We derive generalized generating functions for basic hypergeometric orthogonal polynomials by applying connection relations with one extra free parameter to them. In particular, we generalize generating functions for the continuous \(q\)-ultraspherical/Rogers, little \(q\)-Laguerre/Wall, and \(q\)-Laguerre polynomials. Depending on what type of orthogonality these polynomials satisfy, we derive corresponding definite integrals, infinite series, bilateral infinite series, and \(q\)-integrals.
In the context of generalized hypergeometric orthogonal polynomials Cohl applied in [1,(2.1)] therein) a series rearrangement technique which produces a generalization of the generating function for the Gegenbauer polynomials. We have since demonstrated that this technique is valid for a larger class of hypergeometric orthogonal polynomials. For instance, in [2] we applied this same technique to the Jacobi polynomials, and in [3], we extended this technique to many generating functions for the Jacobi, Gegenbauer, Laguerre, and Wilson polynomials.
The series rearrangement technique combines a connection relation with a generating function, resulting in a series with multiple sums. The order of summations are then rearranged and the result often simplifies to produce a generalized generating function whose coefficients are given in terms of generalized or basic hypergeometric functions. This technique is especially productive when using connection relations with one extra free parameter, since the relation is most often a product of shifted factorials (Pochhammer symbols) and \(q\)-shifted factorials (\(q\)-Pochhammer symbols).
Basic hypergeometric orthogonal polynomials with more than one extra free parameter, such the Askey-Wilson polynomials, have multi-parameter connection relations. These connection relations are in general given by single or multiple summation expressions. For the Askey-Wilson polynomials, the connection relation with four extra free parameters is given as a basic double hypergeometric series. The fact that the four extra free parameter connection coefficient for the Askey-Wilson polynomials is given by a double sum was known to Askey and Wilson as far back as 1985 (see [4, p. 444]). When our series rearrangement technique is applied to cases with more than one extra free parameter, the resulting coefficients of the generalized generating function are rarely given in terms of a basic hypergeometric series. The more general problem of generalized generating functions with more than one extra free parameter requires the theory of multiple basic hypergeometric series and is not treated in this paper.
In this paper, we apply this technique to generalize generating functions for basic hypergeometric orthogonal polynomials in the \(q\)-analog of the Askey scheme [5, Chapter 14]. In §2, we give some preliminary material which is used in the remainder of the paper. In §3, we present generalizations of the continuous \(q\)-ultraspherical/Rogers polynomials. In §4, we present generalizations of the little \(q\)-Laguerre polynomials. In §5, we present generalizations of the \(q\)-Laguerre polynomials. In §6, we have also computed new definite integrals, infinite series, and Jackson integrals (hereafter \(q\)-integrals) corresponding to our generalized generating function expansions using orthogonality for the studied basic hypergeometric orthogonal polynomials.
Note that one important class of hypergeometric orthogonal polynomial generating functions which does not seem amenable to our series rearrangement technique are bilinear generating functions. The existence of an extra orthogonal polynomial in the generating function, produces multiple summation expressions via the introduction of connection relations for one or both of the polynomials with the sums being formidable to evaluate in closed form.
The following properties for the \(q\)-shifted factorial can be found in [5,(1.8.7), (1.8.10-11), (1.8.14), (1.8.19), (1.8.21-22)], namely for appropriate values of \(a\) and \(k\in\mathbb N_0\),
Lemma 1. Let \(q, \alpha,\beta\in\mathbb C\), \(0< |q|< 1\). Then
Proof. See [7, Lemma 2.2].
We also take advantage of the \(q\)-binomial [5, (1.11.1)] and binomial [5, (1.5.1)] theorems, \(a\in\mathbb{C}\), \(|z|< 1\), respectively \(|q|< 1\), \[ _{1}\phi^{0} \left( {\begin{array}{c} a \\ – \\ \end{array} } ;q,z\right) =\frac{(az;q)_\infty}{(z;q)_\infty}, \] where we have used (2), and \[ 10a-{q,z}=(1-z)^{-a}. %\label{qbinom} \] The basic hypergeometric series, which we will often use, is defined for \(|z|< 1\), \(0< |q|< 1\), \(s,r\in\mathbb{N}_0\), \(a_l,b_j\in\mathbb{C}\), \(l,j\in\mathbb{N}_0\), \(0\le l\le r\), \(0\le j\le s\), \(b_j\not\in-\mathbb{N}_0\), as [5,(1.10.1)]Let us prove some inequalities that we will later use.
