullen's inequality can be found in [3]. Surveys on various generalizations and developments in inequality theory can be found in [4] and [5]. Recently in [6], the authors established Bullen’s inequality for twice differentiable functions. In the case where \(f\) is convex then there exists an estimation better than (1).
In [7], Farissi gave the refinement of the inequality (1) as follows:Theorem 2. Assume that \(f:I\rightarrow \mathbb{R}\) is a convex function on \(I\). Then for all \(\lambda \in \left[ 0,1\right] \), we have \begin{equation*} f\left( \frac{a+b}{2}\right) \leq l\left( \lambda \right) \leq \frac{1}{b-a} \int\limits_{a}^{b}f\left( x\right) dx\leq L\left( \lambda \right) \leq \frac{f\left( a\right) +f\left( b\right) }{2}, \end{equation*} where \begin{equation*} l\left( \lambda \right) :=\lambda f\left( \frac{\lambda b+\left( 2-\lambda \right) a}{2}\right) +\left( 1-\lambda \right) f\left( \frac{\left( 1+\lambda \right) b+\left( 1-\lambda \right) a}{2}\right) \end{equation*} and \begin{equation*} L\left( \lambda \right) :=\frac{1}{2}\left( f\left( \lambda b+\left( 1-\lambda \right) a\right) +\lambda f\left( a\right) +\left( 1-\lambda \right) f\left( b\right) \right) . \end{equation*}
For more information about recent developments in above inequalities, we recommend [5, 6, 7, 8, 9, 10, 11, 12].Definition 3. [13]yang} A non-differentiable function \(f:R\rightarrow R^{\alpha },\) \( x\rightarrow f(x)\) is local fractional continuous at \(x_{0}\), if for any \(\varepsilon >0,\) there exists \(\delta >0,\) such that \begin{equation*} \left \vert f(x)-f(x_{0})\right \vert < \varepsilon ^{\alpha } \end{equation*} holds for \(\left \vert x-x_{0}\right \vert < \delta ,\) where \(\varepsilon ,\delta \in R.\) We denote the set of all locally fractional continuous functions on \((a,b)\) by \(C_{\alpha }(a,b).\)
Definition 4. [13] The local fractional derivative of \(f(x)\) of order \(\alpha \) at \( x=x_{0}\) is defined as: \begin{equation*} f^{(\alpha )}(x_{0})=\left. \frac{d^{\alpha }f(x)}{dx^{\alpha }}\right\vert _{x=x_{0}}=\lim_{x\rightarrow x_{0}}\frac{\Delta ^{\alpha }\left( f(x)-f(x_{0})\right) }{\left( x-x_{0}\right) ^{\alpha }}, \end{equation*} where \(\Delta ^{\alpha }\left( f(x)-f(x_{0})\right) \widetilde{=}\Gamma (\alpha +1)\left( f(x)-f(x_{0})\right) .\)
If there exists \(f^{(k+1)\alpha }(x)=\overset{k+1\text{ times}}{\overbrace{ D_{x}^{\alpha }…D_{x}^{\alpha }}}f(x)\) for any \(x\in I\subseteq R,\) then we say that \(f\in D_{(k+1)\alpha }(I),\) where \(k=0,1,2,\ldots .\)Definition 5. [13]yang} Let \(f(x)\in C_{\alpha }\left[ a,b\right] .\) Then the local fractional integral is defined by, \begin{equation*} _{a}I_{b}^{\alpha }f(x)=\frac{1}{\Gamma (\alpha +1)}\int \limits_{a}^{b}f(t)(dt)^{\alpha }=\frac{1}{\Gamma (\alpha +1)}\lim_{\Delta t\rightarrow 0}\sum \limits_{j=0}^{N-1}f(t_{j})(\Delta t_{j})^{\alpha }, \end{equation*} with \(\Delta t_{j}=t_{j+1}-t_{j}\) and \(\Delta t=\max \left \{ \Delta t_{1},\Delta t_{2},…,\Delta t_{N-1}\right \} ,\) make it clear \(\left[ t_{j},t_{j+1} \right] ,\) \(j=0,…,N-1\) and \(a=t_{0}< t_{1}< . . .< t_{N-1}< t_{N} = b\) is partition of interval \(\left[ a,b\right] .\) Here, it follows that \(_{a}I_{b}^{\alpha }f(x)=0\) if \(a=b\) and \( _{a}I_{b}^{\alpha }f(x)=-_{b}I_{a}^{\alpha }f(x)\) if \(a< b.\) If for any \(x\in \left[ a,b\right] ,\) there exists \(_{a}I_{x}^{\alpha }f(x),\) then we say that \(f(x)\in I_{x}^{\alpha }\left[ a,b\right] .\)
