In this paper, the exact value of covering radius of unit repetition codes and the bounds of covering radius of zero-divisor repetition codes have been determined by using Lee weight over the finite ring \(F_{2}+vF_{2}+v^2F_2\). Moreover the covering radius of different block repetition codes have been also studied.
For more than a decade, codes over finite rings have gotten much attention of researchers due the definition of Gray map [1, 2, 3]. Particularly, codes over the ring \(F_{2}+vF_{2}+v^2F_2\) have been extensively studied [4, 5].
The covering radius is very interesting topic in coding theory. First time, the covering radius of binary linear codes were studied by Helleseth et al., [6]. Furthermore, covering radius of linear codes over \(F_2+uF_2\) with \(u^2=0\) was determined by using Lee distance, Chinese Euclidean distance, and Bachoc distance [7, 8, 9].
Recently, the covering radius of codes over \(Z_4\) have been determined by using lee weight and Chinese Euclidean lee weight [10, 11]. In [11], Manoj et al., introduced new reduction and torsion codes, repetition codes for octonary codes and determined its covering radius. Chatouh et al., [12], Pandian et al., [13] gave the upper and lower bounds on the covering radius of some classes of codes over rings \(Z_2\times Z_4\), \(Z_2\times R\) with \(R=F2+vF2, v^2=v\) respectively. Panchanathan et al., in [14] studied bounds on covering radius for various repetition codes with respect to different and similar length over \(F_2+uF_2+u^2F_2 \) with \(u^3=0\) using Lee weight and generalized Lee weight.
The goal of this paper is to investigate the covering radius of repetition codes over the finite ring \(F_2+vF_2+v^2F_2\) with \(v^3=1\).Definition 1. Let \(C\) be a linear code over \(M\) of length \(n\). The covering radius of \(C\) with respect distance \(d\), where \(d \in \{d_H, d_L\},\) is defined as: $$r_d(C)= max\{d(x,C) | x\in M^n\}.$$
Proposition 1. [15] Let \(C\) be a code generated by \(G\) over \(M\), \(C^{‘}\) be a code generated by \(G^{‘}\) over \(M\) and \(C^{”}\) be a code generated by \(\begin{pmatrix} 0 & G^{‘} \\ G^{”} & A \end{pmatrix}\), then \(r_d(C^{”})\leqslant r_d(C)+r_d(C^{”}).\) Moreover, if \(B\) be the concatenation of \(C\) and \(C^{‘}\) then \(r_d(B)\geqslant r_d(C)+r_d(C^{”}).\)
Theorem 1. Let \(C_{1}\) be unit repetition code of generator matrix \(G_{1}=\begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}\) and \(C_{2}\) be zero-divisor repetition code with generator matrix \(G_{2}=\begin{pmatrix} 1+v & 1+v & \cdots & 1+v \end{pmatrix}\) and \(C_{3}\) be zero-divisor repetition code with generator matrix \(G_{3}= \begin{pmatrix} 1+v+v^2 & 1+v+v^2 & \cdots & 1+v+v^2 \end{pmatrix}\). Then we have
Proof.
We also have
\begin{align*}\sum_{i=0}^{7}w_i=n\end{align*} and \(\begin{cases}w_L(x)=w_0w_L(0) + w_1w_L(1)+ w_2w_L(v) +w_3w_L(v^2)+ w_4w_L(1+v)+w_5w_L(1+v^2)+ w_6w_L(v+v^2)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;+ w_7w_L(1+v+v^2)= (w_4+ w_5+ w_7)+ 2(w_2+ w_3+ w_6)+ 3w_1.\\ d_L(x,00…0)=(w_4+ w_5+ w_7)+ 2(w_2+ w_3+ w_6)+ 3w_1=n-w_0+2w_1+ w_2+ w_3+ w_6,\\ d_L(x,11…1)=w_L(x-11…1)= n+2w_0-w_1+w_4+w_5+w_7.\end{cases}\)And by the same way, we have
