Rate of convergence in total variation for the generalized inverse Gaussian and the Kummer distributions

Author(s): Essomanda KONZOU 1
1Institut Elie Cartan de Lorraine, UMR CNRS 7502, Université de Lorraine; Laboratoire d’Analyse, de Modélisations Mathématiques et Applications, Université de Lomé, Lomé;
Copyright © Essomanda KONZOU. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The generalized inverse Gaussian distribution converges in law to the inverse gamma or the gamma distribution under certain conditions on the parameters. It is the same for the Kummer’s distribution to the gamma or beta distribution. We provide explicit upper bounds for the total variation distance between such generalized inverse Gaussian distribution and its gamma or inverse gamma limit laws, on the one hand, and between Kummer’s distribution and its gamma or beta limit laws on the other hand.

Keywords: Total variation distance; Generalized inverse Gaussian distribution; Kummer’s distribution; Gamma distribution: Inverse gamma distribution; Beta distribution.

1. Introduction

The generalized inverse Gaussian (hereafter GIG) distribution with parameters pR,a>0,b>0 has density

gp,a,b(x)=(a/b)p/22Kp(ab)xp1e12(ax+b/x),x>0,
(1)
where Kp is the modified Bessel function of the third kind.

In [1], the authors have established the rate of convergence of the GIG distribution to the gamma distribution by Stein’s method. In order to compare the rate of convergence obtained via Stein’s method with the rate obtained by using another distance, the authors have established an explicit upper bound of the total variation distance between the GIG random variable and the gamma random variable, which is of order n1/4 for the case p=12. We generalize this result by providing the order of the rate of convergence in total variation of the GIG distribution to the gamma distribution for all p=k+12, kN. In particular, we obtain a rate of convergence of order n1/2 for p=12, which is better than the one in [1].

For a>0, bR, c>0, the Kummer distribution K(a,b,c) has density function

ka,b,c(x)=1Γ(a)ψ(a,1b;c)xa1(1+x)abecx, (x>0)
(2)
where ψ is the confluent hypergeometric function of the second kind and Γ is the gamma function. Details on the GIG and the Kummer distributions can be found in [1,2,3,4,5] and references therein.

For θ>0, λ>0, the gamma distribution γ(θ,λ) has density function

γ(θ,λ)(x)=λθΓ(θ)xθ1eλxI{x>0}. For θ>0, λ>0, the inverse gamma distribution Iγ(θ,λ) has density function Iγ(θ,λ)(x)=λθΓ(θ)xθ1eλ/xI{x>0}. The beta distributions of type 2 β(2)(a,b) has density β(2)(x)=Γ(a+b)Γ(a)Γ(b)xa1(1+x)abI{x>0},a>0,  b>0. We have the following definition and a Property of the total variation distance.

Definition 1. Let W and Z be two continuous real random variables, with density fW and fZ respectively. Then, the total variation distance between W and Z is given by

dTV(W,Z)=12R|fW(x)fZ(x)|dx.
(3)

Property 1. Consider W and Z be two continuous random variables. Let fW (resp. fZ) the density of W (resp. Z) on (0,). Assume that the function xfW(x)fZ(x) has a unique zero λ on (0,).

  1. If fW(x)fZ(x) is positive for xλ, then dTV(W,Z)=0λfW(x)fZ(x)dx.
  2. If fW(x)fZ(x) is negative for xλ, then dTV(W,Z)=0λfZ(x)fW(x)dx.

Proof. Let FW (resp. FZ) be the distribution function of W (resp. Z). If fW(x)fZ(x) is positive for xλ, then dTV(W,Z)=120|fW(x)fZ(x)|dx=120λfW(x)fZ(x)dx12λfW(x)fZ(x)dx=120λfW(x)fZ(x)dx+12[FW(λ)FZ(λ)]=120λfW(x)fZ(x)dx+120λfW(x)fZ(x)dx=0λfW(x)fZ(x)dx which proves the item 1. For item 2, using similar arguments as in the previous case leads to the result.

Remark 1. The support of the densities may be any interval, but here we take this support to be (0,) in the purpose of the application to the GIG and Kummer’s distributions.