Lemma 2. Let \(j\in \mathbb N\), \(k,n\in \mathbb N_0\), \(z\in \mathbb C\), \(\Re u>0\), \(v\ge 0\), and \(0< |q|< 1\). Then
Proof. See [7, Lemma 2.3].
For a family of orthogonal polynomials \((P_n(x;{\mathbf a}))\), where \({\mathbf a}\), \({\mathbf b}\), are sets of free parameters, define \(a_n({\mathbf a})\), \(c_{k,n}({\mathbf a};{\mathbf b})\) as follows. A generating function for these orthogonal polynomials is defined as \[ f(x,t,{\mathbf a})=\sum_{n=0}^\infty a_n({\mathbf a}) P_n(x;{\mathbf a}) t^n, \] and a connection relation for these orthogonal polynomials is defined as \[ P_n(x;{\mathbf a})= \sum_{k=0}^n c_{k,n}({\mathbf a};{\mathbf b}) P_k(x;{\mathbf b}). \]Theorem 1. Let \(x\in[-1,1]\), \(0< |\beta|,|\gamma|,|q|< 1\), \(|t\beta|(1-|q|)^2< 1-|\beta|^2\). Then
Proof. A generating function for continuous \(q\)-ultraspherical/Rogers polynomials can be found in [5, (14.10.29)]
Corollary 2. Let \(x\in[-1,1]\), \(|t|< 1\), \(\beta,\gamma\in(-1,\infty)\setminus\{0,1\}\), \(0< |q|< 1\). Then
Proof. In (17), transform \(\beta\mapsto q^\beta\), \(\gamma\mapsto q^\gamma\), \(t\mapsto (1-q)t\), and take the limit as \(q\uparrow 1^{-}\). Using the definition of the \(q\)-exponential function [5,(1.14.2)] \(E_q(z):=(-z;q)_\infty\), \(\lim_{q\uparrow 1^{-}}E_q((1-q)z)=e^z\), and that the \({}_2\phi_1\) becomes a Kummer confluent hypergeometric functions \({}_1F_1\) with argument \(-2it\sin\theta\). Representing this as a Bessel function of the first kind using [8, (10.16.5)], and then using [8,(10.2.2)], the left-hand side follows. The \(q\uparrow 1^{-}\) limit on the right-hand side is straightforward.
Theorem 3. Let \(x\in[-1,1]\), \(|t|(1-|q|)^2< 1-|\beta|^2\), \(0< |\beta|, |\gamma|, |q|< 1\). Then
Proof. A generating function for the continuous \(q\)-ultraspherical/Rogers polynomials can be found in [5, (14.10.28)]
Remark 1. The \(q\uparrow 1^{-1}\) limit of (22) can also be shown to be the same as (21), by using the transformation \(x\mapsto -x\). The proof of this is the same as the proof of Corollary 2, except instead use the definition of the \(q\)-exponential function [5,(1.14.1)] \(e_q(z):=1/(z;q)_\infty\), \(\lim_{q\uparrow 1^{-}}e_q((1-q)z)=e^z\). Of course, the same is true for the \(q\uparrow 1^{-}\) limits of the original generating functions [5,(14.10.28 -29)], which both are analogues of [5,(9.8.31)], and are equivalent under the transformation \(x\mapsto -x\).