\(\begin{cases} d_L(x,v v…v)= n+w_0-w_2+w_3+2w_4+w_6,\\ d_L(x,v^2 v^2…v^2)= n+w_0+w_2-w_3+2w_5+w_6,\\ d_L(x,1+v 1+v…1+v)= n+w_1+2w_2-w_4+w_5+w_7,\\ d_L(x,1+v^2 1+v^2…1+v^2)= n+w_1+2w_3++w_4-w_5+w_7,\\ d_L(x,v+v^2 v+v^2…v+v^2)= n+w_0+w_2+w_3-w_6+2w_7,\\ d_L(x,1+v+v^2 1+v+v^2…1+v+v^2)= n+w_1+w_4 +w_5+2w_6-w_7.\end{cases}\)So,
$$d_L(x,C_1)=min\{d_L(x,y)| y \in C_1 \}\leqslant \dfrac{1}{8}(8n+ 4n)=\dfrac{12n}{8}=\dfrac{3n}{2}$$ implies $$d_L(x,C_1)\leq \dfrac{3n}{2}\;\;\forall x \in M^n,$$ hence $$r_{d_L}(C_1) \leq \dfrac{3n}{2}.$$To prove the reverse inequality, take
\( x=\left[\overset{m}{ \widehat{0 0\cdots 0}}| \overset{m}{ \widehat{1 1\cdots 1}}| \overset{m}{\widehat{v v \cdots v}} |\overset{m}{\widehat{v^2 v^2 \cdots v^2}} |\overset{m}{ \widehat{1+v 1+v \cdots 1+v}} |\overset{m}{\widehat{1+v^2 1+v^2 \cdots 1+v^2}} \right.\)So, we have
\(\begin{cases}d_L(x,00\cdots 0)=2n-4m,\\ d_L(x,1 1 \cdots 1)=n+4m,\\ d_L(x,v v \cdots v)=n+4m ,\\ d_L(x,v^2 v^2\cdots v^2)=n+4m,\\ d_L(x,v+1 v+1 \cdots v+1)= 2n-4m,\\ d_L(x, v^2+1 v^2+1 \cdots v^2+1)=2n-4m,\\ d_L(x,v+v^2 v+v^2\cdots v+v^2)=3n-12m,\\ d_L(x,1+v+v^2 1+v+v^2\cdots 1+v+v^2)=n+4m,\\ d_L(x,C_1)=min\{n+4m, 2n-4m, 3n-12m\}= n+4m.\end{cases}\)Then \(r_{d_L}(C_1) \geq n+4m\geq n+\frac{n}{2}=\frac{3n}{2}\). Hence, \(r_{d_L}(C_1)=\frac{3n}{2}\).
Now, we prove \(4\left\lfloor \dfrac{n}{4} \right\rfloor \leq r_{d_L}(C_2)\leq 2n\). To prove \(r_{d_L}(C_2)\leq 2n\), suppose \(x \in M^n\) then
\(\begin{cases}d_L(x,(0,0,\cdots,0))=n-w_0+2w_1+ w_2+ w_3+ w_6,\\ d_L(x,(1+v,1+v,\cdots,1+v))=n+w_1+2w_2-w_4+w_5+w_7,\\ d_L(x,(1+v^2,1+v^2,\cdots,1+v^2))= n+w_1+2w_3+w_4-w_5+ w_7,\;\text{ and}\\ d_L(x,(v+v^2,v+v^2,\cdots,v+v^2))=n+w_0+w_2+w_3-w_6+2w_7.\end{cases}\)Now, since \(w_1+w_2+w_3+w_7 \leq n\), so
\(d_L(x,C_2)=min\{n-w_0+2w_1+ w_2+ w_3+ w_6, n+w_1+2w_2-w_4+w_5+w_7\), \( n+w_1+2w_3+w_4-w_5+ w_7 \), \( n+w_0+w_2+w_3-w_6+2w_7 \}\leq \frac{1}{4}( 4n +4(w_1+w_2+w_3+w_7))\leq 2n\).To prove \(4\left\lfloor \dfrac{n}{4} \right\rfloor \leq r_{d_L}(C_2)\),
suppose
$$ x=\left[\overset {\lfloor \frac{n}{4}\rfloor }{\widehat{0 0\cdots0}}|\overset{\lfloor \frac{n}{4}\rfloor}{\widehat{1+v 1+v\cdots1+v}} | \overset{\lfloor \frac{n}{4}\rfloor }{ \widehat{1+v^2 1+v^2\cdots1+v^2}}|\overset{n-3\lfloor \frac{n}{4}\rfloor}{\widehat{v+v^2 v+v^2\cdots v+v^2}}\right]\in M^n,$$ then \(\begin{cases}d_L(x,(0,0,\cdots,0))= 2n-4\lfloor \frac{n}{4}\rfloor,\\ d_L(x,(1+v,1+v,\cdots,1+v))=d_L(x,(1+v^2,1+v^2,\cdots,1+v^2))=n,\; \text{and}\\ d_L(x,(v+v^2,v+v^2,\cdots,v+v^2))=4\lfloor \frac{n}{4}\rfloor.\end{cases}\)Then \(d_L(x,C_2)=min\{ n, 2n-4\lfloor \frac{n}{4}\rfloor, 4\lfloor \frac{n}{4}\rfloor \}= 4\lfloor \frac{n}{4}\rfloor\) implies \(r_{d_L}(C_2) \geq 4\lfloor \frac{n}{4}\rfloor \). Hence we achieved our desired result.
