Moments of generalized order statistics for Pareto-Rayleigh distribution

Author(s): M. Alam1, R. U. Khan1, Z. Vidović2
1Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202 002, India.
2Teacher Education Faculty, Belgrade 11000, Serbia.
Copyright © M. Alam, R. U. Khan, Z. Vidović. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we derive the explicit expressions for single and product moments of generalized order statistics from Pareto-Rayleigh distribution using hypergeometric functions. Also, some interesting remarks are presented.

Keywords: Generalized order statistics; Pareto-Rayleigh distribution; Single moments; Product moments; Hypergeometric functions.

1. Introduction

Kamps [1] introduced the concept of generalized order statistics \((gos)\) as follows: Let us note \(n\in N\), \(k\geq1\), and \(\tilde{m}=(m_1,m_2,\ldots,m_{n-1})\in\mathfrak{R}^{n-1},\) \(1\leq r\leq {n-1}\), such that

\begin{equation*} \gamma_r=k+n-r+\sum_{j=r}^{n-1} m_{j}>0~~\, for \, ~~1\leq r \leq n-1. \end{equation*} The random variables \(X(1,n,\tilde{m},k),X(2,n,\tilde{m},k), \ldots,X(n,n,\tilde{m},k)\) are said to be \(gos\) from a continuous population with cumulative distribution function (\(cdf\)) \(F(x)\) and probability distribution function (\(pdf\)) \(f(x)\) if their joint \(pdf\) is of the form
\begin{equation}\label{e1.1} k\Bigg(\prod_{j=1}^{n-1}\gamma_j\Bigg)\Bigg(\prod_{i=1}^{n-1}\big[\bar{F}(x_i)\big]^{m_i}f(x_i)\Bigg)\big[\bar{F}(x_n)\big]^{k-1}f(x_n), \end{equation}
(1)
defined on the cone \(F^{-1}(0+)< x_1\leq x_2 \leq \ldots \leq x_n< F^{-1}(1)\) of \( \mathfrak{R}^{n}\), where \(\bar{F}(x)=1-F(x)\).

The model of \(gos\) contains special cases such as ordinary order statistics \((\gamma_i=n-i+1; i=1,2,\dots,n ~i.e. ~ m_{1}=m_{2}=\dots=m_{n-1}=0, \,k=1)\), \(k\)-th record values \((\gamma_{i}=k ~i.e.,~ m_{1}=m_{2}=\dots=m_{n-1}=-1,\, k\in N)\), sequential order statistics \((\gamma_{i}=(n-i+1)\alpha_{i};\, \alpha_{1},\alpha_{2},\dots,\alpha_{n}> 0)\), order statistics with non-integer sample size \((\gamma_{i}=\alpha-i+1; \,\alpha > 0)\), Pfeifer’s record values \((\gamma_{i}=\beta_{i};\, \beta_{1},\beta_{2},\dots,\beta_{n} > 0)\) and progressive type II censored order statistics \((\gamma_r=n-r+1+\sum_{i=r}^{l} m_{i}, 1\leq r\leq l \leq n,\, m_{i}\in N,\, k=m_n+1)\), see [1,2,3].

Here we shall obtain the results for \(\gamma_i\ne\gamma_j\) and then deduce the results for \(\gamma_i=\gamma_j\) (\(m_{1}=m_{2}=\dots=m_{n-1}=m\ne-1\)).

Therefore, we will consider two cases:

Case I: \(\gamma_i=\gamma_j\,(m_{1}=m_{2}=\dots=m_{n-1}=m\ne-1)\) [1].

Case II: \(\gamma_i\ne\gamma_j,\,i\ne j\, i,j=1,2,\dots{,{n-1}}\) [2].

