In this paper, we have proposed new windmill graph, that is Basava wheel windmill graph. The Basava wheel windmill graph \(W^{(m)}_{n+1}\) is the graph obtained by taking \(m\geq 2\) copies of the graph \(K_1+W_{n}\) for \(n\geq 4\) with a vertex \(K_1\) in common. Inspired by recent work on topological indices, proposed new degree-based topological indices namely, general \(SK_{\alpha}\) and \(SK^{\alpha}_1\) indices of a graph \(G\). We have obtained first and second Zagreb index, F-index, first and second hyper-Zagreb index, harmonic index, Randi\(\acute{c}\) index, general Randi\(\acute{c}\) index, sum connectivity index, general sum connectivity index, atom-bond connectivity index, geometric-arithmetic index, Symmetric division deg index, Sombor index, SK indices, general \(SK_{\alpha}\) and \(SK^{\alpha}_1\) indices of Basava wheel windmill graph. Further, we have computed exact values of these topological indices of chloroquine, hydroxychloroquine and remdesiver.
A topological index, also known as a connectivity index in the field of chemical graph theory, is a form of molecular descriptor that is derived based on the molecular graph of a chemical compound. Topological indices are involved in the construction of quantitative structure-activity relationships (QSARs), in which the biological activity or other attributes of molecules are associated with their chemical structure.
Throughout this paper, we have considered only finite, connected, undirected graph without loops and multiple edges of \(n\) vertices and \(m\) edges and is called \((n,m)\) graph. We denote vertex set as \(V(G)\) and edge set as \(E(G)\) of graph \(G\), respectively. For a graph \(G\), the degree of a vertex \(v\) is the number of edges incident to \(v\) and is denoted by \(d_G(v)\). For unexplained graph terminology and notation refer [1,2].
Definition 1.[1] The wheel graph is a graph obtained from a cycle graph \(C_{n-1}\) by adding a new vertex which is adjacent to the vertices of a cycle \(C_{n-1}\). That is \(W_n=K_1+C_{n-1}\) is a graph with \(n\) vertices and \(2(n-1)\) edges.
Now a days, topological indices are extensively used in mathematical chemistry. Among them, first and second Zagreb indices of a graph \(G\) were defined by Gutman and Trinajsti\(\acute{c}\) [3] in 1972 as,The atom-bond connectivity index of a graph \(G\) was defined in [12] as,
The general \(SK_{\alpha}\) index of a graph \(G\) is defined as,
Definition 2. The Basava wheel windmill graph \(W^{(m)}_{n+1}\) is the graph obtained by taking \(m\geq 2\) copies of the graph \(K_1+W_{n}\) for \(n\geq 4\) with a vertex \(K_1\) in common. This graph is shown in Figure-1. The Basava wheel windmill graph \(W^{(m)}_{4+1}\) is a french windmill graph \(F^{(m)}_{5}\).
Let \(G\) be the Basava wheel windmill \(W^{(m)}_{n+1}\) graph. The graph \(G\) has \(mn+1\) vertices and \(3mn-2m\) edges, \(m\geq 2\), \(n\geq 4\). Then there are three types of vertices as given in Table 1. Also there are four types of edges as given in Table 2.
