In this paper, new sufficient conditions are obtained for oscillation of second-order neutral delay differential equations of the form \(\frac{d}{dt} \Biggl[r(t) \frac{d}{dt} \biggl [x(t)+p(t)x(t-\tau)\biggr]\Biggr]+q(t)G\bigl(x(t-\sigma_1)\bigr)+v(t)H\bigl(x(t-\sigma_2)\bigr)=0, \;\; t \geq t_0,\) under the assumptions \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}=\infty\) and \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}<\infty\) for \(|p(t)|<+\infty\). Two illustrative examples are included.
This article is concerned with sufficient conditions for oscillation of a nonlinear neutral second-order delay differential equation
Neutral functional differential equations have numerous applications in several field of the science as, for example, models of population growth and theory of population dynamics, fractal theory, nonlinear oscillation of earthquake, diffusion in porous media, fractional biological neurons, traffic flow, polymer theology, neural network modeling, fluid dynamics, viscoelastic panel in super sonic gas flow, real system characterized by power laws, electrodynamics of complex medium, sandwich system identification, nuclear reactors mathematical modeling of the diffusion of discrete particles in a turbulent fluid (see [5, 6, 7, 9] and the references cited therein). In last decades several results have been obtained on oscillation of nonneutral differential equations and neutral functional differential equations (see [10, 11, 12, 13, 14, 15] and the references cited therein).
By a solution to Equation (1), we mean a function \(x\in { C}([T_x , \infty), \mathbb{R})\), \(T_x\geq t_0 \), which has the property \(rz’\in { C}^1([T_x , \infty), \mathbb{R})\) and satisfies Equation (1) on the interval \([T_x , \infty )\). We consider only those solutions to Equation (1) which satisfy condition \(\sup\{|x(t)|: t\geq T\}>0\) for all \(T\geq T_x\) and assume that Equation (1) possesses such solutions. A solution of Equation (1) is called oscillatory if it has arbitrarily large zeros on \([T_x, \infty)\); otherwise, it is said to be nonoscillatory. Equation (1) itself is said to be oscillatory if all of its solutions are oscillatory.
Theorem 1. Let \(0\leq p(t)\leq p < 1\), \(t\in \mathbb{R}_+\). Assume that \((A_1)\)–\((A_3)\) hold. Furthermore assume that
Proof. Suppose for contrary that \(x(t)\) is a nonoscillatory solution of equation (1). Then there exists \(t_0\geq \rho\) such that \(x(t)>0\) or \(0\), \(x(t-\tau)>0\) and \(x(t-\sigma)>0\) for \(t\geq t_0\). From Equation (1), it follows that
Theorem 2. Let \(1\leq p(t)\leq p0\) such that
Proof. Let \(x(t)\) be a nonoscillatory solution of Equation (1). Proceeding as in Theorem 1, we have two cases: \(r(t)z'(t)0\) for \(t\in [t_2,\infty)\). The former case follows from Theorem 1. Let’s consider the later case. As a result, \(z(t)\) is nondecreasing on \([t_2, \infty)\). So, there exists \(\varepsilon>0\) and a \(t_3>t_2\) such that \(z(t) \geq \varepsilon\) for \(t \geq t_3\). We note that \(\lim_{t\to \infty}r(t)z'(t)\) exists. From Equation (1), it is easy to see that \begin{eqnarray*} 0 & = &\bigl(r(t)z'(t)\bigr)’+q(t)G\bigl(x(t-\sigma_1)\bigr)+v(t)H\bigl(x(t-\sigma_2)\bigr) +G(p)\bigl[\bigl(r(t-\tau)z'(t-\tau)\bigr)’\\&&+q(t-\tau)G\bigl(x(t-\tau-\sigma_i)\bigr)+v(t-\tau)H\bigl(x(t-\tau-\sigma_2)\bigr)\bigr], \end{eqnarray*} in which we use \((A_7)\), \((A_8)\) and \(z(t)\leq x(t)+p x(t-\tau)\) to obtain \begin{eqnarray*} 0 & \geq& \bigl(r(t)z'(t)\bigr)’+G(p)\bigl(r(t-\tau)z'(t-\tau)\bigr)’+Q(t)\bigl[G(x(t-\sigma_1))+G(px(t-\tau-\sigma_1))\bigr] \\ &&+v(t)H\bigl(x(t-\sigma_2)\bigr) +G(p)v(t-\tau)H\bigl(x(t-\tau-\sigma_2)\bigr)\\ & \geq& \bigl(r(t)z'(t)\bigr)’+G(p)\bigl(r(t-\tau)z'(t-\tau)\bigr)’+\lambda Q(t)G\bigl[x(t-\sigma_1)+px(t-\tau-\sigma_1)\bigr] \\ &&+v(t)H\bigl(x(t-\sigma_2)\bigr) +G(p)v(t-\tau)H\bigl(x(t-\tau-\sigma_2)\bigr)\\ & \geq& \bigl(r(t)z'(t)\bigr)’+G(p)\bigl(r(t-\tau)z'(t-\tau)\bigr)’+\lambda Q(t)G\bigl(z(t-\sigma_1)\bigr)+v(t)H\bigl(x(t-\sigma_2)\bigr)\\&&+H(p)v(t-\tau)H\bigl(x(t-\tau-\sigma_2)\bigr), \end{eqnarray*} that is,
Theorem 3. Let \(-1\leq p(t)\leq0\), \(t\in \mathbb{R}_+\). If \((A_1)\)–\((A_3)\), \((A_5)\) and \((A_6)\) hold, then every unbounded solution of Equation (1) oscillates.
Proof. Let on the contrary that \(x(t)\) be a unbounded solution of Equation (1) on \([t_0,\infty)\), \(t_0>\rho\). Proceeding as in Theorem 1, it concludes that \(r(t)z'(t)\) is nonincreasing and \(z(t)\), \(z'(t)\) are monotonicon \([t_2,\infty)\). Indeed, \(z(t)0\) for \(t\geq t_3\). Suppose that \(r(t)z'(t)>0\) for \(t\geq t_3\). Clearly, \(z(t)\leq x(t)\) implies that
Theorem 4. Let \(-10\). If all the assumptions of Theorem 3 hold, then every solution of Equation (1) either oscillates or converges to zero as \(t\to \infty\).
Proof. Proceeding as in the proof of Theorem 1, we have obtained Equation (5) and hence \(r(t)z'(t)\) is nonincreasing on \([t_2,\infty)\). Therefore, \(z(t)\) is monotonic on \([t_3,\infty)\), \(t_3>t_2\). So we have four cases namely:
Theorem 5. Let \(-\infty < -p_1\leq p(t)\leq-p_20\) and \(t\in \mathbb{R}_+\). Assume that \((A_1)\)–\((A_3)\), \((A_5)\) and \((A_6)\) hold. If
Proof. Suppose on the contrary that \(x(t)\) is a solution of Equation (1) which is bounded on \([t_0,\infty)\), \(t_0>\rho\). Using the same type of reasoning as in Theorem 1, we have that \(z'(t)\) and \(z(t)\) are of one sign on \([t_2,\infty)\) and have four possible cases like as in Theorem 4. Case (2) and Case (4) are not possible because of \((A_3)\) and bounded \(z(t)\). Case (1) follows from the proof of the Theorem 3. For the Case (3), we claim that \(\lim_{t \to \infty} z(t)=0\). If not, there exists \(\alpha< 0\) and \(t_3<t_2\) such that \(z(t+\tau-\sigma_1)< \alpha\) and \(z(t+\tau-\sigma_2)0\) and \(x(t-\sigma_2)\geq -p_1 ^{-1} \alpha >0\) for \(t \geq t_3\). Consequently, Equation (5) becomes \begin{eqnarray}\label{5} \bigl(r(t)z'(t)\bigr)’+G(-p_1 ^{-1} \alpha)q(t)+H(-p_1 ^{-1} \alpha)v(t)\leq0 \end{eqnarray} for \(t\geq t_3\). Integrating the last inequality from \(t_3\) to \(t(>t_3)\), we get \begin{align*} G(-p_1 ^{-1} \alpha)\int_{t_3}^{t}[q(\eta)+L_2 v(\eta)]d\eta \leq -\bigl[r(s)z'(s)\bigr]_{t_3}^{t} < \infty, \; as \; t \to \infty, \end{align*} a contradiction to \((A_{10})\). Ultimately, \(\lim_{t\to\infty}z(t)=0\). Hence, \begin{eqnarray*} 0 & = & \lim_{t\to\infty}z(t)=\liminf\limits_{t\to \infty}z(t)\\ & \leq & \liminf_{t\to\infty} \bigl(x(t)- p_2\;x(t-\tau)\bigr) \\ & \leq & \limsup_{t\to\infty} x(t)+ \liminf\limits_{t\to\infty} \bigl(-p_2\;x(t-\tau)\bigr) \\ & = & (1-p_2) \limsup_{t\to\infty} x(t) \end{eqnarray*} implies that \(\limsup_{t\to \infty}x(t)=0\) \([\because 1-p_2< 0]\). Thus, \(\liminf_{t\to \infty}x(t)=0\) and hence \(\lim_{t\to \infty}x(t)=0.\) Therefore, any solution \(x(t)\) of Equation (1) converges to zero. The case \(x(t)< 0\) is similar. This completes the proof of the theorem.