Case I: The \(pdf\) of \(r-\)th \(gos\) \(X(r,n,m,k),\) is given by

\begin{equation}\label{e1.2} f_{X(r,n,m,k)}(x)=\frac{C_{r-1}}{(r-1)!}\,[{\bar F}(x)]^{\gamma_r-1}\,f(x)\,g_m^{r-1}(F(x)), \end{equation}
(2)
and the joint \(pdf\) of \(X(r,n,m,k)\) and \(X(s,n,m,k)\), \(1\leq r< s\leq n\), is given by
\begin{align} \label{e1.3} f_{X(r,n,m,k), X(s,n,m,k)}(x,y)=&\frac{C_{s-1}}{(r-1)!\ (s-r-1)!}\, [{\bar F}(x)]^m\,g_m^{r-1}(F(x)) \end{align}
(3)
\begin{align} &\times [h_m(F(y))-h_m(F(x))]^{s-r-1}\,[{\bar F}(y)]^{\gamma_s-1}\,f(x)\,f(y),~~x< y, \end{align}
(4)
where \begin{equation*} C_{r-1}=\prod_{i=1}^r\gamma_i ,\, \,~~~\gamma_i=k+(n-i) (m+1), \end{equation*} \begin{equation*} h_m(x)=\begin{cases} -\displaystyle\frac{1}{m+1}\,(1-x)^{m+1}&,~~~ m\neq -1\\ -\ln(1-x)&,~~~m=-1 \end{cases} \end{equation*} and \begin{equation*} g_m(x)~=~h_m(x)-h_m(0)=\int_0^x(1-t)^mdt,~~x\in [0,1). \end{equation*} Case II: The \(pdf\) of \(r-\)th \(gos\) \(X(r,n,\tilde{m},k),\) is given by
\begin{equation}\label{e1.4} f_{X(r,n,\tilde{m},k)}(x)~=~{C_{r-1}}\,\sum_{i=1}^{r}\,a_{i}(r)\,[{\bar F}(x)]^{\gamma_i-1}\,f(x) \end{equation}
(5)
with the joint \(pdf\) of \(X(r,n,\tilde{m},k)\) and \(X(s,n,\tilde{m},k)\), \(1\leq r< s\leq n\),
\begin{equation}\label{e1.5} f_{X(r,n,\tilde{m},k), X(s,n,\tilde{m},k)}(x,y)=~C_{s-1}\, \Bigg[\sum_{i=r+1}^{s}a_{i}^{(r)}(s)\bigg\{\frac{\bar{F}(y)}{\bar{F}(x)}\bigg\}^{\gamma_{i}}\Bigg]\bigg[\sum_{i=1}^{r}a_{i}(r)\big\{{\bar{F}(x)}\big\}^{\gamma_{i}}\bigg]\frac{f(x)}{\bar{F}(x)}\,\frac{f(y)}{\bar{F}(y)} \end{equation}
(6)
where \begin{align*} &C_{r-1}=\prod_{i=1}^r\gamma_i,\\ &\gamma_r=k+n-r+\sum_{j=r}^{n-1} m_{j},\\ &a_{i}(r)~=~\prod_{j=1}^r\frac{1}{(\gamma_j-\gamma_i)},\ \ \ \ j\ne i,\ \ \ \ \gamma_j\ne\gamma_i, \ \ \ \ 1\leq i\leq r\leq n,\\ &a_{i}^{(r)}(s)~=~\prod_{j=r+1}^n\frac{1}{(\gamma_j-\gamma_i)},\ \ \ \ j\ne i,\ \ \ \ \gamma_j\ne\gamma_i, \ \ \ \ r+1\leq i\leq s\leq n. \end{align*} For \(m_{1}=m_{2}=\dots=m_{n-1}=m\ne -1\), it can be shown that [3]:
\begin{equation}\label{e1.6} a_{i}(r)=~\frac{(-1)^{r-i}}{(m+1)^{r-1}\,(r-1)!}\binom{r-1}{r-i} \end{equation}
(7)
and
\begin{equation}\label{e1.8} a_{i}^{(r)}(s)=~\frac{(-1)^{s-i}}{(m+1)^{s-r-1}\,(s-r-1)!}\binom{s-r-1}{s-i}. \end{equation}
(8)
In this paper we are interested in a situation when a random variable \(X\) follows the Pareto-Rayleigh(P-R) distribution with \(pdf\)
\begin{equation}\label{e1.9} f(x;\alpha,\sigma)=\frac{\alpha}{\sigma^2}\,x\,\Big(1+\frac{x^{2}}{2\sigma^2}\Big)^{-(\alpha+1)} \quad x> 0, \, {\alpha>1, \,\text{and}\, \sigma>0}, \end{equation}
(9)
and with \(df\)
\begin{equation}\label{e1.10} {F}(x;\alpha,\sigma)=1-\Big(1+\frac{x^2}{2\sigma^2}\Big)^{-\alpha} \quad x> 0, \, {\alpha>1, \,\text{and}\, \sigma>0}. \end{equation}
(10)
In view of (8) and (9),
\begin{equation}\label{e1.11} \big(1+\frac{x^2}{2\sigma^2}\big)\,f(x)=\frac{\alpha}{\sigma^2}\,x\,\bar{F}(x) \end{equation}
(11)
Pareto-Rayleigh distribution can be seen as a member of Transformed-Transformer family (or T-X family) of distributions proposed by Alzaatreh et al., [4]. This distribution is recognized as a good model for fitting various lifetime data, see Jebeli and Deiri [5]. This is also confirmed in [6] were a comparative study on the performance of Pareto-Rayleigh distribution against biased Lomax distribution was conducted. Further, for more details on Pareto-Rayleigh distribution one can see [7,8,9].