\(d_G(v)\) | \(4\) | \(n\) | \(mn\) |
---|---|---|---|
Number of vertices | \(m(n-1)\) | \(m\) | \(1\) |
\((deg_{G}(u), deg_{G}(v))\) | \((4,4)\) | \((4,n)\) | \((4,mn)\) | \((n,mn)\) |
---|---|---|---|---|
Number of edges | \(m(n-1)\) | \(m(n-1)\) | \(m(n-1)\) | \(m\) |
Theorem 1. The F-index of Basava wheel windmill graph is \[F(W^{(m)}_{n+1})=64m(n-1)+mn^3(1+m^2).\]
Proof. By using the definition of F-index and Table 1, we obtain \begin{eqnarray*} F(G) &=& {\sum\limits_{v\in V(G)} {d_G(v)^3}}\\ &=& \sum\limits_{v\in V_4} {4^3}+\sum\limits_{v\in V_n} {n^3}+\sum\limits_{v\in V_{mn}} {(mn)^3}\\ &=& 64\times m(n-1)+n^3 \times m+(mn)^3\\ &=& 64m(n-1)+mn^3+m^3n^3\\ &=& 64m(n-1)+mn^3(1+m^2). \end{eqnarray*}
Theorem 2. The harmonic index of Basava wheel windmill graph is \[H(W^{(m)}_{n+1})=2m(n-1)\bigg[\frac{1}{8}+\frac{1}{4+n}+\frac{1}{4+mn}\bigg]+\frac{2m}{n+mn}.\]
Proof. By using the definition of harmonic index and Table 2, we obtain \begin{eqnarray*} H(G) &=& {\sum_{uv\in E(G)}{\frac{2}{d_G(u)+d_G(v)}}}\\ &=&\sum_{uv\in E_8}{\frac{2}{4+4}} +\sum_{uv\in E_{4+n}}{\frac{2}{4+n}}+\sum_{uv\in E_{4+mn}}{\frac{2}{4+mn}}+\sum_{uv\in E_{n+mn}}{\frac{2}{n+mn}}\\ &=&\frac{2}{8}\times m(n-1)+\frac{2}{4+n}\times m(n-1)+\frac{2}{4+mn}\times m(n-1)+\frac{2}{n+mn}\times m\end{eqnarray*}\begin{eqnarray*} &=&m(n-1)\Bigg[\frac{2}{8}+\frac{2}{4+n}+\frac{2}{4+mn}\Bigg]+\frac{2m}{n+mn}\\ &=&2m(n-1)\bigg[\frac{1}{8}+\frac{1}{4+n}+\frac{1}{4+mn}\bigg]+\frac{2m}{n+mn}. \end{eqnarray*}
Theorem 3. The Randi\(\acute{c}\) index of Basava wheel windmill graph is \[\chi(W^{(m)}_{n+1})=m(n-1)\bigg[\frac{1}{4}+\frac{1}{2\sqrt{n}}+\frac{1}{2\sqrt{mn}}\bigg]+\frac{\sqrt{m}}{n}.\]
Proof. By using the definition of Randi\(\acute{c}\) index and Table 2, we obtain \begin{eqnarray*} \chi(G) &=& {\sum_{uv\in E(G)}{\frac{1}{\sqrt{d_G(u)d_G(v)}}}}\\ &=&\sum_{uv\in E_8}{\frac{1}{\sqrt{4\times4}}} +\sum_{uv\in E_{4+n}}{\frac{1}{\sqrt{4\times n}}}+\sum_{uv\in E_{4+mn}}{\frac{1}{\sqrt{4\times mn}}}+\sum_{uv\in E_{n+mn}}{\frac{1}{\sqrt{n\times mn}}}\\ &=&\frac{1}{4}\times m(n-1)+\frac{1}{2\sqrt{n}}\times m(n-1)+\frac{1}{2\sqrt{mn}}\times m(n-1)+\frac{1}{n\sqrt{m}}\times m \\ &=&m(n-1)\Bigg[\frac{1}{4}+\frac{1}{2\sqrt{n}}+\frac{1}{2\sqrt{mn}}\Bigg]+\frac{m}{n\sqrt{m}}\\ &=&m(n-1)\bigg[\frac{1}{4}+\frac{1}{2\sqrt{n}}+\frac{1}{2\sqrt{mn}}\bigg]+\frac{\sqrt{m}}{n}. \end{eqnarray*}