Definition 6. [Generalized convex function] [13]Let \(f:I\subseteq R\rightarrow R^{\alpha }.\) For any \( x_{1},x_{2}\in I\) and \(\lambda \in \left[ 0,1\right] ,\) if \begin{equation*} f(\lambda x_{1}+(1-\lambda )x_{2})\leq \lambda ^{\alpha }f(x_{1})+(1-\lambda )^{\alpha }f(x_{2}) \end{equation*} holds, then \(f\) is a generalized convex function on \(I.\)
Here are two basic examples of generalized convex functions:Theorem 7. [15] Let \(f\in D_{\alpha }(I),\) then the followings are equivalent
Corollary 8. [15] Let \(f\in D_{2\alpha }(a,b).\) Then \(f\) is a generalized convex function (or a generalized concave function) if and only if \begin{equation*} f^{(2\alpha )}(x)\geq 0\left( \text{or }f^{(2\alpha )}(x)\leq 0\right) \end{equation*} for all \(x\in \left( a,b\right) .\)
Lemma 9. [13]
Lemma 10. [13] We have
Lemma 11. [13] Suppose that \(f(x)\in C_{\alpha }\left[ a,b\right] ,\) then \begin{equation*} \frac{d^{\alpha }\left( _{a}I_{x}^{\alpha }f(t)\right) }{dx^{\alpha }}=f(x) \text{ \ }a< x< b. \end{equation*}
Lemma 12. [Generalized H\”{o}lder’s inequality] [13] Let \(f,g\in C_{\alpha }\left[ a,b\right] ,\) \(p,q>1\) with \(\frac{1}{p}+\frac{1}{q}=1,\) then \begin{equation*} \dfrac{1}{\Gamma (\alpha +1)}\int\limits_{a}^{b}\left\vert f(x)g(x)\right\vert (dx)^{\alpha }\leq \left( \dfrac{1}{\Gamma (\alpha +1)} \int\limits_{a}^{b}\left\vert f(x)\right\vert ^{p}(dx)^{\alpha }\right) ^{ \frac{1}{p}}\left( \dfrac{1}{\Gamma (\alpha +1)}\int\limits_{a}^{b}\left \vert g(x)\right\vert ^{q}(dx)^{\alpha }\right) ^{\frac{1}{q}}. \end{equation*}
In [15], Mo et al. proved the following generalized Hermite-Hadamard inequality for generalized convex function:Theorem 13. [Generalized Hermite-Hadamard inequality] Let \(f(x)\in I_{x}^{(\alpha )}\left[ a,b\right] \) be a generalized convex function on \(\left[ a,b\right] \) with \(a< b\). Then
Theorem 14. [Hermite–Hadamard-Fejér inequality] Let \(f(x)\in I_{x}^{(\alpha )}\left[ a,b\right] \) be a generalized convex function on \(\left[ a,b\right] \) with \(a< b\). If \(g:\left[ a,b\right] \rightarrow R^{\alpha }\) is nonnegative, local fractional integrable and symmetric \(\frac{a+b}{2},\) then the following inequality for local fractional integrals hold
Lemma 15. Let \(f(x)\in D_{\alpha }\left[ a,b\right] \ \)with \(a< b\ \)and \( g(x)\in C_{\alpha }\left[ a,b\right] .\ \)If \ \(f^{\left( \alpha \right) }\in I_{x}^{(\alpha )}\left[ a,b\right] \), then, for all \(x\in \left[ a,b\right] \) , the following identity holds:
Proof. From local fractional integration by parts, we have \begin{eqnarray*} &&\frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}\left[ \frac{1}{ \Gamma \left( 1+\alpha \right) }\int_{x}^{t}g(s)\left( ds\right) ^{\alpha } \right] f^{\left( \alpha \right) }(t)\left( dt\right) ^{\alpha } \\ && \\ &=&\left[ \left( \frac{1}{\Gamma \left( 1+\alpha \right) } \int_{x}^{t}g(s)\left( ds\right) ^{\alpha }\right) f(t)\right] _{a}^{b}- \frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}f(t)g(t)\left( dt\right) ^{\alpha } \\ && \\ &=&\frac{1}{\Gamma \left( 1+\alpha \right) }\left[ f(b)\int_{x}^{b}g(s) \left( ds\right) ^{\alpha }-f(a)\int_{x}^{a}g(s)\left( ds\right) ^{\alpha }-\int_{a}^{b}f(t)g(t)\left( dt\right) ^{\alpha }\right] \\ && \\ &=&\frac{1}{\Gamma \left( 1+\alpha \right) }\left[ f(a)\int_{a}^{x}g(s) \left( ds\right) ^{\alpha }+f(b)\int_{x}^{b}g(s)\left( ds\right) ^{\alpha }-\int_{a}^{b}f(t)g(t)\left( dt\right) ^{\alpha }\right] \\ && \\ &=&f(a)_{a}I_{x}^{\left( \alpha \right) }g(s)+f(b)_{x}I_{b}^{\left( \alpha \right) }g(s)-_{a}I_{b}^{\left( \alpha \right) }f(s)g(s). \end{eqnarray*} This completes the proof.
