This paper studies some properties of the Fourier multiplier operators on a compact group when the underlying multiplication functions (the symbols) defined on the dual object take values in a Banach algebra. More precisely, boundedness properties for such Fourier multiplier operators for the space of Bochner strong integrable functions and for the (vector) \(p\)-Fourier spaces are investigated.
The theory of Fourier multipliers is part of the theory of Fourier integral operators and localization operators. Roughly speaking, a Fourier multiplier is an operator defined through a multiplication by a symbol on a function’s frequency spectrum. It is a way to reshape the frequencies involved in the function. Therefore this theory has many applications for instance in Signal processing where the Fourier multiplier is called a filter. Research on the Fourier multipliers is very active and quite flourishing. As recent articles in this field we can quote [1, 2, 3].
In [4], Atto et al. investigated the Fourier multipliers for a kind of \(p\)-Fourier spaces introduced in [5]. They obtained important results related to the boundedness of such operators. However, the underlying multiplication function (the symbol) takes values in the set of complex numbers though authors dealt with the Fourier transform of vector valued functions. It may have been interesting to consider vector valued symbols. So, in order to harmonize things, it seems necessary to complete/extend the study by the case where the symbols are vector valued functions. This is the main purpose of this paper. Thanks to the Fourier inversion formula in [6], it is possible to introduce what we call a vector Fourier multiplier.
The paper is organized as follows. In Section 2, we set some preliminaries related to the Fourier transform of vector valued functions. In Section 3, we investigate properties of the Fourier multipliers for Bochner integrable functions and in Section 4, we study the Fourier multipliers for \(p\)-Fourier spaces.
Theorem 1. If \(f,g \in L^1 (G, \mathfrak{A})\) then \( \widehat{f \ast g}= \widehat{f} \times \widehat{g}\).
The next theorem gives a characterization of the vector Fourier multipliers on \( L^{1}(G,\mathfrak{A})\).Theorem 2.
Proof. Let \( T_\varphi \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\). Let \( \sigma’ \in \widehat{G}\). Vectors \(\xi \in H_{\sigma’}\) and \(\eta \in \overline{H}_{\sigma’}\) can be written in the forms \(\xi= \sum\limits_{n=1}^{d_{\sigma’}}\alpha_{n}\xi_{n}^{\sigma’}\) and \( \eta=\sum\limits_{m=1}^{d_{\sigma’}} \overline{\beta}_m\xi_{m}^{\sigma’} \) in the basis \( (\xi_{1}^{\sigma’}, \xi_{2}^{\sigma’},\cdots,\xi_{d_{{\sigma’}}}^{\sigma’} )\) of \(H_{\sigma’}\). Then \begin{align*} \widehat{T_{\varphi}f}(\sigma’)(\xi\otimes \eta) &=\widehat{T_{\varphi}f}(\sigma’)(\sum_{n=1}^{d_{\sigma’}}\alpha_{n}\xi_{n}^{\sigma’} \otimes\sum_{m=1}^{d_{\sigma’}} \overline{\beta}_m\xi_{m}^{\sigma’} )\\ &=\sum_{n=1}^{d_{\sigma’}}\sum_{m=1}^{d_{\sigma’}}\alpha_{n}\overline{\beta}_m\widehat{T_{\varphi}f}(\sigma’)(\xi_{n}^{\sigma’}\otimes\xi_{m}^{\sigma’})\\ &=\sum_{n=1}^{d_{\sigma’}}\sum_{m=1}^{d_{\sigma’}}\alpha_{n}\overline{\beta}_m\displaystyle\int_{G}\langle\sigma'(x^{-1})\xi_{n}^{\sigma’},\xi_{m}^{\sigma’}\rangle(T_\varphi f)(x)dx\\ &=\sum_{n=1}^{d_{\sigma’}}\sum_{m=1}^{d_{\sigma’}}\alpha_{n}\overline{\beta}_m\displaystyle\int_{G}\overline{u_{nm}^{\sigma’}(x)}(T_{\varphi}f)(x)dx\\ &=\sum_{n=1}^{d_{\sigma’}}\sum_{m=1}^{d_{\sigma’}}\alpha_{n}\overline{\beta}_m\displaystyle\int_{G}\overline{u_{nm}^{\sigma’}(x)}\sum\limits_{\sigma\in\widehat{G}}d_\sigma \sum\limits_{i=1}^{d_{\sigma}} \sum\limits_{j=1}^{d_{\sigma}} \varphi(\sigma) \widehat{f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma}(x)dx \\ &=\sum_{n=1}^{d_{\sigma’}}\sum_{m=1}^{d_{\sigma’}}\alpha_{n}\overline{\beta}_m \sum\limits_{\sigma\in \widehat{G}}d_\sigma\sum_{i=1}^{d_\sigma}\sum_{j=1}^{d_\sigma} \varphi(\sigma)\widehat{f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})\displaystyle\int_{G}\overline{u_{mn}^{\sigma’}(x)}u_{ij}^{\sigma}(x)dx. \end{align*} By appealing to the Schur orthogonality relations, we get \begin{eqnarray*} \widehat{T_{\varphi}f}(\sigma’)(\xi\otimes\eta)&=& \sum\limits_{n=1}^{d_{\sigma’}}\sum\limits_{m=1}^{d_{\sigma’}}\alpha_{n}\overline{\beta}_m d_{\sigma’} \sum\limits_{i=1}^{d_{\sigma}}\sum\limits_{j=1}^{d_{\sigma}} \varphi(\sigma’)\widehat{f} (\sigma’)(\xi_{j}^{\sigma’}\otimes\xi_{i}^{\sigma’})(\frac{1}{d_{\sigma’}}\delta_{im} \delta_{jn})\\ &=& \sum\limits_{n=1}^{d_{\sigma’}}\sum\limits_{m=1}^{d_{\sigma’}}\alpha_{n}\overline{\beta}_m \varphi(\sigma’) \widehat{f} (\sigma’)(\xi_{n}^{\sigma’}\otimes\xi_{m}^{\sigma’})\\ &=&\varphi(\sigma’) \widehat{f}(\sigma’)(\sum_{n=1}^{d_{\sigma’}}\alpha_{n}\xi_{n}^{\sigma’}\otimes\sum_{m=1}^{d_{\sigma’}}\overline{\beta_{m}}\xi_{m}^{\sigma’})\\ &=&\varphi(\sigma’) \widehat{f}(\sigma’)(\xi\otimes\eta)\\ &=&(\varphi\boxtimes \widehat{f})(\sigma’)(\xi\otimes\eta) \end{eqnarray*} Thus \( \widehat{T_{\varphi}f}=\varphi\boxtimes \widehat{f}. \) Conversely, let us assume that \(\forall f \in L^{1}(G,\mathfrak{A}), \widehat{T_{\varphi}f}=\varphi \boxtimes \widehat{f}\). Then, using the inversion formula we obtain \begin{align*} T_{\varphi}f&=\sum\limits_{\sigma\in \widehat{G}}d_\sigma\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\widehat{T_{\varphi}f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma}\\ &=\sum\limits_{\sigma \in \widehat{G}}d_\sigma\sum_{i=1}^{d_\sigma}\sum_{j=1}^{d_\sigma}(\varphi\boxtimes\widehat{f})(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma} \\ &=\sum\limits_{\sigma \in \widehat{G}}d_\sigma\sum_{i=1}^{d_\sigma}\sum_{j=1}^{d_\sigma}\varphi(\sigma) \widehat{f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma}. \end{align*} Thus \( T_{\varphi}f \) is a vector Fourier multiplier for \( L^{1}(G,\mathfrak{A})\).