Theorem 4. The general Randi\(\acute{c}\) index of Basava wheel windmill graph is \[\chi^{\alpha}(W^{(m)}_{n+1})=4^{\alpha}m(n-1)\big(4^{\alpha}+n^{\alpha}+(mn)^{\alpha}\big)+m^{\alpha+1}n^{2\alpha}.\]
Proof. By using the definition of general Randi\(\acute{c}\) index and Table 2, we obtain \begin{eqnarray*} \chi^{\alpha}(G) &=& {\sum_{uv\in E(G)}{[d_G(u)d_G(v)]}^{\alpha}}\\ &=&\sum_{uv\in E_8}{[4\times4]^{\alpha}}+\sum_{uv\in E_{4+n}}{[4\times n]^{\alpha}}+\sum_{uv\in E_{4+mn}}{[4\times mn]^{\alpha}}+\sum_{uv\in E_{n+mn}}{[n\times mn]^{\alpha}}\\ &=&16^{\alpha}\times m(n-1)+{(4n)}^{\alpha}\times m(n-1)+{(4mn)}^{\alpha}\times m(n-1)+{(mn^2)}^{\alpha}\times m \\ &=&m(n-1)\Big[16^{\alpha}+{(4n)}^{\alpha}+{(4mn)}^{\alpha}\Big]+m(m^{\alpha}n^{2\alpha})\\ &=&4^{\alpha}m(n-1)\big(4^{\alpha}+n^{\alpha}+(mn)^{\alpha}\big)+m^{\alpha+1}n^{2\alpha}. \end{eqnarray*}
By using the Theorem 4, we establish the following results;Corollary 5. The second Zagreb index of Basava wheel windmill graph is \[M_2(W^{(m)}_{n+1})=5m^2n^2+4mn^2-4m^2n+12mn-16m.\]
Corollary 6. The second hyper Zagreb index of Basava wheel windmill graph is \[HM_2(W^{(m)}_{n+1})=16m(n-1)\big[16+n^2(1+m^2)\big]+m^3n^4.\]
Theorem 7. The sum connectivity index of Basava wheel windmill graph is \[X(W^{(m)}_{n+1})=m(n-1)\bigg[\frac{1}{2\sqrt{2}}+\frac{1}{\sqrt{4+n}}+\frac{1}{\sqrt{4+mn}}\bigg]+\frac{m}{\sqrt{n(m+1)}}.\]
Proof. By using the definition of sum connectivity index and Table 2, we obtain \begin{eqnarray*} X(G)&=&{\sum_{uv\in E(G)}{\frac{1}{\sqrt{d_G(u)+d_G(v)}}}}\\ &=&\sum_{uv\in E_8}{\frac{1}{\sqrt{4+4}}} +\sum_{uv\in E_{4+n}}{\frac{1}{\sqrt{4+n}}}+\sum_{uv\in E_{4+mn}}{\frac{1}{\sqrt{4+mn}}}+\sum_{uv\in E_{n+mn}}{\frac{1}{\sqrt{n+mn}}}\\ &=&\frac{1}{\sqrt{4+4}}\times m(n-1)+\frac{1}{\sqrt{4+n}}\times m(n-1)+\frac{1}{\sqrt{4+mn}}\times m(n-1)+\frac{1}{\sqrt{n+mn}}\times m \\ &=&m(n-1)\bigg[\frac{1}{2\sqrt{2}}+\frac{1}{\sqrt{4+n}}+\frac{1}{\sqrt{4+mn}}\bigg]+\frac{m}{\sqrt{n(m+1)}}. \end{eqnarray*}
Theorem 8. The general sum connectivity index of Basava wheel windmill graph is \[X^{\alpha}(W^{(m)}_{n+1})=m(n-1)\big[8^{\alpha}+(4+n)^{\alpha}+(4+mn)^{\alpha}\big]+m(n+mn)^{\alpha}.\]