Theorem 4. Let \(x\in[-1,1]\), \(|t|(1-|q|)^2< 1\), \(0< |\beta|, |\gamma|, |q|< 1\). Then
Proof. A generating function for the continuous \(q\)-ultraspherical/Rogers polynomials can be found in [5,(14.10.33)]
Theorem 5. Let \(x\in[-1,1]\), \((1-|q|)^2(1+|\sqrt{q}||\beta|)|t|< (1-|q||\beta|)\), \(0< |\beta|, |\gamma|, |q|< 1\). Then
Proof. A generating function for the continuous \(q\)-ultraspherical/Rogers polynomials can be found in [5,(14.10.31)]
Theorem 6. Let \(x\in[-1,1]\), \((1-|q|)^2(1+|\beta||\sqrt{q}|)(1+|\beta|)|t|< (1-|\sqrt{q}||\beta|)(1-|\beta|^2)\), \(0< |\beta|, |\gamma|, |q|< 1\). Then \begin{eqnarray} \label{genFunc1C} &&{}_2\phi_1 \left(\begin{array}{c} \beta^{\frac12}{e^{i\theta}},(q\beta)^{\frac12} e^{i\theta}\\\beta q^{{\frac12}}\end{array} ;q,{te^{-i\theta}}\right) \,{}_2\phi_1 \left(\begin{array}{c} -\beta^{\frac12} {e^{-i\theta}},-(q\beta)^{\frac12} {e^{-i\theta}}\\\beta q^{\frac12}\end{array} ;q,{te^{i\theta}}\right)\nonumber\\ \nonumber &&= \sum_{n=0}^{\infty} \frac{( \pm\beta, %,-\beta, -\beta q^{\frac12};q)_n t^n} {(\gamma,\beta^2,\beta q^{\frac12};q)_n} C_n(x;\gamma|q)\\ \nonumber &&\times\,{}_{10}\phi_9\Bigg( \begin{array}{c} \beta\gamma^{-1},\beta q^n, \pm i(\beta q^n)^{\frac12}, %,-i(\beta q^n)^{\frac12} \pm i(\beta q^{n+1})^{\frac12}, %,-i(\beta q^{n+1})^{\frac12}, \pm i(\beta q^{n+{\frac12}})^{\frac12}, \pm i(\beta q^{n+{\frac32}})^{\frac12} \\ \gamma q^{n+1}, \pm \beta q^{n/2}, %,-\beta q^{n/2}, \pm \beta q^{(n+1)/2}, %-\beta q^{(n+1)/2}, \pm (\beta q^{n+{\frac12}})^{\frac12}, \pm (\beta q^{n+{\frac32}})^{\frac12} %-(\beta q^{n+{\frac12}})^{\frac12}, %\end{array} %\\&&\hspace{1cm}\hspace{4.0cm} %\begin{array}{c} %-i(\beta q^{n+{\frac12}})^{\frac12}, %,-i(\beta q^{n+{\frac32}})^{\frac12} %\\ %,-(\beta q^{n+{\frac32}})^{\frac12} \end{array} ; q,\gamma t^2 \Bigg). \end{eqnarray}
Proof. We start with the generating function for the continuous \(q\)-ultraspherical/Rogers polynomials [5,(14.10.30)]
Theorem 7. Let \(x\in[-1,1]\), \((1-|q|)^2(1+|\beta|)|t|< (1-|\sqrt{q}||\beta|)\), \(0< |\beta|, |\gamma|, |q|< 1\). Then
Proof. A generating function for the continuous \(q\)-ultraspherical/Rogers polynomials can be found in [5,(14.10.32)]
Theorem 8. Let \(0< |aq|, |bq|, |q|< 1\). Then the connection relation for the little \(q\)-Laguerre/Wall polynomials is given by
Theorem 9. Let \(0< |aq|, |bq|, |q|< 1\), \(|t|< \min\{(1-q)(1-aq)/a,1\}\). Then \[ \frac{(t;q)_\infty}{(xt;q)_\infty} \,{}_0\phi_1 \left( \begin{array}{c} -\\ aq \end{array};q,aqxt\right) =\sum_{n=0}^\infty\frac{q^{\binom n2} (-t)^n(b q;q)_n}{(q;q)_n(a q;q)_n}\,p_n(x;b|q) \,{}_1\phi_1\left(\begin{array}{c}a/b\\ a q^{n+1} \end{array};q,b q^{n+1} t\right). \]
Proof. We start with the generating function for little \(q\)-Laguerre/Wall polynomials found in [5,(14.20.11)]
Theorem 10. Let \(\alpha,\beta\in (-1,\infty),\) \(0< |q|< 1\). The connection relation for the \(q\)-Laguerre polynomials is given as
Proof. One could obtain the above result by following an analogous proof as applied to the little \(q\)-Laguerre/Wall polynomials. Nevertheless the result follows by using the relation between the little \(q\)-Laguerre/Wall and the \(q\)-Laguerre polynomials [5, p.521].