Exact moments expressions of gos for different distributions have been obtained by literature. Some examples are exponentiated Log-logistic distribution, Burr type XII distribution, linear exponential distribution, Erlang-truncated exponential distribution, Burr distribution, power function distribution, type II exponentiated Log-logistic distribution, extended exponential distribution, generalized Pareto distribution, q-Weibull distribution; see, respectively, Athar and Nayabuddin [10], Khan et al., [11], Ahmad [12], Khan et al., [13], Khan and Khan [3], Kumar and Khan [14], Kumar [15], Kumar and Dey [16], Malik and Kumar [17], Singh et al., [18] and Kumar et al., [19].

In this paper, we have derived explicit expression for single and product moments of Pareto-Rayleigh distribution based on gos.

2. Relations for Product Moments

In this section, we derive the exact expressions for product moments of generalized order statistics in the following theorems. Before coming to the main result, the following lemma is proved.

Lemma 1. For the Pareto-Rayleigh distribution with \(cdf\) \((1.9)\) next relations holds

\begin{equation}\label{2.1} \Phi_{j,l}(a,b)=\frac{(2\sigma^2)^{\big(\frac{j+l}{2}+2)}}{2\,(j+2)}\,B\Big(\frac{j+l}{2}+2,\,\alpha\,b-\frac{l}{2}\Big) _3{F}_2\Big(\frac{j}{2}+1,\,1-a\,\alpha+\frac{j}{2},\,\frac{j+l}{2}+2;\,\frac{j}{2}+2,\,\frac{j}{2}+\alpha\,b+2;1\Big) \end{equation}
(12)
where \begin{equation*}\label{2.2} \Phi_{j,l}(a,b)=\int_{0}^{\infty}\int_{0}^{y}\frac{x^{j+1}}{\big(1+\frac{x^{2}}{2\sigma^2}\big)^{a\,\alpha+1}}\,\frac{y^{l+1}}{\big(1+\frac{y^{2}}{2\sigma^2}\big)^{\alpha\,b+1}}dx\,dy \end{equation*} and \begin{equation*} _{p}F_{q}[a_{1},\dots,a_{p};b_{1},\dots,b_{q};x]=\sum_{r=0}^{\infty}\Big[\prod_{j=1}^{p}\frac{\Gamma(a_{j}+r)}{\Gamma(a_{j})}\Big]\Big[\prod_{j=1}^{q}\frac{\Gamma(b_{j})}{\Gamma(b_{j}+r)}\Big]\frac{x^r}{r!}, \end{equation*} for \(p=q+1\) and \(\sum_{j=1}^{q}b_{j}-\sum_{j=1}^{p}a_{j}\,>0\).