Proof. By using the definition of general sum connectivity index and Table 2, we obtain \begin{eqnarray*} X^{\alpha}(G) &=& {\sum_{uv\in E(G)}{[d_G(u)+d_G(v)]}^{\alpha}}\\ &=&\sum_{uv\in E_8}{[4+4]^{\alpha}}+\sum_{uv\in E_{4+n}}{[4+n]^{\alpha}}+\sum_{uv\in E_{4+mn}}{[4+mn]^{\alpha}}+\sum_{uv\in E_{n+mn}}{[n+mn]^{\alpha}}\\ &=&8^{\alpha}\times m(n-1)+{(4+n)}^{\alpha}\times m(n-1)+{(4+mn)}^{\alpha}\times m(n-1)+{(n+mn)}^{\alpha}\times m \\ &=&m(n-1)\big[8^{\alpha}+(4+n)^{\alpha}+(4+mn)^{\alpha}\big]+m(n+mn)^{\alpha}. \end{eqnarray*}
By using the Theorem 8, we establish the following results.Corollary 9. The first Zagreb index of Basava wheel windmill graph is \[M_1(W^{(m)}_{n+1})=16m(n-1)+mn^2(m+1).\]
Corollary 10. The first hyper Zagreb index of Basava wheel windmill graph is \[HM_1(W^{(m)}_{n+1})=m(n-1)\big[96+n^2+8n+m^2n^2+8mn\big]+mn^2+m^3n^2+2m^2n^2.\]
Theorem 11. The atom-bond connectivity index of Basava wheel windmill graph is \[ABC(W^{(m)}_{n+1})=\frac{m(n-1)}{2}\bigg[\frac{\sqrt{6}}{2}+\sqrt{\frac{n+2}{n}}+\sqrt{\frac{mn+2}{mn}}\bigg]+{\frac{m}{n}}\sqrt{\frac{mn+n-2}{m}}.\]
Proof. By using the definition of atom-bond connectivity index and Table 2, we obtain \begin{eqnarray*} ABC(G)&=&\sum\limits_{uv\in E(G)}{\sqrt\frac{d_G(u)+d_G(v)-2}{d_G(u)d_G(v)}}\\ &=&\sum\limits_{uv\in E_8}{\sqrt\frac{4+4-2}{4\times4}}+\sum\limits_{uv\in E_{4+n}}{\sqrt\frac{4+n-2}{4\times n}}+\sum\limits_{uv\in E_{4+mn}}{\sqrt\frac{4+mn-2}{4\times mn}} +\sum\limits_{uv\in E_{n+mn}}{\sqrt\frac{n+mn-2}{n\times mn}}\\ &=&\sqrt\frac{6}{16}\times m(n-1)+\sqrt\frac{n+2}{4n}\times m(n-1)+\sqrt\frac{mn+2}{4mn}\times m(n-1)+\sqrt\frac{mn+n-2}{mn^2}\times m\end{eqnarray*}\begin{eqnarray*} &=&m(n-1)\bigg[\frac{\sqrt{6}}{4}++\frac{1}{2}\sqrt{\frac{n+2}{n}}+\frac{1}{2}\sqrt{\frac{mn+2}{mn}}\bigg]+\frac{m}{n}\sqrt{\frac{mn+n-2}{m}}\\ &=&\frac{m(n-1)}{2}\bigg[\frac{\sqrt{6}}{2}+\sqrt{\frac{n+2}{n}}+\sqrt{\frac{mn+2}{mn}}\bigg]+\frac{m}{n}\sqrt{\frac{mn+n-2}{m}}. \end{eqnarray*}
Theorem 12. The Geometric-arithmetic index of Basava wheel windmill graph is \[GA(W^{(m)}_{n+1})=m(n-1)\bigg[1+\frac{4\sqrt{n}}{4+n}+\frac{4\sqrt{mn}}{4+mn}\bigg]+\frac{2m\sqrt{m}}{1+m}.\]