The aim of this paper is to provide a bound for the distance between a GIG (resp. a Kummer’s) random variable and its limiting inverse gamma or gamma variables (resp. gamma or beta variables), and therefore to give a contribution to the study of the rate of convergence in the limit theorems involved. Section 2 presents the main results and their proofs in Section 3.

2. Main results

2.1. On the rate of convergence of the generalized inverse Gaussian distribution to the inverse gamma distribution

The first main result is presented in Theorem 1 below. We recall the convergence of the GIG distribution to the inverse gamma distribution as Proposition 1.

Proposition 1. For kN, b>0, let (Xn)n1 be a sequence of random variables such that XnGIG(k12,1n,b) for each n1. Then, as n, the sequence (Xn)n1 converges in law to a random variable X following the Iγ(k+12,b2) distribution.

Theorem 1. Under the assumptions and notations of Proposition 1, we have:

dTV(Xn,X)1n×b.
(4)

Remark 2. The upper bound provided by Theorem 1 is of order n1/2.

Table 1 and Table 2 are some numerical results for k=0. This case is particularly interesting since it corresponds to the inverse Gaussian distribution used in data analysis when the observations are highly right-skewed [6,7]. The inverse Gaussian law is the distribution of the first hitting time for a Brownian motion [8].

Table 1. Numerical values for b=0.1 and k=0.
n dTV(Xn,X) 1n×b
1000 0.008963786 0.01
10000 0.002983103 0.003162278
100000 0.0004934534 0.001
1000000 0.0001549545 0.0003162278
10000000 4.948836× 105 0.0001
100000000 1.570466× 105 3.162278× 105
Table 2. Numerical values for b=1 and k=0.
n dTV(Xn,X) 1n×b
1000 0.02614564 0.03162278
10000 0.008963782 0.01
100000 0.002971153 0.003162278
1000000 0.0004843202 0.001
10000000 0.0001553049 0.0003162278
100000000 4.927859× 105 0.0001

2.2. On the rate of convergence of the generalized inverse Gaussian distribution to the gamma distribution

Theorem 2. For p>0, a>0, let (Yn)n1 be a sequence of random variables such that YnGIG(p,a,1n) for each n1. As n, the sequence (Yn) converges in distribution to a random variable Λ following the γ(p,a2) distribution.

dTV(Yn,Λ)1n×aKp1(an)2pKp(an)+1np+1×(1ln(αn/α))p×aα2p+2p2(1+p)
(5)
where αn=(an)p/22Kp(an) and α=(a/2)pΓ(p).

Corollary 1. The upper bound provided by Theorem 2 is of order n1/2 for p=12 and of order n1 for all p of the form p=k+12, k1, k integer.

Remark 3. In [1], by Stein method, the authors have established an explicit upper bound of |h(Yn)h(Λ)| given a regular function h in C3b, the class of bounded functions h:R+R for which h, h, h(3) exist and are bounded. For p=k+12, k1, k integer, the upper bound provided in [1] by Stein method is of order n1 (Proposition 3.3). This is the same in our result. In addition, our upper bound is quite simple when compared to the one in [1] obtained by Stein’s method (Theorem 3.1), and sharper than the one obtained in Proposition 3.4 [1].

2.3. On the rate of convergence of the Kummer distribution to the gamma distribution

As in the previous subsection, the following theorem contains the rate of convergence in total variation of the Kummer distribution to the gamma distribution.

Theorem 3. Let (Vn)n1 be a sequence of random variables such that VnK(a,a+1n,c)with a>0, c>0. Then,

  • 1. As n, the sequence (Vn) converges in distribution to a random variable Λ following the γ(a,c) distribution.
  • 2.
    dTV(Vn,Λ)δna1(a1n)(δn/δ)an
    (6)
    where δn=1Γ(a)ψ(a,1+a1n;c) and δ=caΓ(a).
Tables 3 and 4 present the numerical results for fixed values a, c and n. The Upper bound is δna1(a1n)(δn/δ)an.
Table 3. Numerical results for a=c=1.
n dTV(Vn,Λ) Upper bound
1000 0.0001721703 0.001817133
10000 1.721839×105 1.815646 ×104
100000 1.721869×106 1.815546×105
1000000 1.722037×107 1.816018×106
10000000 1.723704×108 1.820897×107
100000000 1.740368× 109 1.870423 ×108
Table 4. Numerical results for a=1.5 and c=3.
n dTV(Xn,X) Upper bound
1000 0.0001045401 0.005830092
10000 1.045445×105 5.828016 ×104
100000 1.045512×106 5.82978×105
1000000 1.046143×107 5.849711×106
10000000 1.052453×108 6.053044×107
100000000 1.360213× 109 8.518632 ×108

2.4. On the rate of convergence of the Kummer distribution to the beta distribution

We have the following result.