By starting with generating functions for the \(q\)-Laguerre polynomials [5, (14.21.14 -16)], we derive generalizations of these generating functions using the connection relation for \(q\)-Laguerre polynomials (34). Note however that the generating function for the \(q\)-Laguerre polynomials [5,(14.21.13)] remains unchanged when one applies the connection relation (34).Theorem 11. Let \(\alpha,\beta\in (-1,\infty),\) \(0< |q|< 1\), \(|t|< (1-q^{\alpha+1})(1-q)\). Then
Proof. We start with the generating function for \(q\)-Laguerre polynomials found in [1][(14.21.14)]
Theorem 12. Let \(\alpha,\beta\in (-1,\infty),\) \(0< |q|< 1\), \(|t|< (1-q^{\alpha+1})(1-q)\). Then
Proof. We start with the generating function for the \(q\)-Laguerre polynomials found in [5,(14.21.15)]
Theorem 13. Let \(\alpha,\beta\in (-1,\infty)\), \(\gamma\in\mathbb C\), \(0< |q|< 1\), \(|t|< 1-q\). Then
Proof. We start with the generating function for the \(q\)-Laguerre polynomials found in [5,(14.21.15)]
Lemma 3. Let \(\mathbf u\) be a classical linear functional and let \((p_n(x))\), \(n\in\mathbb N_0\) be the sequence of orthogonal polynomials associated with \(\mathbf u\). If \(|p_n(x)|\le K(n+1)^\sigma \gamma^n\), with \(K\), \(\sigma\) and \(\gamma\) constants independent of \(n\), then \(|s_n|\le K(n+1)^\sigma \gamma^n |s_0|\).
Proof. See [7, Lemma 6.1].
Given \(|p_k(x;{\boldsymbol \alpha})|\le K(k+1)^\sigma \gamma^k\), with \(K\), \(\sigma\) and \(\gamma\) constants independent of \(k\), an orthogonality relation for \(p_k\), and \(|t|< 1/\gamma\), one has \(\sum_{n=0}^\infty|a_n|\sum_{k=0}^n|c_{k,n}s_k|< \infty\), which implies \(\sum_{k=0}^\infty |d_ks_k|< \infty\). Therefore one has confirmed (42), indicating that we are justified in reversing the order of our generalized sums and the orthogonality relations under the above assumptions, which also are fulfilled for the polynomial families used throughout this paper.In this section one has integral representations, infinite series, and representations in terms of the \(q\)-integral. In all the cases Lemma 3 can be applied and we are justified in interchanging the linear form and the infinite sum.
Corollary 14. Let \(n\in\mathbb N_0,\) \(\beta,\gamma \in (-1,1)\setminus\{0\}\), \(0< |q|< 1\), \(|t|< 1-\beta^2\). Then \begin{eqnarray*} \int^1_{-1} && (te^{-i\theta};q)_\infty \,{}_2\phi_1 \left( \begin{array}{c}\beta , \beta e^{2i\theta}\\ \beta^2\end{array} ;q,te^{-i\theta}\right) C_n(x;\gamma|q)\frac{w_R(x;\gamma|q)} {\sqrt{1-x^2}} \,{\mathrm d}x\\&& =2\pi(-\beta t)^n\frac{q^{\binom n 2} (\gamma,q\gamma;q)_\infty (\beta,\gamma^2;q)_n}{(\gamma^2,q;q)_\infty (q,\beta^2,q\gamma;q)_n} {}_2\phi_5\left(\begin{array}{c} \beta\gamma^{-1},\beta q^n\\ \gamma q^{n+1}, \pm \beta q^{n/2}, \pm \beta q^{(n+1)/2} \end{array};q,\gamma(\beta t)^2 q^{2n+1}\right). \nonumber \end{eqnarray*}
Proof. Using the generalized generating function (17) and (43), the proof follows as above.