Remark 1. In Lemma 15, let \(g\) be a symmetric to \(\left( a+b\right) /2\) and \( x=\left( a+b\right) /2\). Then 2.1 can be written as \begin{eqnarray*} \frac{f\left( a\right) +f(b)}{2^{\alpha }}\text{ }_{a}I_{b}^{\left( \alpha \right) }g(s)-\ _{a}I_{b}^{\left( \alpha \right) }f(s)g(s) =\frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}\left[ \frac{1}{ \Gamma \left( 1+\alpha \right) }\int_{\frac{a+b}{2}}^{t}g(s)\left( ds\right) ^{\alpha }\right] f^{\left( \alpha \right) }(t)\left( dt\right) ^{\alpha }. \end{eqnarray*}
Theorem 16. Let \(f(x)\in D_{\alpha }\left[ a,b\right] \ \)with \(a< b\ \)and let \(f^{\left( \alpha \right) }\in I_{x}^{(\alpha )}\left[ a,b\right] \), \( g(x)\in C_{\alpha }\left[ a,b\right] \)\ and \(\ \left\vert f^{\left( \alpha \right) }\right\vert \)\ is generalized convex on \(\left[ a,b\right] .\) Then, for all \(x\in \left[ a,b\right] \), we have \begin{eqnarray*} &&\left\vert f(a)_{a}I_{x}^{\left( \alpha \right) }g(s)+f(b)_{x}I_{b}^{\left( \alpha \right) }g(s)-_{a}I_{b}^{\left( \alpha \right) }f(s)g(s)\right\vert \nonumber\\&& \leq \left[ \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( b-x\right) ^{\alpha }+\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left( x-a\right) ^{\alpha }\right) \left( x-a\right) ^{2\alpha }\left\Vert g\right\Vert _{ \left[ a,x\right] ,\infty }\right. \notag \\ &&\left. +\left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }-\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\right) \left( b-x\right) ^{3\alpha }\left\Vert g\right\Vert _{\left[ x,b\right] ,\infty }\right] \frac{\left\vert f^{\left( \alpha \right) }(a)\right\vert }{\left( b-a\right) ^{\alpha }} \nonumber\\&&+\left[ \left( \frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }-\frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\right) \left( x-a\right) ^{3\alpha }\left\Vert g\right\Vert _{\left[ a,x\right] ,\infty }\right. \notag \\ &&\left. +\left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( x-a\right) ^{\alpha }+\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left( b-x\right) ^{\alpha }\right) \left( b-x\right) ^{2\alpha }\left\Vert g\right\Vert _{ \left[ x,b\right] ,\infty }\right] \frac{\left\vert f^{\left( \alpha \right) }(b)\right\vert }{\left( b-a\right) ^{\alpha }} \end{eqnarray*}
Proof. Let \(x\in \left[ a,b\right] .\) Using Lemma 15 and the generalized convexty of \(\ \left\vert f^{\left( \alpha \right) }\right\vert ,\) we have
Corollary 17. Let \ \(0\leq \lambda \leq 1\) and \(x=\lambda a+(1-\lambda )b\) in Theorem 16. Then we have \begin{eqnarray*} &&\left\vert f\left( a\right) _{a}I_{\left( \lambda a+(1-\lambda )b\right) }^{\left( \alpha \right) }g(s)+f(b)_{\left( \lambda a+(1-\lambda )b\right) }I_{b}^{\left( \alpha \right) }g(s)-_{a}I_{b}^{\left( \alpha \right) }f(s)g(s)\right\vert \\ &\leq &\left[ \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\lambda ^{\alpha }+\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }(1-\lambda )^{\alpha }\right) (1-\lambda )^{2\alpha }\left\Vert g\right\Vert _{\left[ a,x\right] ,\infty }\right. \\ &&\left. +\left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }-\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\right) \lambda ^{3\alpha }\left\Vert g\right\Vert _{ \left[ x,b\right] ,\infty }\right] \left( b-a\right) ^{2\alpha }\left\vert f^{\left( \alpha \right) }(a)\right\vert \\ &&+\left[ \left( \frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }-\frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\right) \left( 1-\lambda \right) ^{3\alpha }\left\Vert g\right\Vert _{\left[ a,x\right] ,\infty }\right. \\ &&\left. +\left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( 1-\lambda \right) ^{\alpha }+\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\lambda ^{\alpha }\right) \lambda ^{2\alpha }\left\Vert g\right\Vert _{\left[ x,b\right] ,\infty }\right] \left( b-a\right) ^{2\alpha }\left\vert f^{\left( \alpha \right) }(b)\right\vert \\ &\leq &\left( \left[ \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( \lambda ^{\alpha }(1-\lambda )^{2\alpha }+\lambda ^{3\alpha }\right) \right. \right.