Proof. We have

\begin{equation}\label{2.3} \Phi_{j,l}(a,b)=\int_{0}^{\infty}\,\frac{y^{l+1}}{\big(1+\frac{y^{2}}{2\sigma^2}\big)^{\alpha\,b+1}}\Bigg[\int_{0}^{y}\frac{x^{j+1}}{\big(1+\frac{x^{2}}{2\sigma^2}\big)^{a\,\alpha+1}}dx\Bigg]\,dy \end{equation}
(13)
Let
\begin{equation}\label{2.4} B(y)=\int_{0}^{y}\frac{x^{j+1}}{\big(1+\frac{x^{2}}{2\sigma^2}\big)^{a\,\alpha+1}}dx \end{equation}
(14)
Substituting \(1-u=\frac{1}{\big(1+\frac{x^{2}}{2\sigma^2}\big)}\) in (14), we get \begin{align*} B(y)&=\frac{(2\sigma^2)^{\big(1+\frac{j}{2}\big)}}{2}\,\int_{0}^{\frac{\frac{y^{2}}{2\sigma^2}}{\big(1+\frac{y^{2}}{2\sigma^2}\big)}}u^{\frac{j}{2}}\,(1-u)^{a\,\alpha-\frac{j}{2}-1}\,du\\ &=\frac{(2\sigma^2)^{\big(1+\frac{j}{2}\big)}}{2}\,B_{\frac{\frac{y^{2}}{2\sigma^2}}{\big(1+\frac{y^{2}}{2\sigma^2}\big)}}\Big(\frac{j}{2}+1,\,a\alpha-\frac{j}{2} \Big). \end{align*} From (13), we have
\begin{equation}\label{2.5} \Phi_{j,l}(a,b)=\frac{(2\sigma^2)^{\big(1+\frac{j}{2}\big)}}{2}\,\int_{0}^{\infty}\,\frac{y^{l+1}}{\big(1+\frac{y^{2}}{2\sigma^2}\big)^{\alpha\,b+1}}\,B_{\frac{\frac{y^{2}}{2\sigma^2}}{\big(1+\frac{y^{2}}{2\sigma^2}\big)}}\Big(\frac{j}{2}+1,\,a\alpha-\frac{j}{2} \Big)\,dy, \end{equation}
(15)
where \( B_{x}(p,q)=\,\int_{0}^{x}u^{p-1}\,(1-u)^{q-1}\,du. \) We know that
\begin{equation}\label{2.7} B_{x}(p,q)=p^{-1}\,x^p\,_{2}F_{1}\,(p,1-q;\,p+1;\,x) \end{equation}
(16)
and
\begin{equation}\label{2.8} \int_{0}^{1}u^{a-1}\,(1-u)^{b-1}\,_{2}F_{1}\,(c,d;\,e;\,u)\,du=B(a,b)\,_{3}F_{2}\,(c,d,a;\,e,a+b;\,1) \end{equation}
(17)
Substituting (16) and (17) in (15), we get
\begin{align} \label{2.9} \Phi_{j,l}(a,b)=&\frac{(2\sigma^2)^{\big(1+\frac{j}{2}\big)}}{2}\,\int_{0}^{\infty}\,\frac{y^{l+1}}{\big(1+\frac{y^{2}}{2\sigma^2}\big)^{\alpha\,b+1}}\,\Bigg({\frac{\frac{y^{2}}{2\sigma^2}}{1+\frac{y^{2}}{2\sigma^2}}}\Bigg)^{\frac{j}{2}+1}\,\Big(\frac{j}{2}+1\Big)^{-1} \notag\\ & _2{F}_1\left[\frac{j}{2}+1,\,1-a\,\alpha+\frac{j}{2},;\,\frac{j}{2}+2;\,\left({\frac{\frac{y^{2}}{2\sigma^2}}{1+\frac{y^{2}}{2\sigma^2}}}\right)\right]\,dy. \end{align}
(18)
Setting \(t={\frac{\frac{y^{2}}{2\sigma^2}}{1+\frac{y^{2}}{2\sigma^2}}}\) in \((18)\), we get \begin{align*} \Phi_{j,l}(a,b)=&\frac{(2\sigma^2)^{\left(\frac{j+l}{2}+2\right)}}{2\,(j+2)}\,\int_{0}^{1}\,t^{\frac{j+l}{2}+1}\,(1-t)^{\alpha\,b-\frac{l}{2}-1}\,_2{F}_1\left[ \frac{j}{2}+1,\,1-a\,\alpha+\frac{j}{2},;\,\frac{j}{2}+2;\,t\right]\,dt \\&=\frac{(2\sigma^2)^{\left(\frac{j+l}{2}+2\right)}}{2\,(j+2)}\,B\left(\frac{j+l}{2}+2,\,\alpha\,b-\frac{l}{2}\right) _3{F}_2\left(\frac{j}{2}+1,\,1-a\,\alpha+\frac{j}{2},\,\frac{j+l}{2}+2;\,\frac{j}{2}+2,\,\frac{j}{2}+\alpha\,b+2;1\right). \end{align*}

Lemma 2. Setting \(j=0\) or \(l=0\) in Lemma 1, we obtain

\begin{equation}\label{2.10} \Phi_{0,l}(a,b)=\frac{\sigma^2}{a\,\alpha}\,[\Phi_{l}(b)-\Phi_{l}(a+b)] \end{equation}
(19)
and
\begin{equation}\label{2.11} \Phi_{j,0}(a,b)=\frac{\sigma^2}{b\,\alpha}\,[\Phi_{j}(a+b)] \end{equation}
(20)
where \[ \Phi_{j}(a)=\int_{0}^{\infty}\frac{x^{j+1}}{\left(1+\frac{x^{2}}{2\sigma}\right)^{a\,\alpha+1}}\,\ \ dx=\frac{(2\sigma^2)^{\left(1+\frac{j}{2}\right)}}{2}\,B\left(a\alpha-\frac{j}{2}, 1+\frac{j}{2}\right). \]