Remark 1. If we denote \(R(t)=\int_{t}^{\infty}\frac{d\eta}{r(\eta)}\), then \((A_4)\) implies that \(R(t) \to 0\) as \(t \to \infty\), since \(R(t)\) is nonincreasing.
Theorem 6. Let \(0\leq p(t)\leq p< \infty\), \(t\in \mathbb{R}_+\) and \(G(p) \geq H(p)\). Assume that \((A_1)\), \((A_2)\), \((A_4)\), \((A_5)\) and \((A_7)\)–\((A_9)\) hold. If
Proof. On the contrary, we proceed as in Theorem 1 to obtain Equation (5) for \(t\geq t_1\) and \(r(t)z'(t)\) is non increasing on \([t_2,\infty)\), \(t_2>t_1\). The case \(r(t)z'(t)>0\) for \(t \geq t_0\) is same as in Theorem 2 and gives a contradiction due to \((A_9)\). Let’s suppose that \(r(t)z'(t)t_2\), \(r(s)z'(s)\leq r(t)z'(t)\) implies that \begin{align*} z'(s)\leq \frac{r(t)z'(t)}{r(s)}. \end{align*} Consequently, \begin{align*} z(s)\leq z(t)+r(t)z'(t)\int_{t}^{s}\frac{d\theta}{r(\theta)}. \end{align*} Because of \(r(t)z'(t)\) is nonincreasing, we can find a constant \(\varepsilon>0\) such that \(r(t)z'(t)\leq -\varepsilon\) for \(t\geq t_2\). As a result, \(z(s)\leq z(t)-\varepsilon\int_{t}^{s}\frac{d\eta}{r(\eta)}\) and hence \(0\leq z(t)-\varepsilon R(t)\) for \(t\geq t_2\). Using the above fact in Equation (6), we get \begin{align*} \bigl(r(t)z'(t)\bigr)’+G(p)\bigl(r(t-\tau)z'(t-\tau)\bigr)’+\lambda Q(t)G\bigl(\varepsilon R(t-\sigma_1)\bigr)+\mu V(t)H\bigl(\varepsilon R(t-\sigma_2)\bigr)\leq 0 \end{align*} for \(t\geq t_3>t_2\). Integrating the last inequality from \(t_3\) to \(t(>t_3)\), we obtain \begin{align*} \bigl[r(\eta)z'(\eta)\bigr]_{t_3}^t+G(p)\bigl[r(\eta-\tau) z'(\eta-\tau)\bigr]_{t_3}^t+\lambda \int_{t_3}^t \bigl[Q(\eta)G\bigl(\varepsilon R(\eta-\sigma_1)\bigr)+L_3V(\eta)H\bigl(\varepsilon R(\eta-\sigma_2)\bigr)\bigr]d\eta\leq 0, \end{align*} that is, \begin{eqnarray*} \lambda\int_{t_3}^t \bigl[Q(\eta)G(\varepsilon R(\eta-\sigma_1))+L_3V(\eta)H\bigl(\varepsilon R(\eta-\sigma_2)\bigr)\bigr]d\eta & \leq & -\bigl[r(\eta)z'(\eta)+G(p)\bigl(r(\eta-\tau)z'(\eta-\tau)\bigr)\bigr]_{t_3}^t \\ & \leq & -\bigl[r(t)z'(t)+G(p)\bigl(r(t-\tau)z'(t-\tau)\bigr)\bigr] \\ & \leq & -\bigl(1+G(p)\bigr)r(t)z'(t) \end{eqnarray*} implies that \begin{eqnarray*} \frac{\lambda}{1+G(p)} \frac{1}{r(t)} \int_{t_3}^t \bigl[Q(\eta)G\bigl(\varepsilon R(\eta-\sigma_1)\bigr)+L_3V(\eta)H\bigl(\varepsilon R(\eta-\sigma_2)\bigr)\bigr]d\eta \leq – z'(t). \end{eqnarray*} Again integrating the last inequality, we obtain that \begin{eqnarray*} \frac{\lambda }{1+G(p)} \int_{t_3}^{t}\frac{1}{r(\eta)}\left[\int_{t_3}^\eta \bigl\{Q(\zeta)G\bigl(\varepsilon R(\zeta-\sigma_1)\bigr)+L_3V(\zeta)H\bigl(R(\zeta-\sigma_2))\bigr\}d\zeta\right]d\eta \leq – \bigl[z(\eta)\bigr]_{t_3}^{t}. \end{eqnarray*} Since \(z(t)\) is bounded and monotonic, then it follows that \begin{eqnarray*} \int_{t_3}^{t}\frac{1}{r(\eta)}\left[\int_{t_3}^\eta \bigl\{Q(\zeta)G\bigl(\varepsilon R(\zeta-\sigma_1)\bigr)+L_3V(\zeta)H\bigl( \varepsilon R(\zeta-\sigma_2)\bigr)\bigr\}d\zeta\right]d\eta < \infty, \end{eqnarray*} a contradiction to \((A_{11})\). The case \(x(t)< 0\) is similar dealt with. This completes the proof of the theorem.
Theorem 7. Let \(-1\leq p(t) \leq 0,\) \(t\in \mathbb{R}_+\). Assume that \((A_1)\), \((A_2)\) and \((A_4)\)–\((A_6)\) hold. Furthermore assume that
Proof. The proof of the theorem follows from the proof of the Theorems 3 and 6 and hence the details are omitted.
Theorem 8. Let \(-10\). If all the conditions of Theorem 7 are satisfied, then conclusion of the Theorem 4 is true.
Proof. The proof of the theorem follows from the proof of Theorems 4 and 7. Hence, the proof of the theorem is complete.
Theorem 9. Let \(-\infty< -p_1\leq p(t)\leq -p_20\). Assume that \((A_1)\), \((A_2)\), \((A_4)\)–\((A_6)\), \((A_{10})\) and \((A_{12})\) hold. If
Proof.
Proceeding as in the proof of the Theorem
5 we have four possible cases for \(t\geq t_2\). First
two cases are similar to the proof of Theorem 8.
Case (3) is similar to the proof of Theorem 5.
Hence, we consider the Case (4) only. Using the same type of
reasoning as in the Case (3) of Theorem 8, we get Equation (8) and hence
\begin{align*}
H(-p_1 ^{-1} \alpha)\biggl[\int_{t_3}^{t} \bigl\{q(\eta)+L_2v(\eta)\bigr\}d\eta \biggr]\leq -r(t)z'(t).
\end{align*}
Therefore,
\begin{eqnarray*}
H(-p_1 ^{-1} \alpha)\int_{t_3}^{t}\frac{1}{r(\eta)}
\biggl[\int_{t_3}^{\eta}\bigl\{q(\zeta)+L_2v(\zeta)\bigr\}d\zeta\biggr]d\eta \leq – \bigl[z(\eta)\bigr]_{t_3}^{t} \leq
-z(t) < \infty, \;\; as \;\; u \to \infty,
\end{eqnarray*}
a contradiction to \((A_{13})\). Rest of the theorem follows from the proof of
the Theorem 5. This completes the proof of the theorem.
Remark 2. In Theorem 1 Theorem 9, \(G\) and \(H\) is allowed to be linear, sublinear or superlinear. A prototype of the function \(G\) and \(H\) satisfying \((A_2)\), \((A_5)\), \((A_7)\) and \((A_8)\) is
Example 1. Consider the differential equation
Example 2. Consider the differential equation