\left. +\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left( \left( 1-\lambda \right) ^{3\alpha }-\lambda ^{3\alpha }\right) \right] \left\vert f^{\left( \alpha \right) }(a)\right\vert \\ &&+\left[ \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( \left( 1-\lambda \right) ^{\alpha }\lambda ^{2\alpha }-\left( 1-\lambda \right) ^{3\alpha }\right) \right. \left. \left. +\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left( \left( 1-\lambda \right) ^{3\alpha }+\lambda ^{3\alpha }\right) \right] \left\vert f^{\left( \alpha \right) }(b)\right\vert \right) \left( b-a\right) ^{2\alpha }\left\Vert g\right\Vert _{\left[ a,b\right] ,\infty }. \end{eqnarray*}
Corollary 18. Let \(g:\left[ a,b\right] \rightarrow R^{\alpha }\) be a symmetric to \(\left( a+b\right) /2\) and \(\lambda =1/2\) in Corollary 17. Then we have the inequality
Proof. Using the symmetry of \(g\), we have the following identity \begin{eqnarray*} f\left( a\right) _{a}I_{\frac{a+b}{2}}^{\left( \alpha \right) }g(x)+f(b)_{ \frac{a+b}{2}}I_{b}^{\left( \alpha \right) }g(x)-_{a}I_{b}^{\left( \alpha \right) }f(x)g(x) =\frac{f\left( a\right) +f(b)}{2^{\alpha }}\text{ }_{a}I_{b}^{\left( \alpha \right) }g(x)-_{a}I_{b}^{\left( \alpha \right) }f(x)g(x). \end{eqnarray*} From this identity and Corollary 17, we have the inequality (11). This completes the proof.
Remark 2. If we choose \(g(t)=1^{\alpha }\) on \(\left[ a,b\right] ,\) then we obtain following the inequality from (11)
Remark 3. Let \(f(x)\in D_{\alpha }\left[ a,b\right] \) be a generalized convex function on \(\left[ a,b\right] \) with \(a< b\) and let \(g(x)\in C_{\alpha }\left[ a,b \right] \) with symmetric to \(\left( a+b\right) /2.\) Then (11) is an error bound of the second inequality in generalized Fejér inequality \begin{eqnarray*} 0 &\leq &\frac{f\left( a\right) +f(b)}{2^{\alpha }}\text{ }_{a}I_{b}^{\left( \alpha \right) }g(s)-\ _{a}I_{b}^{\left( \alpha \right) }f(s)g(s) \\ &\leq &\left[ \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( \left\Vert g\right\Vert _{\left[ a,x\right] ,\infty }+\left\Vert g\right\Vert _{\left[ x,b\right] ,\infty }\right) \right.\left. +\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left( \left\Vert g\right\Vert _{\left[ a,x\right] ,\infty }-\left\Vert g\right\Vert _{\left[ x,b\right] ,\infty }\right) \right] \frac{ \left( b-a\right) ^{2\alpha }\left\vert f^{\left( \alpha \right) }(a)\right\vert }{2^{3\alpha }}\\ &&+\left[ \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( \left\Vert g\right\Vert _{\left[ x,b\right] ,\infty }-\left\Vert g\right\Vert _{\left[ a,x\right] ,\infty }\right) \right.\left. +\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left( \left\Vert g\right\Vert _{\left[ a,x\right] ,\infty }+\left\Vert g\right\Vert _{\left[ x,b\right] ,\infty }\right) \right] \frac{ \left( b-a\right) ^{2\alpha }\left\vert f^{\left( \alpha \right) }(b)\right\vert }{2^{3\alpha }} \\ &\leq &\left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left\vert f^{\left( \alpha \right) }(a)\right\vert +\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left\vert f^{\left( \alpha \right) }(b)\right\vert \right) \frac{\left( b-a\right) ^{2\alpha }\left\Vert g\right\Vert _{\left[ a,b\right] ,\infty }}{2^{2\alpha }} \end{eqnarray*} provided that \(\left\vert f^{\left( \alpha \right) }\right\vert \) is generalized convex on \(\left[ a,b\right] \) and \ \(f^{\left( \alpha \right) }\in I_{x}^{(\alpha )}\left[ a,b\right] .\)