Theorem 4. Let (Wn)n1 be a sequence of random variables such that WnK(a,b,1n)with a>0, b>0. Then,

  • 1. As n, (Wn) converges in law to a random variable W following the β(a,b) distribution.
  • 2.
    dTV(Wn,W)1n×φnΓ(a)Γ(b)(a+b)Γ(a+b)+(a+b+1)φnΓ(a)Γ(b)(a+b)Γ(a+b)ln(φn/φ)
    (7)
    where φn=1Γ(a)ψ(a,1b;1n) and φ=Γ(a+b)Γ(a)Γ(b).

Remark 4. As n, φnφ. Therefore, the upper bound provided in (7) is of order n1.

3. Proofs of main results

Proof of Proposition 1. For all x>0, P(Xn<x)=(bn)k+122Kk12(bn)0xtk32e12(1nt+b/t)dt. We now use the well-known fact that (see for instance [9,10]), as x0,

Kp(x){2|p|1Γ(|p|)x|p|,p0logx,p=0
(8)
to see that limn(bn)k+122Kk12(bn)=bk+122k+12Γ(k+12). For all integer n1, tk32e12(1nt+b/t)tk32eb2t. The function ttk32eb2t is integrable on (0,). By the Lebesgue’s Dominated Convergence Theorem: limn0xtk32e12(1nt+b/t)dt=0xtk32eb2tdt. Hence limnP(Xn<x)=0xbk+122k+12Γ(k+12)tk32eb2tdt.

Proof of Theorem 1. Let gn and g the densities of XnGIG(k12,1n,b) and XIγ(k+12,b2) distributions respectively. Let βn=(bn)k+122Kk12(bn) and β=bk+122k+12Γ(k+12). We have gn(x)=βnxk32e12(1nx+b/x) and g(x)=βxk32eb2x. Which gives gn(x)g(x)=(βne12nxβ)xk32eb2x. Now, let vn(x)=βne12nxβ, then vn is decreasing on (0,+) with limx0+vn(x)=βnβ and limx+vn(x)=β<0. Also, βnβ=(bn)k+122Kk12(bn)bk+122k+12Γ(k+12)=(bn)k+122Kk+12(bn)bk+122k+12Γ(k+12)=12Kk+12(bn)[(bn)k+12bk+122k+12Γ(k+12)2Kk+12(bn)]=12Kk+12(bn)[(bn)k+12bk+122k+12Γ(k+12)0+xk12e12bn(x+1x)dx]>12Kk+12(bn)[(bn)k+12bk+122k+12Γ(k+12)0+xk12e12bnxdx]=12Kk+12(bn)[(bn)k+12bk+122k+12Γ(k+12)(2nb)k+120+tk12etdt]=0. Then vn have a unique zero λn=2nln(βn/β) on (0,). Hence gn(x)g(x)>0 if x<λn and gn(x)g(x)<0 if x>λn. Using Property 1, we have: dTV(Xn,X)=0λngn(x)g(x)dx. Then integrating 0λngn(x)dx by part, we get: dTV(Xn,X)=[βne12nx0xtk32eb2tdt]0λn+βn2n0λne12nx0xtk32eb2tdtdxβ0λnxk32eb2xdx=βne12nλn0λntk32eb2tdt+βn2n0λne12nx0xtk32eb2tdtdxβ0λnxk32eb2xdx=β0λntk32eb2tdt+βn2n0λne12nx0xtk32eb2tdtdxβ0λnxk32eb2xdx=βn2n0λne12nx0xtk32eb2tdtdx. Since xe12nx is decreasing and positive on (0,), for all x and t such that 0<tx, 1e12nte12nx, we have: dTV(Xn,X)βn2n0λn0xtk32eb2te12ntdtdx=12n0λn0xβntk32e12(1nt+b/t)dtdx12n0λndx=12nλn=ln(βn/β). So K1/2(bn)=π2bnebnln(βn/β)=ln(ebn)=1n×b  for  k=0, and K3/2(bn)=π2bnebn(1+nb)ln(βn/β)=ln(ebn1+bn)1n×b  for  k=1. For k2, since Kk12(bn)=π2bnebn(1+i=1k(k+i)!i!(ki)!(2bn)i) and Γ(k+12)=(2k)!π22kk!, so, we have βn/β=Γ(k+12)(bn)k+12212kKk12(bn)=(2k)!ebnk!2k(bn)k(1+i=1k(k+i)!i!(ki)!(2bn)i) =(2k)!ebnk!2k(bn)k(1+i=1k1(k+i)!i!(ki)!(2bn)i+(2k)!k!2k(bn)k)=(2k)!ebnk!2k(bn)k(1+i=1k1(k+i)!i!(ki)!(2bn)i)+(2k)!=ebn1+k!2k(2k)!((bn)k+(bn)k×i=1k1(k+i)!i!(ki)!(2bn)i). Therefore, for k2, we have ln(βn/β)=ln(ebn1+k!2k(2k)!((bn)k+(bn)k×i=1k1(k+i)!i!(ki)!(2bn)i))1n×b.