Proof. By using the definition of Geometric-arithmetic index and Table 2, we obtain \begin{eqnarray*} GA(G)&=&\sum\limits_{uv\in E(G)}\frac{2\sqrt{d_G(u)d_G(v)}}{d_G(u)+d_G(v)}\\ &=&\sum\limits_{uv\in E_8}\frac{2\sqrt{4\times4}}{4+4}+\sum\limits_{uv\in E_{4+n}}\frac{2\sqrt{4\times n}}{4+n}+\sum\limits_{uv\in E_{4+mn}}\frac{2\sqrt{4\times mn}}{4+mn} +\sum\limits_{uv\in E_{n+mn}}\frac{2\sqrt{n\times mn}}{n+mn}\\ &=&{\frac{2\sqrt{16}}{8}}\times m(n-1)+\frac{2\sqrt{4n}}{4+n}\times m(n-1)+\frac{4\sqrt{mn}}{4+mn}\times m(n-1)+\frac{2\sqrt{mn^2}}{n+mn}\times m\\ &=&m(n-1)\bigg[1+\frac{4\sqrt{n}}{4+n}+\frac{4\sqrt{mn}}{4+mn}\bigg]+\frac{2mn\sqrt{m}}{n+mn}\\ &=&m(n-1)\bigg[1+\frac{4\sqrt{n}}{4+n}+\frac{4\sqrt{mn}}{4+mn}\bigg]+\frac{2m\sqrt{m}}{1+m}. \end{eqnarray*}
Theorem 13. The Symmetric division deg index of Basava wheel windmill graph is \[SDD(W^{(m)}_{n+1})=1+m^{2}+m(n-1)\bigg[2+\frac{16+n^2}{4n}+\frac{16+(mn)^2}{4mn}\bigg].\]
Proof. By using the definition of Symmetric division deg index and Table 2, we obtain \begin{eqnarray*} SDD(G)&=&\sum\limits_{uv\in E(G)}\frac{d^2_G(u)+d^2_G(v)}{d_G(u)d_G(v)}\\ &=&\sum\limits_{uv\in E_8}\frac{4^2+4^2}{4\times 4}+\sum\limits_{uv\in E_{4+n}}\frac{4^2+n^2}{4\times n}+\sum\limits_{uv\in E_{4+mn}}\frac{4^2+(mn)^2}{4\times mn} +\sum\limits_{uv\in E_{n+mn}}\frac{n^2+(mn)^2}{n\times mn}\\ &=&\frac{16+16}{16}\times m(n-1)+\frac{16+n^2}{4n}\times m(n-1)+\frac{16+(mn)^2}{4mn}\times m(n-1)+\frac{n^2+(mn)^2}{mn^2}\times m\\ &=&m(n-1)\bigg[\frac{32}{16}+\frac{16+n^2}{4n}+\frac{16+(mn)^2}{4mn}\bigg]+\frac{n^2(1+m^2)}{n^2}\\ &=&1+m^{2}+m(n-1)\bigg[2+\frac{16+n^2}{4n}+\frac{16+(mn)^2}{4mn}\bigg]. \end{eqnarray*}
Theorem 14. The Sombor index of Basava wheel windmill graph is \[SO(W^{(m)}_{n+1})=m(n-1)\big[4\sqrt{2}+\sqrt{16+n^2}+\sqrt{16+m^2n^2}\big]+mn\sqrt{1+m^2}.\]
Proof. By using the definition of Sombor index and Table 2, we obtain \begin{eqnarray*} SO(G)&=&{\sum_{uv\in E(G)}{\sqrt{d_G(u)^2+d_G(v)^2}}}\end{eqnarray*}\begin{eqnarray*} &=&\sum_{uv\in E_8}{\sqrt{4^2+4^2}}+\sum_{uv\in E_{4+n}}{\sqrt{4^2+n^2}}+\sum_{uv\in E_{4+mn}}{\sqrt{4^2+(mn)^2}} +\sum_{uv\in E_{n+mn}}{\sqrt{n^2+(mn)^2}}\\ &=&\sqrt{32}\times m(n-1)+\sqrt{16+n^2}\times m(n-1)+\sqrt{16+(mn)^2}\times m(n-1) +\sqrt{n^2+(mn)^2}\times m \\ &=&m(n-1)\big[4\sqrt{2}+\sqrt{16+n^2}+\sqrt{16+m^2n^2}\big]+mn\sqrt{1+m^2}. \end{eqnarray*}