Theorem 3. If \(T_{\varphi}, T_{\phi} \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f,g\in L^{1}(G,\mathfrak{A}) \) then the following equalities hold:
Proof. Let \( T_{\varphi} \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f,g\in L^{1}(G,\mathfrak{A})\). \begin{align*} \mathcal{F}({T_{\varphi}(f \ast g)})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) &=(\varphi \boxtimes\widehat{f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=\varphi(\sigma) \widehat{f \ast g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &= \varphi(\sigma) [(\widehat{f}\times \widehat{g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})]\\ &= \varphi(\sigma) [\sum_{k=1}^{d_{\sigma}}\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma}) \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})]\\ &=\sum_{k=1}^{d_{\sigma}}\varphi(\sigma) \widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma}) \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma}) \\ &=\sum_{k=1}^{d_{\sigma}}[\varphi(\sigma)\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})] \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=\sum_{k=1}^{d_{\sigma}}[(\varphi \boxtimes\widehat{f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})] \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma}) \\ &=\sum_{k=1}^{d_{\sigma}}[\widehat{T_{\varphi}f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})] \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=(\widehat{T_{\varphi}f}\times \widehat{g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=\mathcal{F}({T_{\varphi}f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) \end{align*} Since the Fourier transformation is injective, we have \(T_{\varphi}(f \ast g)=T_{\varphi}f \ast g.\) Let \( T_{\varphi}, T_{\phi} \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f,g\in L^{1}(G,\mathfrak{A})\). \begin{eqnarray*} \mathcal{F}({T_{\varphi \phi}(f \ast g)})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) &=&(\varphi \phi\boxtimes \widehat{ f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&(\varphi \phi)(\sigma) (\widehat{ f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&\varphi(\sigma) \phi(\sigma) (\widehat{ f} \times \widehat{ g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&\varphi(\sigma) \phi(\sigma) \sum_{k=1}^{d_{\sigma}}\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\varphi(\sigma) \sum_{k=1}^{d_{\sigma}}\phi(\sigma)\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\varphi(\sigma) \sum_{k=1}^{d_{\sigma}}(\phi \boxtimes\widehat{f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\varphi(\sigma) \sum_{k=1}^{d_{\sigma}}\widehat{T_{\phi}f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\sum_{k=1}^{d_{\sigma}}\varphi(\sigma)\widehat{T_{\phi}f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\sum_{k=1}^{d_{\sigma}}(\varphi\boxtimes\widehat{T_{\phi}f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\sum_{k=1}^{d_{\sigma}}\widehat{T_{\varphi}T_{\phi}f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&(\widehat{T_{\varphi}T_{\phi}f}\times\widehat{g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&\mathcal{F}((T_\varphi T_\phi f) \ast g) (\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}). \end{eqnarray*} Therefore, by the injectivity of the Fourier transformation, we have \begin{eqnarray*} T_{\varphi \phi}(f \ast g) = ( T_{\varphi}T_{\phi}f) \ast g. \end{eqnarray*}
For \( \psi \in \mathcal{L}(\widehat{G},\mathfrak{A})\), we setTheorem 4. If \( T_\varphi \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f\in L^{1}(G,\mathfrak{A})\) then \(\widehat{T_{\varphi}f}\in \mathcal{L}_{\infty}(\widehat{G},\mathfrak{A})\) and \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}\rVert_{\infty} \leq\lVert\varphi\rVert_{\infty} \lVert f\rVert_1. \end{eqnarray*}
Proof. Let \(\xi\otimes\eta \in H_{\sigma} \otimes \overline{H}_\sigma\). \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}(\sigma)(\xi\otimes\eta)\rVert &=&\lVert (\varphi \boxtimes \widehat{f})(\sigma)(\xi\otimes\eta)\rVert \\ &=&\lVert \varphi(\sigma) \widehat{f}(\sigma)(\xi\otimes\eta)\rVert\\ &\leq & \lVert \varphi(\sigma) \rVert \lVert \widehat{f}(\sigma)(\xi\otimes\eta)\rVert\\ &\leq & \lVert\varphi\rVert_{\infty} \lVert \xi \rVert \lVert \eta \rVert \lVert f \rVert_1. \end{eqnarray*} Hence \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}(\sigma)\rVert \leq \lVert \varphi\rVert_{\infty} \lVert f \rVert_1,\, \forall \sigma \in \widehat{G}. \end{eqnarray*} Thus \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}\rVert_{\infty} \leq \lVert \varphi\rVert_{\infty} \lVert f \rVert_1. \end{eqnarray*}
Theorem 6. If \(f \in \mathcal{A}_{p}(G,\mathfrak{A})\) then \(T_{\varphi}f \in \mathcal{A}_{p}(G,\mathfrak{A})\).