Proof of Theorem 2. Let αn=(an)p/22Kp(an) and α=(a/2)pΓ(p). Denote by hn (rep. γ) the density of YnGIG(p,a,1n) (resp. Yγ(p,a/2)). We have hn(x)=αnxp1e12(ax+1nx) and γ(x)=αxp1ea2x. Which gives hn(x)γ(x)=(αne12nxα)xp1ea2x is negative if xrn=12nln(αnα). Hence dTV(Yn,Y)=0λnγ(x)gn(x)dx=αn2n0rn1x2e12nx0xtp1ea2tdtdx. Integration by part of 0xtp1ea2tdt leads to dTV(Yn,Y)αn2np0rnxp2e12(ax+1nx)dx+αna4np(1+p)0rnxp1e12nxdx=An+Bn, where An=αn2np0rnxp2e12(ax+1nx)dx=12np(an)p/2Kp(an)×Kp1(an)(an)p120rn(an)p12Kp1(an)x(p1)1e12(ax+1nx)dx12np(an)p/2Kp(an)×Kp1(an)(an)p12=aKp1(an)2npKp(an), and Bn=αna4np(1+p)0rnxp1e12nxdxαna4np2(1+p)rnpe12nrn=αa2p+2p2(1+p)np+11(ln(αn/α))p.

Proof of Corollary 1. By equivalence (8), as n+, we have 1n×aKp1(an)2pKp(an){1n×a4p(p1)if  p>1,1np×apΓ(1p)22p1Γ(p)if  0<p<1,alog(n)4nalog(a)4nif  p=1. Since K1/2(an)=π2anean, we have 1n3/2×(1ln(αn/α))1/2  n  1n5/4×1a1/4. For p=32, ln(αn/α)=ln(ean1+an)=ln(eX1+X) where X=an0 as n. We have eX1+X=1+X+X22+o(X22)1+X=1+X22+o(X22)=1+a2n+o(1n). Hence 1n5/2×(1ln(αn/α))3/2  n  1n×(2a)3/2. For all p=k+1/2, k2, k integer, we have (1ln(αn/α))p=1[ln(ean1+k!2k(2k)!((an)k+(an)k×i=1k1(k+i)!i!(ki)!(2an)i))]k+1/2. Let X=an and Dk=1+k!2k(2k)!((an)k+(an)k×i=1k1(k+i)!i!(ki)!(2an)i). For k=2, we have D2=1+13(X2+3X)=1+13X+X2. By induction on k, Dk can be written in the form Dk=1+X+k12k1X2+c3X3++ckXk,c3,,ckR. Since X0 as n, we have ean=eX=1+X+X22!++Xk+1(k+1)!+o(Xk+1), and, by doing the Euclidean division as in the case p=32 (k=1), there exist constants b3,,bk+1 such that, eXDk=1+12(2k1)X2+b3X3++bkXk+bk+1Xk+1+o(Xk+1)=1+b2an+b3(an)3/2++bk(an)k/2+bk+1(an)k+12+o(1nk+12), b2=12(2k1)0. Hence 1nk+3/21[ln(αn/α)]k+1/2n1n[b2a+b3a3/2×1n1/2++bk+1ak+12×1nk12]k+1/2.