Now we prove that \(\lfloor \frac{n}{2}\rfloor \leq r_{d_L}(C_3) \leq \frac{5n}{2}\). To prove \(r_{d_L}(C_3) \leq \frac{5n}{2}\), suppose \(x \in M^n \) then
\(\begin{cases}d_L(x,(0,0,\cdots,0))= n-w_0+2w_1+ w_2+ w_3+ w_6,\; \text{and}\\ d_L(x,(1+v+v^2, 1+v+v^2, \cdots,1+v+v^2))=n+w_1+w_4 +w_5+2w_6-w_7.\end{cases}\)Now, because \(w_0+w_1+w_6+w_7 \leq n\), so \(d_L(x,C_3) \leq \frac{1}{2}(3n-2w_0+2w_1+2w_6-2w_7)\) implies \(d_L(x,C_3) \leq \dfrac{5n}{2}\) \(\forall x \in M^n\). Hence \(r_{d_L(C_3)} \leq \dfrac{5n}{2}\).
It remains to prove \(\lfloor \frac{n}{2}\rfloor \leq r_{d_L}(C_3)\). For this suppose \(x=[\overset{\lfloor \frac{n}{2}\rfloor}{\widehat{0 0\cdots0}} |\overset{\lfloor \frac{n}{2}\rfloor}{\widehat{1+v+v^2 1+v+v^2 \cdots 1+v+v^2}}]\). Then
\(\begin{cases}d_L(x,(0,0,\cdots,0))= \lfloor \frac{n}{2}\rfloor\; \text{and}\\ d_L(x,(1+v+v^2, 1+v+v^2, \cdots,1+v+v^2))= \lfloor \frac{n}{2}\rfloor. \end{cases}\)So \(d_L(x,C_3)= \lfloor \frac{n}{2}\rfloor \) and by the definition of covering radius of code we have \(r_{d_L(C_3)} \geq \lfloor \frac{n}{2}\rfloor \).
Theorem 2. Let \(Rp_{U_s}^{3n}\) be a block repetition code of length \(3n\) with generator matrix \(G_{U_s} =\begin{pmatrix} \overset{n}{\widehat{1 1 \cdots 1}} & \overset{n }{\widehat{v v \cdots v}} & \overset{n }{\widehat{v^2 v^2 \cdots v^2 }} \end{pmatrix}\) and \(Rp_{U_d}^{n_1+n_2+n_3}\) be a block repetition code of length \(n_1+n_2+n_3\) with generator matrix \( G_{U_d}= \begin{pmatrix} V{n_1 }{\widehat{1 1 \cdots 1}} & \overset{n_2 }{ \widehat{v v \cdots v}} & \overset{n_3}{\widehat{v^2 v^2 \cdots v^2 }} \end{pmatrix}\). Then
Proof.
Then we have $$\sum_{i=0}^{7}s_i=\sum_{j=0}^{7}t_j=\sum_{k=0}^{7}w_i=n.$$ Let \(c_{i,i=0\cdots 7} \in \{ \alpha \begin{pmatrix} 1 1 \cdots 1 & v v \cdots v & v^2 v^2 \cdots v^2 \end{pmatrix} \;\text{such that}\; \alpha \in M \}\). Then we have \(\begin{cases} d_L(x,c_0)=3n-s_0+2s_1+s_2+s_3+s_6-t_0+2t_1+t_2+t_3+t_6-w_0+2w_1+w_2+w_3+w_6,\\ d_L(x,c_1)=3n+2s_0-s_1+s_4+s_5+s_7+t_0-t_2+t_3+2t_4+t_6+w_0+w_2-w_3+2w_5+w_6,\\ d_L(x,c_2)=3n+s_0-s_2+s_3+2s_4+s_6+t_0+t_2-t_3+2t_5+t_6+2w_0-w_1+w_4+w_5+w_7,\\ d_L(x,c_3)=3n+2s_0-s_1+s_4+s_5+s_7+t_0-t_2+t_3+2t_4+t_6+w_0+w_2-w_3+2w_5+w_6,\\ d_L(x,c_4)=3n+s_1+2s_2-s_4+s_5+s_7+t_0+t_2+t_3-t_6+2t_7+w_1+2w_3+w_4-w_5+w_7,\\ d_L(x,c_5)=3n+s_1+2s_3+s_4-s_5+s_7+t_1+2t_2-t_4+t_5+t_7+w_0+w_2+w_3-w_6+2w_7,\\ d_L(x,c_6)=3n+s_0+s_2+s_3-s_6+2s_7+t_1+2t_3+t_4-t_5+t_7+w_1+2w_2-w_4+w_5+w_7,\\ d_L(x,c_7)=3n+s_1+s_4+s_5+2s_6-s_7+t_1+t_4+t_5+2t_6-t_7+w_1+2w_2+w_5+2w_6-w_7.\end{cases}\)
Therefore \(d_L(x,Rp_{U_s}^{3n})=min\{ d_L(x,c_i), i=0..7\} \leq \frac{1}{8}(24n+4(\sum_{i=0}^{7} s_i)+4(\sum_{i=0}^{7} t_i)+4(\sum_{i=0}^{7} w_i))\) and hence \(d_L(x,Rp_{U_s}^{3n})\leq \frac{9n}{2}\) \(\forall x \in M^{3n}\).