Corollary 15. Let \(n\in\mathbb N_0,\) \(\beta,\gamma\in (-1,1)\setminus\{0\}\), \(0< |q|< 1\), \(|t|< 1-\beta^2\). Then \begin{eqnarray*} \label{int2} \int^1_{-1} \frac1{(te^{i\theta};q)_\infty} && \,{}_2\phi_1\left(\begin{array}{c} \beta , \beta e^{2i\theta}\\\beta^2 \end{array};q,te^{-i\theta} \right)C_n(x;\gamma|q)\frac{w_R(x;\gamma|q)} {\sqrt{1-x^2}} \,{\mathrm d}x\\ && =2\pi t^n \frac{(\gamma,q\gamma;q)_\infty (\beta,\gamma^2;q)_n}{(\gamma^2,q;q)_\infty (q,\beta^2,q\gamma;q)_n} {}_6\phi_5\left(\begin{array}{c} \beta\gamma^{-1},\beta q^n,0,0,0,0\\ \gamma q^{n+1}, \pm \beta q^{n/2}, \pm \beta q^{(n+1)/2}\end{array} ;q,\gamma t^2\right).\nonumber \end{eqnarray*}
Proof. We complete the proof using (22) and (43).
Corollary 16. Let \(n\in\mathbb N_0,\) \(\gamma\in\mathbb C\), \(\alpha,\beta\in (-1,1)\setminus\{0\},\) \(0< |q|< 1\), \(|t|< 1-\beta^2\). Then \begin{eqnarray*} \int^1_{-1} && \frac{(\gamma te^{i\theta};q)_\infty} {(te^{i\theta};q)_\infty} \,{}_3\phi_2 \left( \begin{array}{c} \gamma,\beta,\beta e^{2i\theta}\\ \beta^2,\gamma te^{i\theta} \end{array};q,te^{-i\theta} \right) C_n(x;\alpha|q)\frac{w_R(x;\alpha|q)}{\sqrt{1-x^2}} \,{\mathrm d}x\\ &&\hspace{0.5cm}=2\pi t^n \frac{(\alpha,q\alpha;q)_\infty(\alpha^2,\gamma,\beta;q)_n} {(\alpha^2,q;q)_\infty(q,\beta^2,q\alpha;q)_n} %\\[0.2cm] &&\hspace{2cm}\times {}_6\phi_5\left( \begin{array}{c} \beta/\alpha,\beta q^n, \pm \left(\gamma q^n\right)^{\frac12} %,-\left(\gamma q^n\right)^{\frac12}, \pm \left(\gamma q^{n+1}\right)^{\frac12} %,-\left(\gamma q^{n+1}\right)^{\frac12} \\ \alpha q^{n+1}, \pm \beta q^{n/2}, %-\beta q^{n/2}, \pm \beta q^{(n+1)/2} %,-\beta q^{(n+1)/2} \end{array} ;q,\alpha t^2 \right). \nonumber \end{eqnarray*}
Proof. We complete the proof using (24) and (43).