Theorem 19. Let \(f(x)\in D_{\alpha }\left[ a,b\right] \ \)with \(a< b\ \)and let \(f^{\left( \alpha \right) }\in I_{x}^{(\alpha )}\left[ a,b\right] \), \( g(x)\in C_{\alpha }\left[ a,b\right] .\) If \(\left\vert f^{\left( \alpha \right) }\right\vert ^{p/\left( p-1\right) }\) is generalized convex on \( \left[ a,b\right] \) with \(p>1,\) then, for all \(x\) \(\in \left[ a,b\right] \), the following inequality holds:
Proof. Let \(x\in \left[ a,b\right] \), Lemma 15, generalized H\”{o}lder’s inequality and the generalized convexity of \(\left\vert f^{\left( \alpha \right) }\right\vert ^{p/\left( p-1\right) },\) it follows that \begin{eqnarray*} &&\left\vert f(a)_{a}I_{x}^{\left( \alpha \right) }g(s)+f(b)_{x}I_{b}^{\left( \alpha \right) }g(s)-_{a}I_{b}^{\left( \alpha \right) }f(s)g(s)\right\vert \\ &\leq &\left[ \frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}\left \vert \frac{1}{\Gamma \left( 1+\alpha \right) }\int_{x}^{t}g(s)\left( ds\right) ^{\alpha }\right\vert ^{p}\left( dt\right) ^{\alpha }\right] ^{ \frac{1}{p}} \left[ \frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}\left \vert f^{\left( \alpha \right) }(t)\right\vert ^{\frac{p}{p-1}}\left( dt\right) ^{\alpha }\right] ^{\frac{p-1}{p}}\\ &\leq &\frac{\left\Vert g\right\Vert _{\left[ a,b\right] ,\infty }}{\Gamma \left( 1+\alpha \right) }\left[ \frac{1}{\Gamma \left( 1+\alpha \right) } \int_{a}^{b}\left\vert t-x\right\vert ^{\alpha p}\left( dt\right) ^{\alpha } \right] ^{\frac{1}{p}} \\ &&\times \left[ \frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}\left( \frac{\left( b-t\right) ^{\alpha }}{\left( b-a\right) ^{\alpha }}\left\vert f^{\left( \alpha \right) }(a)\right\vert ^{\frac{p}{p-1}}+\frac{\left( t-a\right) ^{\alpha }}{\left( b-a\right) ^{\alpha }}\left\vert f^{\left( \alpha \right) }(b)\right\vert ^{\frac{p}{p-1}}\right) \left( dt\right) ^{\alpha }\right] ^{\frac{p-1}{p}}\\ &=&\frac{\left\Vert g\right\Vert _{\left[ a,b\right] ,\infty }}{\Gamma \left( 1+\alpha \right) }\left[ \frac{1}{\Gamma \left( 1+\alpha \right) } \int_{a}^{x}\left( x-t\right) ^{\alpha p}\left( dt\right) ^{\alpha }+\frac{1 }{\Gamma \left( 1+\alpha \right) }\int_{x}^{b}\left( t-x\right) ^{\alpha p}\left( dt\right) ^{\alpha }\right] ^{\frac{1}{p}} \\ &&\times \left[ \frac{\left\vert f^{\left( \alpha \right) }(a)\right\vert ^{ \frac{p}{p-1}}}{\left( b-a\right) ^{\alpha }}\frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}\left( b-t\right) ^{\alpha }\left( dt\right) ^{\alpha }\right.\left. +\frac{\left\vert f^{\left( \alpha \right) }(b)\right\vert ^{\frac{p }{p-1}}}{\left( b-a\right) ^{\alpha }}\frac{1}{\Gamma \left( 1+\alpha \right) }\int_{a}^{b}\left( t-a\right) ^{\alpha }\left( dt\right) ^{\alpha } \right] ^{\frac{p-1}{p}} \\ &=&\frac{\left\Vert g\right\Vert _{\left[ a,b\right] ,\infty }}{\Gamma \left( 1+\alpha \right) }\left[ \frac{\Gamma \left( 1+p\alpha \right) }{ \Gamma \left( 1+\left( p+1\right) \alpha \right) }\left( \left( x-a\right) ^{\left( p+1\right) \alpha }+\left( b-x\right) ^{\left( p+1\right) \alpha }\right) \right] ^{\frac{1}{p}} \end{eqnarray*} \begin{eqnarray*} &&\times \left[ \frac{\left\vert f^{\left( \alpha \right) }(a)\right\vert ^{ \frac{p}{p-1}}}{\left( b-a\right) ^{\alpha }}\frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( b-a\right) ^{2\alpha }+ \frac{\left\vert f^{\left( \alpha \right) }(b)\right\vert ^{\frac{p}{p-1}}}{ \left( b-a\right) ^{\alpha }}\frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left( b-a\right) ^{2\alpha }\right] ^{\frac{p-1}{p }} \\ &=&\frac{\left( b-a\right) ^{\alpha \frac{p-1}{p}}\left\Vert g\right\Vert _{ \left[ a,b\right] ,\infty }}{\Gamma \left( 1+\alpha \right) }\left( \frac{ \Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1}{p}}\left( \left( x-a\right) ^{\left( p+1\right) \alpha }+\left( b-x\right) ^{\left( p+1\right) \alpha }\right) ^{\frac{1}{p}} \\ &&\times \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}}\left[ \left\vert f^{\left( \alpha \right) }(a)\right\vert ^{\frac{p}{p-1}}+\left\vert f^{\left( \alpha \right) }(b)\right\vert ^{\frac{p}{p-1}}\right] ^{\frac{p-1}{p}} \end{eqnarray*} and this completes the proof.