Proof of Theorem 3. Let θn=(δn/δ)n1, with δn=1Γ(a)ψ(a,1+a1n;c) and δ=caΓ(a). As in the GIG case, we have dTV(Vn,Λ)=120|δnxa1(1+x)1necxδxa1ecx|dx=δnn0θn(1+x)1n10xta1ectdtdxδnna0θn(1+x)1n1xadx=δnna0θn(1+x)a1n1(x1+x)adxδnna0θn(1+x)a1n1dx=δnna(1a1n(1+θn)a1n1a1n)δnna1(a1n)(δn/δ)an1=δna1(a1n)(δn/δ)an.

Proof of Theorem 4. Let σn=nln(φn/φ) with φn=1Γ(a)ψ(a,1b;1n)  and  φ=Γ(a+b)Γ(a)Γ(b). Then dTV(Wn,W)=120|φnxa1(1+x)abe1nxφxa1(1+x)ab|dx=0φnxa1(1+x)abe1nxφxa1(1+x)abdx=φnn0σne1nx0xta1(1+t)abdtdx=φnn0σne1nx(1axa(1+x)ab+a+ba0xta(1+t)ab1dt)dx=φnna0σnxa(1+x)abe1nxdx+(a+b)φnna0σne1nx0xta(1+t)ab1dtdx=Cn+Dn, where Cn=φnna0σnxa(1+x)abe1nxdx=φnna0σnxa(1+x)ab1(1+x)e1nxdxφnΓ(a+1)Γ(b)naΓ(a+b+1)(1+σn)0σnΓ(a+b+1)Γ(a+1)Γ(b)xa(1+x)ab1dxφnΓ(a+1)Γ(b)naΓ(a+b+1)(1+σn)=1n×φnΓ(a)Γ(b)(a+b)Γ(a+b)+φnΓ(a)Γ(b)(a+b)Γ(a+b)ln(φn/φ), and Dn=(a+b)φnna0σne1nx0xta(1+t)ab1dtdxφnΓ(a)Γ(b)Γ(a+b)ln(φn/φ).

Acknowledgments

The author is really grateful to the editor and the anonymous reviewers for their constructive comments. He would also like to thank Kokou Essiomle, Tchilabalo E. Patchali and Essodina Takouda for their help during the preparation of the manuscript.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Konzou, E., Koudou, E., & Gneyou, K. E. (2020). Rate of convergence of generalized inverse Gaussian and Kummer distributions to the gamma distribution via Stein’s method. Statistics and Probability Letters, 159, 108683. [Google Scholor]
  2. Hamza, M., & Vallois, P. (2016). On Kummer’s distribution of type two and a generalized beta distribution. Statistics and Probability Letters, 118, 60-69. [Google Scholor]
  3. Jørgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Springer-Verlag, Heidelberg. [Google Scholor]
  4. Konzou, E., & Koudou A. E. (2020). About the Stein equation for the generalized inverse gaussian and Kummer distribution. ESAIM: Probability and Statistics, 24, 607-626. [Google Scholor]
  5. Piliszek, A., & Wesołowski, J. (2018). Change of measure technique in characterizations of the gamma and kummer distributions. Journal of Mathematical Analysis and Applications, 458(2), 96-979. [Google Scholor]
  6. Chhikara, R.S., & Folks, J.L. (1989). The Inverse Gaussian distribution theory, methodology and application. Marcel Dekker, New York. VIII, 213 p. [Google Scholor]
  7. Seshadri, V. (1999). The inverse Gaussian distribution. Statistical theory and applications. Lecture Notes in Statistics, 137. Springer-Verlag, New York. XII+347 pp. ISBN: 0-387-98618-9. [Google Scholor]
  8. Bhattacharya, R. N., & Waymire, E. C. (1990). Stochastic processes with applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1990. XVI+672 pp. ISBN: 0-471-84272-9. [Google Scholor]
  9. Gaunt, R. (2014). Inequalities for modified Bessel functions and their integrals. Journal of Mathematical Analysis and Applications, 420(1), 373-386. [Google Scholor]
  10. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., & Clark, C.W., (2010). NIST Handbook of Mathematical Functions.Cambridge University Press.