Corollary 17. Let \(n\in\mathbb N_0,\) \(\beta,\gamma\in (-1,1)\setminus\{0\},\) \(0< |q|< 1\), \(|t|< \min\{(1-\beta^2) (1+\sqrt{q}|\beta|)(1-q|\gamma|),1\}\). Then \begin{eqnarray*} &&\hspace{0.0cm}\int^1_{-1}{}_2\phi_1 \left( \begin{array}{c} \pm \beta^{\frac12}e^{i\theta} %,-\beta^{\frac12}e^{i\theta} \\ -\beta \end{array} ; q,te^{-i\theta} \right) %\\ &&\hspace{16mm}\times \,{}_2\phi_1 \left( \begin{array}{c} \pm (q\beta)^{\frac12}e^{-i\theta} %,-(q\beta)^{\frac12}e^{-i\theta} \\ -q\beta \end{array} ; q,te^{i\theta} \right) C_n(x;\gamma|q)\frac{w_R(x;\gamma|q)}{\sqrt{1-x^2}} \,{\mathrm d}x\\ &&=2\pi t^n \frac{(\gamma,q\gamma;q)_\infty(\gamma^2,\beta, \pm \beta q^{\frac12} %,-\beta q^{\frac12} ;q)_n}{(\gamma^2,q;q)_\infty(\beta^2,-q\beta,q\gamma,q;q)_n}\\[0.2cm] &&\times\,{}_{10}\phi_9\Bigg( \begin{array}{c} \beta\gamma^{-1},\beta q^n, \pm (\beta q^{n+\frac12})^{\frac12}, %-(\beta q^{n+\frac12})^{\frac12}, \pm (\beta q^{n+\frac32})^{\frac12}, %,-(\beta q^{n+\frac32})^{\frac12}, \pm i(\beta q^{n+\frac12})^{\frac12}, %-i(\beta q^{n+{\frac12}})^{\frac12}, \pm i(\beta q^{n+{\frac32}})^{\frac12} %,-i(\beta q^{n+{\frac32}})^{\frac12} \\ \gamma q^{n+1}, \pm \beta q^{n/2}, %,-\beta q^{n/2}, \pm \beta q^{(n+1)/2}, %,-\beta q^{(n+1)/2}, \pm i(\beta q^{n+1})^{\frac12}, %,-i(\beta q^{n+1})^{\frac12}, \pm i(\beta q^{n+2})^{\frac12} %,-i(\beta q^{n+2})^{\frac12} \end{array} ; q,\gamma t^2 \Bigg). \end{eqnarray*}
Proof. We complete the proof using (26) and (43).
Corollary 18. Let \(n\in\mathbb N_0,\) \(\beta,\gamma\in (-1,1)\setminus\{0\},\) \(0< |q|< 1\), \(|t|< \min\{(1-\beta^2)(1+\sqrt{q}|\beta|)(1-q|\gamma|),1\}\). Then \begin{eqnarray*} \int^1_{-1}&&{}_2\phi_1 \left( \begin{array}{c} \beta^{\frac12}e^{i\theta}, (q\beta)^{\frac12}e^{i\theta}\\ \beta q^{\frac12} \end{array};q,te^{-i\theta}\right) %\\ &&\hspace{2cm}\times \,{}_2\phi_1\left(\begin{array}{c} -\beta^{\frac12}e^{-i\theta},-(q\beta)^{\frac12} e^{-i\theta}\\\beta q^{\frac12}\end{array}; q,te^{i\theta}\right) \\ &&\times C_n(x;\gamma|q)\frac{w_R(x;\gamma|q)} {\sqrt{1-x^2}} \,{\mathrm d}x=2\pi t^n \frac {(\gamma,q\gamma;q)_\infty(\gamma^2, \pm\beta,-\beta q^{\frac12};q)_n} {(\gamma^2,q;q)_\infty(\beta^2,\beta q^{\frac12},q\gamma,q;q)_n}\\[0.2cm] &&\times\,{}_{10}\phi_9\Bigg( \begin{array}{c} \beta\gamma^{-1},\beta q^n, \pm i(\beta q^n)^{\frac12}, %-i(\beta q^n)^{\frac12}, \pm i(\beta q^{n+1})^{\frac12}, %-i(\beta q^{n+1})^{\frac12}, \pm i(\beta q^{n+\frac12})^{\frac12} %-i(\beta q^{n+\frac12})^{\frac12}, \pm i(\beta q^{n+\frac32})^{\frac12} %,-i(\beta q^{n+\frac32})^{\frac12} \\ \gamma q^{n+1}, \pm \beta q^{n/2}, %-\beta q^{n/2}, \pm \beta q^{(n+1)/2}, %-\beta q^{(n+1)/2}, \pm (\beta q^{n+\frac12})^{\frac12}, %-(\beta q^{n+\frac12})^{\frac12}, \pm (\beta q^{n+\frac32})^{\frac12} %,-(\beta q^{n+\frac32})^{\frac12} \end{array} %\\&&\hspace{0.8cm}\hspace{5.8cm} %\begin{array}{c} %\\ %\end{array} ; q,\gamma t^2 \Bigg). \end{eqnarray*}
Proof. We complete the proof using (28) and (43).