Proof. Substituting \(j=0\) in (13), we get \begin{align*} \Phi_{0,l}(a,b)&=\int_{0}^{\infty}\,\frac{y^{l+1}}{\left(1+\frac{y^{2}}{2\sigma^2}\right)^{\alpha\,b+1}}\left[\int_{0}^{y}\frac{x}{\left(1+\frac{x^{2}}{2\sigma^2}\right)^{a\,\alpha+1}}dx\right]\,dy\\ &=\frac{\sigma^2}{a\,\alpha}\int_{0}^{\infty}\,\frac{y^{l+1}}{\left(1+\frac{y^{2}}{2\sigma^2}\right)^{\alpha\,b+1}}\left[1-\frac{1}{\left(1+\frac{y^{2}}{2\sigma^2}\right)^{a\,\alpha}}\right]\,dy\\ &=\frac{\sigma^2}{a\,\alpha}\,[\Phi_{j}(b)-\Phi_{l}(a+b)]. \end{align*} Similarly, we get (20) by noting that \begin{equation*} _3{F}_2(a,\,b,\,c;\,c,\,d;1)=_2{F}_1(a,\,b;\,d;1)=\frac{\Gamma (d)\,\,\Gamma(d-a-b)}{\Gamma(d-a)\,\,\Gamma(d-b)}. \end{equation*}

Theorem 1. Generalized product moments for Pareto-Rayleigh distribution are given as

\begin{equation}\label{2.13} \mu^{(j,\,l)}_{r,s,n,\tilde{m},k}=E[X^j(r,n,\tilde{m},k)\,X^l(s,n,\tilde{m},k)] =~{C_{s-1}}\left(\frac{\alpha}{\sigma^2}\right)^2\left[\sum_{t=r+1}^{s}\,a_{t}^{(r)}(s)\,\left(\sum_{i=1}^{r}\,a_{i}(r)\,\Phi_{j,\,l}(\gamma_{i}-\gamma_{t},\,\gamma_{t})\right)\right]. \end{equation}
(21)

Proof. We have \begin{equation*} \mu^{(j,\,l)}_{r,s,n,\tilde{m},k}=~C_{s-1}\,\int_{0}^{\infty}\int_{0}^{y}x^j\,y^{l} \left[\sum_{i=r+1}^{s}a_{i}^{(r)}(s)\left\{\frac{\bar{F}(y)}{\bar{F}(x)}\right\}^{\gamma_{i}}\right] \left(\sum_{i=1}^{r}a_{i}(r)\left\{{\bar{F}(x)}\right\}^{\gamma_{i}}\right)\frac{f(x)}{\bar{F}(x)}\,\frac{f(y)}{\bar{F}(y)}\,dx\,dy. \end{equation*} which yields (21).

Corollary 2. Product moment for Pareto-Rayleigh distribution, when \(m_1=m_2=\dots=m_{n-1}=m\ne -1\) is given as

\begin{align} \label{2.14} \mu^{(j,\,l)}_{r,s,n,m,k}=&E\left[X^j(r,n,m,k)\,X^l(s,n,m,k)\right]\notag\\ =&\frac{C_{s-1}}{(r-1)!\,(s-r-1)!\,(m+1)^{s-2}} \left(\frac{\alpha}{\sigma^2}\right)^2\,\sum_{i=0}^{r-1}\sum_{t=0}^{s-r-1}(-1)^{i+t}\,\binom{r-1}{i}\,\binom{s-r-1}{t}\Phi_{j,\,l}(\gamma_{r-i}-\gamma_{s-t},\,\gamma_{s-t}). \end{align}
(22)

Remark 1. Setting \( m_{1}=m_{2}=\dots=m_{n-1}=0\) and \(k=1\) in (22), we get the result as the product moment of order statistics as

\begin{align} \label{OSp} \mu^{(j,\,l)}_{r,s,n,0,1}&=\mu^{j,\,l}_{r,s:n}\notag\\ &=\frac{C_{s-1}}{(r-1)!\,(s-r-1)!}\left(\frac{\alpha}{\sigma^2}\right)^2 \sum_{i=0}^{r-1}\sum_{t=0}^{s-r-1}(-1)^{i+t}\,\binom{r-1}{i}\,\binom{s-r-1}{t}\Phi_{j,\,l}(s-r-t+i,\,n-s+t+1). \end{align}
(23)

Corollary 3. Single moments of the Pareto-Rayleigh distribution are of the form

\begin{equation}\label{2.15} \mu^{(l)}_{s,n,\tilde{m},k}=~{C_{s-1}}\,\Big(\frac{\alpha}{\sigma^2}\Big)\sum_{i=1}^{s}\,a_{i}(s)\,\Phi_{l}(\gamma_{i}). \end{equation}
(24)