Using Theorem 19, we have the following corollaries which are connected with the right-hand side of Fejér inequality.Corollary 20 Let \(0\leq \lambda \leq 1\) and \(x=\lambda a+(1-\lambda )b\) in Theorem 5. Then we have the inequality
Corollary 21. Let \(g:\left[ a,b\right] \rightarrow R^{\alpha }\) be a symmetric to \(\left( a+b\right) /2\) and \(\lambda =1/2\) in Corollary 20. Then we have the inequality
Remark 4. If we choose \(g(t)=1^{\alpha }\) on \(\left[ a,b\right] ,\) then we obtain following the inequality from (9)
Remark 5. Let\ \(p>1\), \(f(x)\in D_{\alpha }\left[ a,b\right] \) be a generalized convex and let \(g(x)\in C_{\alpha }\left[ a,b\right] \) with symmetric to \(\left( a+b\right) /2.\) Using Corollary 21, we obtain an error bound of the second inequality in generalized Fejér inequality \begin{eqnarray*} 0 &\leq &\frac{f\left( a\right) +f(b)}{2^{\alpha }}\text{ }_{a}I_{b}^{\left( \alpha \right) }g(s)-_{a}I_{b}^{\left( \alpha \right) }f(s)g(s) \\ &\leq &\frac{\left( b-a\right) ^{2\alpha }\left\Vert g\right\Vert _{\left[ a,b\right] ,\infty }}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\left( \frac{\Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1}{p}} \times \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}}\left[ \left\vert f^{\left( \alpha \right) }(a)\right\vert ^{\frac{p}{p-1}}+\left\vert f^{\left( \alpha \right) }(b)\right\vert ^{\frac{p}{p-1}}\right] ^{\frac{p-1}{p}} \end{eqnarray*} provided that \(\left\vert f^{\left( \alpha \right) }\right\vert ^{p/\left( p-1\right) }\) is generalized convex \ on \(\left[ a,b\right] \) and \( f^{\left( \alpha \right) }\in I_{x}^{(\alpha )}\left[ a,b\right] .\)
appProposition 22. Let \(f(x)\in D_{\alpha }\left[ a,b\right] \ \)with \(a< b\ \)and let \( f^{\left( \alpha \right) }\in I_{x}^{(\alpha )}\left[ a,b\right] .\) Let \( \left\vert f^{\left( \alpha \right) }\right\vert \) is a generalized convex on \(\left[ a,b\right] \). Then we have
Proof. Using (12) the following inequality holds \begin{eqnarray*} \left\vert \frac{f\left( x_{i}\right) +f(x_{i+1})}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\text{ }l_{i}^{\alpha }-\ _{x_{i}}I_{x_{i+1}}^{\left( \alpha \right) }f(s)\right\vert \leq \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left\vert f^{\left( \alpha \right) }(x_{i})\right\vert +\frac{ \Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) } \left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert \right) \frac{ l_{i}^{2\alpha }}{2^{2\alpha }}. \end{eqnarray*} Hence in the trapezoidal case \begin{eqnarray*} \left\vert T_{\alpha }\left( f,I_{n}\right) -\ _{a}I_{b}^{\left( \alpha \right) }f(x)\right\vert &=&\left\vert \underset{i=0}{\overset{n-1}{\sum }}\left\{ \frac{ f(x_{i})+f(x_{i+1})}{2^{\alpha }\Gamma \left( 1+\alpha \right) } l_{i}^{\alpha }-\frac{1}{\Gamma \left( 1+\alpha \right) } \int_{x_{i}}^{x_{i+1}}f(s)\left( ds\right) ^{\alpha }\right\} \right\vert \\ &&\underset{i=0}{\overset{n-1}{\sum }}\left\vert \frac{f(x_{i})+f(x_{i+1})}{ 2^{\alpha }\Gamma \left( 1+\alpha \right) }l_{i}^{\alpha }-\frac{1}{\Gamma \left( 1+\alpha \right) }\int_{x_{i}}^{x_{i+1}}f(s)\left( ds\right) ^{\alpha }\right\vert \\ &\leq &\underset{i=0}{\overset{n-1}{\sum }}\left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left\vert f^{\left( \alpha \right) }(x_{i})\right\vert +\frac{\Gamma \left( 1+2\alpha \right) }{ \Gamma \left( 1+3\alpha \right) }\left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert \right) \frac{l_{i}^{2\alpha }}{2^{2\alpha }} \\ &=&\frac{1}{2^{2\alpha }}\underset{i=0}{\overset{n-1}{\sum }}\left( \frac{ \Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left\vert f^{\left( \alpha \right) }(x_{i})\right\vert +\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert \right) l_{i}^{2\alpha }\\ &\leq& \frac{\max \left\{ \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\left\vert f^{\left( \alpha \right) }(a)\right\vert + \frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) } \left\vert f^{\left( \alpha \right) }(b)\right\vert \right\} }{2^{2\alpha }} \underset{i=0}{\overset{n-1}{\sum }}l_{i}^{2\alpha }. \end{eqnarray*} This completes the proof.
Proposition 23. Let \(f(x)\in D_{\alpha }\left[ a,b\right] \ \)with \(a< b\ \)and let \( f^{\left( \alpha \right) }\in I_{x}^{(\alpha )}\left[ a,b\right] .\) Let \( \left\vert f^{\left( \alpha \right) }\right\vert ^{\frac{p}{p-1}}\)is a generalized convex on \(\left[ a,b\right] \) with \(p>1\). Then we have
Proof. Using (16) the following inequality holds \begin{eqnarray*} &&\left\vert \frac{f\left( x_{i}\right) +f(x_{i+1})}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\text{ }l_{i}^{\alpha }-\ _{x_{i}}I_{x_{i+1}}^{\left( \alpha \right) }f(s)\right\vert \\ &\leq &\frac{l_{i}^{2\alpha }}{2^{\alpha }\Gamma \left( 1+\alpha \right) } \left( \frac{\Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1}{p}} \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}}\left[ \left\vert f^{\left( \alpha \right) }(x_{i})\right\vert ^{\frac{p}{p-1}}+\left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert ^{\frac{p}{p-1}}\right] ^{\frac{p-1}{p} }. \end{eqnarray*} Hence in the trapezoidal case \begin{eqnarray*} &&\left\vert T_{\alpha }\left( f,I_{n}\right) -\ _{a}I_{b}^{\left( \alpha \right) }f(x)\right\vert =\left\vert \underset{i=0}{\overset{n-1}{\sum }}\left\{ \frac{ f(x_{i})+f(x_{i+1})}{2^{\alpha }\Gamma \left( 1+\alpha \right) } l_{i}^{\alpha }-\frac{1}{\Gamma \left( 1+\alpha \right) } \int_{x_{i}}^{x_{i+1}}f(s)\left( ds\right) ^{\alpha }\right\} \right\vert \\ &&\leq \underset{i=0}{\overset{n-1}{\sum }}\left\vert \frac{ f(x_{i})+f(x_{i+1})}{2^{\alpha }\Gamma \left( 1+\alpha \right) } l_{i}^{\alpha }-\frac{1}{\Gamma \left( 1+\alpha \right) } \int_{x_{i}}^{x_{i+1}}f(s)\left( ds\right) ^{\alpha }\right\vert \\ &&\leq \underset{i=0}{\overset{n-1}{\sum }}\frac{l_{i}^{2\alpha }}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\left( \frac{\Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1 }{p}} \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}}\left[ \left\vert f^{\left( \alpha \right) }(x_{i})\right\vert ^{\frac{p}{p-1}}+\left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert ^{\frac{p}{p-1}}\right] ^{\frac{p-1}{p}} \\&&\leq \underset{i=0}{\overset{n-1}{\sum }}\frac{l_{i}^{2\alpha }}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\left( \frac{\Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1 }{p}} \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}}\max \left\{ \left\vert f^{\left( \alpha \right) }(x_{i})\right\vert ,\left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert \right\} \\ &&\leq \frac{1}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\left( \frac{ \Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1}{p}}\left( \frac{\Gamma \left( 1+\alpha \right) }{ \Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}} \max \left\{ \left\vert f^{\left( \alpha \right) }(x_{i})\right\vert ,\left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert \right\} \underset{i=0}{\overset{n-1}{\sum }} l_{i}^{2\alpha }. \end{eqnarray*} This completes the proof.