Corollary 19. Let \(n\in\mathbb N_0\) \(\beta,\gamma\in (-1,1)\setminus\{0\},\) \(0< |q|< 1\), \(|t|< \min\{(1-\beta^2)(1+\sqrt{q}|\beta|),1\}\). Then \begin{eqnarray*} \int^1_{-1}&&{}_2\phi_1 \left(\begin{array}{c} \beta^{\frac12} e^{i\theta},-(q\beta)^{\frac12}e^{i\theta}\\ -\beta q^{\frac12}\end{array};q,te^{-i\theta} \right)%\\ &&\hspace{2cm}\times \,{}_2\phi_1\left(\begin{array}{c} (q\beta)^{\frac12}e^{-i\theta},-\beta^{\frac12} e^{-i\theta}\\-\beta q^{\frac12}\end{array}; q,te^{i\theta}\right) \\&& \times C_n(x;\gamma|q)\frac{w_R(x;\gamma|q)} {\sqrt{1-x^2}} \,{\mathrm d}x=2\pi t^n\frac{(\gamma, q\gamma;q)_\infty(\gamma^2,\pm \beta \beta q^{\frac12};q)_n}{(\gamma^2,q;q)_\infty (\beta^2,-\beta q^{\frac12},q\gamma,q;q)_n} \\[0.2cm] &&\times\,{}_{10}\phi_9\Bigg( \begin{array}{c} \beta\gamma^{-1},\beta q^n, \pm i(\beta q^n)^{\frac12}, \pm i(\beta q^{n+1})^{\frac12}, \pm (\beta q^{n+\frac12})^{\frac12}, \pm (\beta q^{n+\frac32})^{\frac12},\\ \gamma q^{n+1}, \pm \beta q^{n/2}, \pm \beta q^{(n+1)/2}, \pm i(\beta q^{n+\frac12})^{\frac12}, \pm i(\beta q^{n+\frac32})^{\frac12}, \end{array};q,\gamma t^2\Bigg). \end{eqnarray*}
Proof. We complete the proof using (29) and (43).
Proposition 1. Let \(\alpha\in(-1,\infty)\), \(m,n\in\mathbb N_0\), \(0< |q|< 1\). Then
Proof. The continuous orthogonality relation for the \(q\)-Laguerre polynomials is given in [5,(14.21.2)] with the right-hand side expressed in terms of gamma functions, namely \[ \int_0^\infty L_m^{(\alpha)}(x;q) L_n^{(\alpha)}(x;q) \frac{x^\alpha} {(-x;q)_\infty} \,{\mathrm d}x=\frac{(q^{-\alpha} ;q)_\infty (q^{\alpha+1};q)_n} {q^n(q;q)_\infty(q;q)_n} \Gamma(-\alpha)\Gamma(\alpha+1) \delta_{m,n}. \] The gamma functions can be replaced using the reflection formula [8,(5.5.3)] and the result is given in the theorem for \(\alpha\in(-1,\infty)\setminus\mathbb N_0\). The result for \(\alpha\in\mathbb N_0\) is a consequence of (3) and [10, cf. (2.9)], namely \[ \lim_{\alpha\to k} \frac{(q^{1-\alpha} ;q)_\infty}{\sin(\pi\alpha)(aq^{-\alpha} ;q)_\infty} =\frac{-(q;q)_\infty (q;q)_{k-1} \log q} {\pi q^{\binom k2} (a;q)_\infty (a;q^{-1})_k}, \] which leads to \[ \lim_{\alpha\to k} \frac {(q^{-\alpha};q)_\infty} {\sin(\pi\alpha)} =\frac{(q;q)_\infty (q;q)_k \log q} {\pi q^{k(k+1)/2}}. \] Applying this limit completes the proof.