Proof. Let us assume that \( f \in \mathcal{A}_{p}(G,\mathfrak{A})\). Then \begin{eqnarray*} \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_p}^{p} &=&\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert\widehat{T_{\varphi}f}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) \rVert^{p}\\ &=&\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert (\varphi \boxtimes \widehat{f})(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}\\ &=&\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert \varphi(\sigma) \widehat{f}(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}\\ &\leq &\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert \varphi(\sigma) \rVert^{p}\lVert \widehat{f}(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}. \end{eqnarray*} Since \( \varphi \) is bounded, we obtain \begin{eqnarray*} \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_{p}}^{p} & \leq & \|\varphi\|_\infty^{p}\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert \widehat{f}(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}.\\ & \leq & \|\varphi\|_\infty^{p} \lVert \widehat{f} \rVert_{\mathcal{L}_{p}}^{p}< \infty. \end{eqnarray*} Thus \( T_{\varphi}f \in \mathcal{A}_{p}(G,\mathfrak{A})\).
Remark 1. From the inclusion property in Theorem 5, One can extend the operator \(T_\varphi\) to the topological dual \(\mathcal{A}_p^*(G, \mathfrak{A})\) of \( (\mathcal{A}_p(G, \mathfrak{A}), \|\cdot\|_{\mathcal{A}_p})\) or \((\mathcal{A}_p(G, \mathfrak{A}), \|\cdot\|^{\mathcal{A}_p})\), exactly as the Fourier tansform is extended from the Schwartz space to the space of tempered distributions, by the relation
Corollary 6. \(T_\varphi\) is a bounded operator on \(\mathcal{A}_p(G, \mathfrak{A})\) when the latter is endowed with the norm \(\|\cdot\|^{\mathcal{A}_p}\).
Proof. In the proof of Theorem 5 we have established that \( \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_{p}} \leq \|\varphi\|_\infty\lVert\widehat{f}\rVert_{\mathcal{L}_{p}}\). But \( \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_{p}}=\lVert T_{\varphi}f \rVert^{{\mathcal{A}_{p}}} \) and \( \lVert \widehat{f} \rVert_{\mathcal{L}_{p}}=\lVert f \rVert^{{\mathcal{A}_{p}}} \). Therefore \begin{eqnarray*} \lVert T_{\varphi}f \rVert^{{\mathcal{A}_{p}}} \leq \|\varphi\|_\infty \lVert f \rVert^{\mathcal{A}_{p}}. \end{eqnarray*} Thus \( T_{\varphi} \) is bounded on \( \mathcal{A}_{p}(G,\mathfrak{A}) \) endowed with the norm \( \lVert.\rVert^{\mathcal{A}_{p}}.\)
Theorem 7. If \( T_{\varphi} \) is a bounded operator on \( L^{1}(G,\mathfrak{A}) \) then \( T_{\varphi} \) is also a bounded operator on \( \mathcal{A}_{p}(G,\mathfrak{A})\) when the latter is endowed with the norm \( \lVert.\rVert_{\mathcal{A}_{p}}\).
Proof. \begin{eqnarray*} \lVert T_{\varphi}f \rVert_{\mathcal{A}_{p}}&=& \lVert T_{\varphi}f\rVert_1+\lVert \widehat{T_{\varphi}f}\rVert_{\mathcal{L}_{p}}\\ &\leq& \|T_\varphi\|\lVert f \rVert_1+ \|\varphi\|_\infty \lVert \widehat{f}\rVert_{\mathcal{L}_p}\\ &\leq & \max\{ \|T_\varphi\|, \|\varphi\|_\infty \} (\lVert f \rVert_1 + \lVert \widehat{f}\rVert_{\mathcal{L}_p})\\ &\leq & C \lVert f \rVert_{\mathcal{A}_{p}} \end{eqnarray*} where \(C=\max\{ \|T_\varphi\|, \|\varphi\|_\infty \}\). Thus \( T_{\varphi} \) is bounded on \( \mathcal{A}_{p}(G,\mathfrak{A})\) endowed with the norm \( \lVert \cdot \rVert_{\mathcal{A}_{p}}\) .