Proof. Putting \(j=0\) in (21) and using (19), we get \begin{align*} \mu^{(l)}_{r,s,n,\tilde{m},k}= &{C_{s-1}}\left(\frac{\alpha}{\sigma^2}\right) \left[\sum_{t=r+1}^{s}\frac{a_{t}^{(r)}(s)}{(\gamma_{i}-\gamma_{t})}\,\left(\sum_{i=1}^{r}\,a_{i}(r)\,\left\{\Phi_{l}(\gamma_{t})-\Phi_{l}(\gamma_{i})\right\}\right)\right].\\ \mu^{(l)}_{s,n,\tilde{m},k}=&{C_{s-1}}\left(\frac{\alpha}{\sigma^2}\right) \left[\sum_{t=r+1}^{s}\,{a_{t}^{(r)}(s)}\,\Phi_{l}(\gamma_{t})\,\left(\sum_{i=1}^{r}\,\frac{a_{i}(r)}{(\gamma_{i}-\gamma_{t})}\right)\right] \\ &+~{C_{s-1}}\left(\frac{\alpha}{\sigma^2}\right)\left[\sum_{i=1}^{r}\,a_{i}(r)\,\Phi_{l}(\gamma_{i})\,\left(\sum_{t=r+1}^{s}\,\frac{a_{t}^{(r)}(s)}{(\gamma_{i}-\gamma_{t})}\right)\right]. \end{align*} Now using the results found in [20] we obtain \begin{equation*} \sum_{i=1}^{r}\frac{a_{i}(r)}{(\gamma_i-\gamma_j)}~=~\prod_{j=1}^r\frac{1}{(\gamma_i-\gamma_j)},\quad j\ne i,\quad \gamma_j\ne\gamma_i, \quad 1\leq i\leq r\leq n, \end{equation*} and \begin{equation*} \sum_{i=r+1}^{s}\frac{a_{i}^{(r)}(s)}{(\gamma_i-\gamma_j)}~=~\prod_{j=r+1}^s\frac{1}{(\gamma_i-\gamma_j)},\quad j\ne i,\quad \gamma_j\ne\gamma_i, \quad r+1\leq i\leq s\leq n. \end{equation*} Hence, \begin{equation*} \mu^{(l)}_{s,n,\tilde{m},k}=~{C_{s-1}}\Big(\frac{\alpha}{\sigma^2}\Big)\Bigg[\sum_{t=r+1}^{s}\,{a_{t}^{(r)}(s)}\,\Phi_{l}(\gamma_{t})\,\Bigg(\prod_{j=1}^r\frac{1}{(\gamma_i-\gamma_j)}\Bigg)\Bigg] \end{equation*} \begin{equation*} \hspace{1.7cm}+~{C_{s-1}}\Big(\frac{\alpha}{\sigma^2}\Big)\Bigg[\sum_{i=1}^{r}\,a_{i}(r)\,\Phi_{l}(\gamma_{i})\,\Bigg(\prod_{j=r+1}^s\frac{1}{(\gamma_i-\gamma_j)}\Bigg)\Bigg], \end{equation*} which yields (24).

Corollary 4. Single moments of gos for Pareto-Rayleigh distribution, when \(m_1=m_2=\dots=m_{n-1}=m\ne -1\), are given as

\begin{equation}\label{2.16} \mu^{(l)}_{s,n,m,k}=~\frac{C_{s-1}}{(s-1)!}\,\frac{1}{(m+1)^{s-1}}\Big(\frac{\alpha}{\sigma^2}\Big)\sum_{i=0}^{s-1}(-1)^i\,\binom{r-1}{i}\Phi_{j}(\gamma_{s-i}). \end{equation}
(25)

Proof. Setting \( m_{1}=m_{2}=\dots=m_{n-1}=m\ne -1\) in (24) and using (7) we get the result as the single moment.

Remark 2. Setting \( m_{1}=m_{2}=\dots=m_{n-1}=0\) and \(k=1\) in (25), we get the result as the single moment from order statistics

\begin{equation}\label{OSs} \mu^{(l)}_{s,n,0,1}=\mu^{(l)}_{s:n}=~\frac{C_{s-1}}{(s-1)!}\Big(\frac{\alpha}{\sigma^2}\Big)\sum_{i=0}^{s-1}(-1)^i\,\binom{s-1}{i}\Phi_{j}(n-s+i+1). \end{equation}
(26)