Proposition 24. Let \(f\) be defined as in Corollary (18). Then we have
Proof. Apply Corollary 18 on \(\left[ x_{i},x_{i+1}\right] (i=0,1,…,n-1)\) to get
Remark 6. If we choose \(g(t)=1^{\alpha }\) on \(\left[ a,b\right] ,\) then we the inequality (19) reduces to (17).
Proposition 25. Let \(p>1\) and \(f\) be defined as in Theorem 16. Then we have \begin{eqnarray*} \left\vert E_{\alpha }\left( f,I_{n}\right) \right\vert &\leq& \frac{1}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\left( \frac{ \Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1}{p}}\left( \frac{\Gamma \left( 1+\alpha \right) }{ \Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}} \notag \\ &&\times \sum_{i=0}^{n-1}\left[ \left\vert f^{\left( \alpha \right) }(x_{i})\right\vert ^{\frac{p}{p-1}}+\left\vert f^{\left( \alpha \right) }(x_{i+1})\right\vert ^{\frac{p}{p-1}}\right] ^{\frac{p-1}{p}}l_{i}^{2\alpha }\left\Vert g\right\Vert _{\left[ x_{i},x_{i+1}\right] ,\infty } \\&\leq &\frac{1}{2^{\alpha }\Gamma \left( 1+\alpha \right) }\left( \frac{ \Gamma \left( 1+p\alpha \right) }{\Gamma \left( 1+\left( p+1\right) \alpha \right) }\right) ^{\frac{1}{p}}\left( \frac{\Gamma \left( 1+\alpha \right) }{ \Gamma \left( 1+2\alpha \right) }\right) ^{\frac{p-1}{p}} \end{eqnarray*}
Proof. The proof uses Corollary 21 and similar to that of Proposition 24.
Remark 7 If we choose \(g(t)=1^{\alpha }\) on \(\left[ a,b\right] ,\) then we the inequality (21) reduces to (18).
Theorem 26.
Proof. Let \(f(s)=s^{r}\) \(\left( s\in \left[ a,b\right] \right) \) in Corollary 18. Then we have the following identities \begin{eqnarray*} \dfrac{1}{\Gamma (\alpha +1)}\int\limits_{a}^{b}f\left( s\right) g(s)(ds)^{\alpha } &=&E_{r}^{\alpha }(X), \\ \frac{f\left( a\right) +f\left( b\right) }{2^{\alpha }}\dfrac{1}{\Gamma (\alpha +1)}\int\limits_{a}^{b}g(s)(ds)^{\alpha } &=&\frac{a^{r}+b^{r}}{ 2^{\alpha }}\text{ }_{a}I_{b}^{\left( \alpha \right) }g(s) \end{eqnarray*} and \begin{equation*} \left\vert f^{\left( \alpha \right) }\left( a\right) \right\vert =ra^{r-1} \text{ and }\left\vert f^{\left( \alpha \right) }\left( b\right) \right\vert =rb^{r-1}. \end{equation*} Using the above identities and the inequality (11 ), we have the inequality (22). This completes the proof.
Remark 8. If we choose \(r=1\) in Theorem (26), then we have the following inequality \begin{equation*} \left\vert E^{\alpha }(X)-\frac{a+b}{2^{\alpha }}\text{ } _{a}I_{b}^{\left( \alpha \right) }g(s)\right\vert \leq \left( \frac{\Gamma \left( 1+\alpha \right) }{\Gamma \left( 1+2\alpha \right) }+\frac{\Gamma \left( 1+2\alpha \right) }{\Gamma \left( 1+3\alpha \right) }\right) \frac{ \left( b-a\right) ^{2\alpha }\left\Vert g\right\Vert _{\left[ a,b\right] ,\infty }}{2^{2\alpha }} \end{equation*} where \(E(X)\) is the generalized expectation of the random variable \(X.\)