In other hand by using Preposition 1 we have \(r_{d_L}(Rp_{U_s}^{3n}) \geq 3r_{d_L}(C_1)=\dfrac{9n}{2}\).
Theorem 3. Let \(C\) be a block repetition code of length \(2n\) generated by \(G=\begin{pmatrix} \overset{n }{\widehat{1+v 1+v \cdots 1+v}} & \overset{n}{\widehat{1+v+v^2 1+v+v^2 \cdots 1+v+v^2 }} \end{pmatrix}\). Then the code \(C\) is \([2n,8,d_H=n,d_L=n]\)-code over \(M^{2n}\) and \(4\lfloor\frac{n}{4} \rfloor+\lfloor \frac{n}{2}\rfloor \leq r_{d_L}(C) \leq 4n.\)
Proof.
By Proposition 1, we have \(r_{d_L} \geq r_{d_L}(C_2)+r_{d_L}(C_3) \geq 4\lfloor\frac{n}{4} \rfloor+\lfloor \frac{n}{2}\rfloor\). So \(r_{d_L} \geq 4\lfloor\frac{n}{4} \rfloor+\lfloor \frac{n}{2}\rfloor\).
Let \(x \in M^{2n}\) such that \(x=(x_1|x_2)\) with \(m_i, i=0..7\) is the number of coordinates have \((0, 1, v, v^2, 1+v, 1+v^2, v+v^2, 1+v+v^2)\) respectively in \(x_1\) and \(l_i, i=0..7\) is the number of coordinates in \(x_2\) have \((0, 1, v, v^2, 1+v, 1+v^2, v+v^2, 1+v+v^2)\) respectively. We conclude that \(\sum_{i=0}^{7}m_i=\sum_{i=0}^{7}l_i=n\).
Now let \(c_{i,i=0..7} \in \{ \alpha \begin{pmatrix}
1+v 1+v \cdots 1+v & 1+v+v^2 1+v+v^2 \cdots 1+v+v^2
\end{pmatrix} \;\text{such that}\; \alpha \in M \}\), then we have
\(\begin{cases}d_L(x,c_0)=2n-m_0+2m_1+m_2+m_3+m_6-l_0+2l_1+l_2+l_3+l_6,\\
d_L(x,c_1)=2n+m_1+2m_2-m_4+m_5+m_7+l_1+l_4+l_5+2l_6-l_7,\\
d_L(x,c_2)=2n+m_0+m_2+m_3-m_6+2m_7+l_1+l_4+l_5+2l_6-l_7,\\
d_L(x,c_3)=2n+m_1+2m_3+m_4-m_5+m_7+l_1+l_4+l_5+2l_6-l_7,\\
d_L(x,c_4)=2n+m_1+2m_3+m_4-m_5+m_7-l_0+2l_1+l_2+l_3+l_6,\\
d_L(x,c_5)=2n+m_0+m_2+m_3-m_6+2m_7-l_0+2l_1+l_2+l_3+l_6,\\
d_L(x,c_6)=2n+m_1+2m_2-m_4+m_5+m_7-l_0+2l_1+l_2+l_3+l_6,\\
d_L(x,c_7)=2n-m_0+2m_1+m_2+m_3+m_6+l_1+l_4+l_5+2l_6-l_7.\end{cases}\)
By definition of Lee distance of \(C,\) we have \(d_L(x,C)=min\{ d_L(x,c_i), i=0..7\} \leq 4n\) for any \(x\) in \(M^{2n}\) which implies that \( r_{d_L}(C) \leq 4n\). Hence the prove is complete.