Remark 3. Setting \( j=0\) and \(l=0\) in \((21)\) we get

\begin{equation}\label{2.17} \sum_{i=1}^{r}\sum_{t=r+1}^{s}\frac{a_{i}(r)\,a_{t}^{r}(s)}{\gamma_i\,\gamma_{t}}=\frac{1}{C_{s-1}}, \end{equation}
(27)
and setting \(l=0\) in (24) we obtain
\begin{equation}\label{2.18} \sum_{i=1}^{r}\frac{a_{i}(r)}{\gamma_i}=\frac{1}{C_{r-1}}. \end{equation}
(28)
Combining (27) and (28), we get another identity,
\begin{equation}\label{2.19} \sum_{t=r+1}^{s}\frac{a_{t}^{r}(s)}{\gamma_{t}}=\frac{C_{r-1}}{C_{s-1}}. \end{equation}
(29)
When \( m_{1}=m_{2}=\dots=m_{n-1}=m\ne -1\), (29) reduces to another identity
\begin{equation}\label{2.22} \sum_{t=0}^{s-r-1}(-1)^t \binom{s-r-1}{t}\frac{1}{\gamma_{s-t}}=\frac{C_{r-1}(s-r-1)\,!\,(m+1)^{s-r-1}}{C_{s-1}}, \end{equation}
(30)
which is obtained in [3].

Remark 4. Setting \(\gamma_r=k+n-r+\sum_{i=r}^{l}m_{j}\), \(1\leq r\leq l\leq n\), \(m_i \in N\), in (21), then the product moments of progressive type II censored order statistics of Pareto-Rayleigh distribution can be obtained.

3. Numerical Computations

Here we have calculated means and variances for order statistics (Table 1 & 2), and generalized order statistics \((gos)\) (Table 3 & 4). All computations here we obtained using Mathematica. Mathematica like other algebraic manipulation packages allow for arbitrary precisions, so the accuracy of the given values is not an issue. In case of order statistics, the relation \( \sum_{r=1}^{n}\mu^{j}_{r,n,0,1}=n\,\mu^{j}_{1,1,0,1}, \qquad j=1,2, \) is used to evaluate the means and variancess, see [21]. It is observed that when the sample size \(n\) is fixes, increasing the value of \(r\) directly increases the means and variances, whereas, for fixed \(r\), the opposite occurs in the case when the sample size \(n\) increases.

Table 1. Means of order statistics from Pareto-Rayleigh distribution (\(\alpha\)=2, \(\sigma\)=1).
n
r 1 2 3 4 5 6 7 8
1 1.1107 0.6942 0.5469 0.4653 0.4120 0.3736 0.3443 0.3209
2 1.5272 0.9892 0.7907 0.6786 0.6040 0.5496 0.5078
3 1.7962 1.1877 0.9589 0.8279 0.7398 0.6752
4 1.9991 1.3403 1.0900 0.9453 0.8474
5 2.1638 1.4654 1.1984 1.0433
6 2.3035 1.5722 1.2916
7 2.4253 1.6658
8 2.5339
Table 2. Variances of order statistics from Pareto-Rayleigh distribution (\(\alpha\)=2, \(\sigma\)=1).
n
r 1 2 3 4 5 6 7 8
1 0.7663 0.1847 0.1011 0.0692 0.0525 0.0422 0.0353 0.0303
2 1.0009 0.2214 0.1176 0.0792 0.0594 0.0475 0.0395
3 1.1735 0.2464 0.1281 0.0852 0.0635 0.0504
4 1.3180 0.2672 0.1366 0.0900 0.0666
5 1.4450 0.2855 0.1441 0.0942
6 1.5599 0.3021 0.1509
7 1.6655 0.3175
8 1.7639
Table 3. Means of gos from Pareto-Rayleigh distribution (\(\alpha\)=2, \(\sigma\)=1, \(m\)=1, \(k\)=2).
n
r 1 2 3 4 5 6 7 8
1 0.3471 0.2327 0.1868 0.1605 0.1428 0.1300 0.1200 0.1121
2 0.2308 0.1622 0.1329 0.1155 0.1036 0.0947 0.0878
3 0.1325 0.0957 0.0795 0.0697 0.0628 0.0577
4 0.0724 0.0532 0.0447 0.0394 0.0357
5 0.0386 0.0288 0.0243 0.0216
6 0.0203 0.0153 0.0130
7 0.0105 0.0080
8 0.0054
Table 4. Variances of gos from Pareto-Rayleigh distribution (\(\alpha\)=2, \(\sigma\)=1, \(m\)=1, \(k\)=2).
n
r 1 2 3 4 5 6 7 8
1 0.2128 0.0887 0.0560 0.0409 0.0322 0.0266 0.0226 0.0197
2 0.2086 0.0971 0.0641 0.0481 0.0385 0.0321 0.0275
3 0.1480 0.0733 0.0499 0.0380 0.0308 0.0259
4 0.0914 0.0471 0.0327 0.0253 0.0207
5 0.0527 0.0280 0.0197 0.0154
6 0.0292 0.0158 0.0113
7 0.0158 0.0087
8 0.0084