Theorem 15. The general \(SK_{\alpha}\) index of Basava wheel windmill graph is \[SK_{\alpha}(W^{(m)}_{n+1})=\frac{1}{2^{\alpha}}\bigg[m(n-1)\bigg(8^{\alpha}+(4+n)^{\alpha}+(4+mn)^{\alpha}\bigg)+m(n+mn)^{\alpha}\bigg].\]
Proof. By using the definition of general \(SK_{\alpha}\) index and Table 2, we obtain \begin{eqnarray*} SK_{\alpha}(G)&=&\sum\limits_{uv\in E(G)}\bigg(\frac{d_G(u)+d_G(v)}{2}\bigg)^{\alpha}\\ &=&\sum\limits_{uv\in E_8}\bigg(\frac{4+4}{2}\bigg)^{\alpha}+\sum\limits_{uv\in E_{4+n}}\bigg(\frac{4+n}{2}\bigg)^{\alpha}+\sum\limits_{uv\in E_{4+mn}}\bigg(\frac{4+mn}{2}\bigg)^{\alpha}+\sum\limits_{uv\in E_{n+mn}}\bigg(\frac{n+mn}{2}\bigg)^{\alpha}\\ &=&\bigg(\frac{4+4}{2}\bigg)^{\alpha} \times m(n-1)+\bigg(\frac{4+n}{2}\bigg)^{\alpha}\times m(n-1)+\bigg(\frac{4+mn}{2}\bigg)^{\alpha}\times m(n-1)+\bigg(\frac{n+mn}{2}\bigg)^{\alpha}\times m\\ &=&m(n-1)\bigg[\bigg(\frac{8}{2}\bigg)^{\alpha}+\bigg(\frac{4+n}{2}\bigg)^{\alpha}+\bigg(\frac{4+mn}{2}\bigg)^{\alpha}\bigg]+m\bigg(\frac{n+mn}{2}\bigg)^{\alpha}\\ &=&\frac{m(n-1)}{2^{\alpha}}\bigg[8^{\alpha}+(4+n)^{\alpha}+(4+mn)^{\alpha}\bigg]+\frac{m(n+mn)^{\alpha}}{2^{\alpha}}\\ &=&\frac{1}{2^{\alpha}}\bigg[m(n-1)\bigg(8^{\alpha}+(4+n)^{\alpha}+(4+mn)^{\alpha}\bigg)+m(n+mn)^{\alpha}\bigg]. \end{eqnarray*}
By using the Theorem 15, we establish the following results.Corollary 16. The \(SK_1\) index of Basava wheel windmill graph is \[SK_1(W^{(m)}_{n+1})=\frac{1}{2}\bigg[m(n-1)(16+n+mn)+mn(1+m)\bigg].\]
Corollary 17. The \(SK_2\) index of Basava wheel windmill graph is \[SK_2(W^{(m)}_{n+1})=\frac{1}{4}\bigg[m(n-1)\bigg(64+(4+n)^{2}+(4+mn)^{2}\bigg)+m(n+mn)^{2}\bigg].\]
Theorem 18. The general \(SK^{\alpha}_{1}\) index of Basava wheel windmill graph is \[SK^{\alpha}_{1}(W^{(m)}_{n+1})=2^{\alpha}m(n-1)\big[4^{\alpha}+n^{\alpha}+(mn)^{\alpha}\big]+\frac{m(mn^2)^{\alpha}}{2^\alpha}\]
Proof. By using the definition of general \(SK^{\alpha}_{1}\) index and Table 2, we obtain \begin{eqnarray*} SK^{\alpha}_{1}(G)&=&\sum\limits_{uv\in E(G)}\bigg(\frac{d_G(u)d_G(v)}{2}\bigg)^{\alpha}\\ &=&\sum\limits_{uv\in E_8}\bigg(\frac{4\times4}{2}\bigg)^{\alpha}+\sum\limits_{uv\in E_{4+n}}\bigg(\frac{4\times n}{2}\bigg)^{\alpha}+\sum\limits_{uv\in E_{4+mn}}\bigg(\frac{4\times mn}{2}\bigg)^{\alpha}+\sum\limits_{uv\in E_{n+mn}}\bigg(\frac{n\times mn}{2}\bigg)^{\alpha}\\ &=&m(n-1)\bigg[\bigg(\frac{16}{2}\bigg)^{\alpha}+\bigg(\frac{4n}{2}\bigg)^{\alpha}+\bigg(\frac{4mn}{2}\bigg)^{\alpha}\bigg]+m\bigg(\frac{mn^2}{2}\bigg)^{\alpha}\end{eqnarray*}\begin{eqnarray*} &=&m(n-1)\bigg[8^{\alpha}+(2n)^{\alpha}+(2mn)^{\alpha}\bigg]+\frac{m(mn^2)^{\alpha}}{2^{\alpha}}\\ &=&2^{\alpha}m(n-1)\big[4^{\alpha}+n^{\alpha}+(mn)^{\alpha}\big]+\frac{m(mn^2)^{\alpha}}{2^\alpha}. \end{eqnarray*}
By using the Theorem 18, we establish the following results.Corollary 19. The \(SK^{1}_1\) index of Basava wheel windmill graph is \[SK^{1}_1(W^{(m)}_{n+1})=m(n-1)(8+2n+2mn)+\frac{m^2n^2}{2}.\]
Corollary 20. The \(SK^{2}_1\) index of Basava wheel windmill graph is \[SK^{2}_1(W^{(m)}_{n+1})=m(n-1)(64+4n^2+4m^2n^2)+\frac{m^3n^4}{4}.\]
We have considered three chemical drugs, which are chloroquine, hydroxychloroquine and remdesiver [21]. Chloroquine is an antiviral drug, which is used to prevent and treat malaria. It’s also used to treat protozoa-induced liver infections (extraintestinal amebiasis) and coronavirus patients (COVID-19). Hydroxychloroquine is also antiviral drug, which has also have similar activity to that of chloroquine. The U. S. Food and Drug Administration (FDA) approved to treat autoimmune conditions such as systemic lupus erythematosus in adults, chronic discoid lupus erythematosus and rheumatoid arthritis. Remdesivir is used to treat the coronavirus patients (COVID-19). Table 3 shows the exact values of topological indices of chloroquine, hydroxychloroquine and remdesiver. These values are useful to planning the effective use of these drugs in medical field.
\({TI’s} \backslash {Chemical \; drugs}\) | <b>Chloroquine</b> | <b>Hydroxychloroquine</b> | <b>Remdesiver</b> |
---|---|---|---|
\(M_1(G)\) | 106 | 110 | 216 |
\(M_2(G)\) | 120 | 124 | 257 |
\(F(G)\) | 262 | 270 | 586 |
\(HM_1(G)\) | 502 | 518 | 1100 |
\(HM_2(G)\) | 700 | 716 | 1493 |
\(H(G)\) | 10.2999 | 10.7999 | 18.6380 |
\(\chi(G)\) | 9.8179 | 10.3179 | 19.5080 |
\(X(G)\) | 10.8376 | 11.3376 | 20.1485 |
\(ABC(G)\) | 16.7007 | 17.4078 | 31.6111 |
\(GA(G)\) | 22.3751 | 23.3751 | 21.1418 |
\(SDD(G)\) | 51.6666 | 53.6666 | 104.6666 |
\(SO(G)\) | 76.6907 | 79.5191 | 157.8076 |
\(SK_{1}(G)\) | 53 | 55 | 108 |
\(SK_2(G)\) | 125.5 | 129.5 | 275 |
\(SK^{1}_1(G)\) | 60 | 62 | 128.5 |
\(SK^{2}_1(G)\) | 175 | 179 | 440.75 |