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References:

  1. Kamps, U. (1995). A Concept of Generalized Order Statistics. B. G. Teubner Stuttgart, Germany. [Google Scholor]
  2. Kamps, U., & Cramer, E. (2001). On distributions of generalized order statistics. Statistics, 35, 269-280.[Google Scholor]
  3. Khan, A. H., & Khan, M. J. S. (2012). On ratio and inverse moment of generalized order statistics from Burr distribution. Pakistan Journal of Statistics, 28, 59-68. [Google Scholor]
  4. Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63-79. [Google Scholor]
  5. Jebeli, M., & Deiri, E. (2020). Estimation methods for the probability density function and the cumulative distribution function of the Pareto-Rayleigh distribution. Statistics, 54(1), 135-151. [Google Scholor]
  6. Al-Zahrani, B., & Al-Sobhi, M. (2013). On parameters estimation of Lomax distribution under general progressive censoring. Journal of Quality and Reliability Engineering, 2013, Article ID 431541. https://doi.org/10.1155/2013/431541. [Google Scholor]
  7. Rao, R. S., Kantam, R. R. L., & Prasad, G. (2015). Modified maximum likelihood estimation in pareto-rayleigh distribution. Golden Research Thoughts, 140-152. [Google Scholor]
  8. Rao, R. S. (2016). Discriminating between size biased Lomax distribution and Pareto-Rayleigh distribution. Open Journal of Applied and Theoretical Mathematics, 2, 409-418. [Google Scholor]
  9. Parsad, G., Rao, R. S., & Kantam, R. R. I. (2016). Acceptance sampling based on life tests: Pareto-Rayleigh model. International Journal of Advanced Research in Science, Engineering and Technology, 5, 427-436. [Google Scholor]
  10. Athar, H., & Nayabuddin. (2014). A note on exact moments of order statistics from exponentiated log-logistic distribution. ProbStat Forum, 7, 39-44. [Google Scholor]
  11. Khan, M. J. S., Sharma, A., Khan, M. I., & Kumar, S. (2015). Exact moments of record values from Burr distribution with applications. International Journal of Computational and Theoretical Statistics, 2, 107-115. [Google Scholor]
  12. Ahmad, A. E. B. A. (2008). Single and product moments of generalized order statistics from linear exponential distribution. Communications in Statistics-Theory and Methods, 37(8), 1162-1172. <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Single+and+product+moments+of+generalized+order+statistics+from+linear+exponential+distribution.+[Google Scholor]
  13. Khan, R. U., Kumar, D., & Athar, H. (2010). Moments of generalized order statistics from Erlang-Truncated exponential distribution and its charactersics. International Journal of Statistics and Systems, 5, 455-464. [Google Scholor]
  14. Kumar, D., & Khan, R. U. (2014). Moments of power function distribution based on ordered random variables and characterization. Sri Lankan Journal of Applied Statistics, 15, 91-105. [Google Scholor]
  15. Kumar, D. (2015). Exact moments of generalized order statistics from type II exponentiated loglogistic distribution. Hacettepe Journal of Mathematics and Statistics, 44, 715-733. [Google Scholor]
  16. Kumar, D., & Dey, S. (2017). Relations for moments of generalized order statistics from extended exponential distribution. American Journal of Mathematical and Management Sciences, 36, 378-400. [Google Scholor]
  17. Malik, M.R. and Kumar, D. (2019). Generalized Pareto distribution based on generalized order statistics and associated inference, Statistics in Transition new Series, 20, 57-79. [Google Scholor]
  18. Singh, B., Khan, R. U., & Khan, M. A. (2019). Characterizations of q-Weibull distribution based on generalized order statistics Journal of Statistics and Management Systems, 22, 1573-1595.[Google Scholor]
  19. Kumar, D., Nassar, M., & Dey, S. (2020). Inference for generalized inverse Lindley distribution based on generalized order statistics, Afrika Matematika, 31, 1207-1235. [Google Scholor]
  20. Bieniek, M., & Szynal, D. (2003). Characterizations of distributions via linearity of regression of generalized order statistics. Metrika, 58(3), 259-271. [Google Scholor]
  21. Joshi, P. C., & Balakrishnan, N. (1982). Recurrence relations and identities for the product moments of order statistics. Sankhya: The Indian Journal of Statistics, Series B, 44 39-49. [Google Scholor]