Corollary 20. Let \(n\in\mathbb N_0\), \(\alpha,\beta\in (-1,\infty),\) \(0< |q|< 1\), \(|t|< (1-q^{\alpha +1})(1-q)\). Then \begin{eqnarray*} && \int_0^\infty 0\phi_1 \left(\begin{array}{c} -\\ q^{\alpha+1} \end{array} ;q,-xtq^{\alpha+1} \right)L_n^{(\beta)}(x;q) \frac{x^{\beta}}{(-x;q)_\infty}\,{\mathrm d}x \\[0.2cm] &&\hspace{1.3cm} =\frac{-\left(tq^{\alpha-\beta}\right)^n(t;q)_\infty} {q^n(q^{\alpha+1};q)_n} 2\phi_1 \left(\begin{array}{c} q^{\alpha-\beta},0\\ q^{\alpha+n+1} \end{array} ;q,t \right) \left\{ \begin{array}{l@{\, \mathrm{if}\,}l} \displaystyle \frac{\pi(q^{-\beta};q)_\infty(q^{\beta+1};q)_n} {\sin(\pi\beta)(q;q)_\infty(q;q)_n}, & \beta\in(-1,\infty)\setminus\mathbb N_0, \\[0.6cm] \displaystyle \frac{(q^{n+1};q)_\beta\log q}{q^{\beta(\beta+1)/2}}, & \beta\in\mathbb N_0. \end{array}\right. \end{eqnarray*}
Proof. Using (44) with (35) completes the proof.
Corollary 21. Let \(n\in\mathbb N_0,\) \(\alpha,\beta\in (-1,\infty),\) \(0< |q|< 1\), \(|t|< (1-q^{\alpha+1})(1-q)\). Then \begin{eqnarray*} &&\hspace{-0.2cm}\int_0^\infty 0\phi_2 \left(\begin{array}{c} -\\ q^{\alpha+1},t \end{array} ;q,-xtq^{\alpha+1} \right) L_n^{(\beta)}(x;q)\frac{x^{\beta}}{(-x;q)_\infty}\,{\mathrm d}x \\[0.2cm] &&\hspace{0.4cm} =\frac{-\left(-tq^{\alpha-\beta}\right)^n} {q^n(t;q)_\infty(q^{\alpha+1};q)_n} 1\phi_1 \left(\begin{array}{c} q^{\alpha-\beta},0\\ q^{\alpha+n+1} \end{array} ;q,tq^n \right) %\times \left\{ \begin{array}{l@{\ \mathrm{if}\,}l} \displaystyle \frac{\pi(q^{-\beta};q)_\infty(q^{\beta+1};q)_n} {\sin(\pi\beta)(q;q)_\infty(q;q)_n}, & \beta\in(-1,\infty)\setminus\mathbb N_0, \\[0.6cm] \displaystyle \frac{(q^{n+1};q)_\beta\log q}{q^{\beta(\beta+1)/2}}, & \beta\in\mathbb N_0. \end{array}\right. \end{eqnarray*}
Proof. Using (44) with (38) completes the proof.
Corollary 22. Let \(n\in\mathbb N_0,\) \(\alpha,\beta\in (-1,\infty),\) \(\gamma\in\mathbb C\), \(0< |q|< 1\), \(|t|< 1-q\). Then \begin{eqnarray*} &&\int_0^\infty 1\phi_2\left(\begin{array}{c} \gamma\\ q^{\alpha+1},\gamma t \end{array} ;q,-xtq^{\alpha+1} \right) L_n^{(\beta)}(x;q)\frac{x^{\beta}}{(-x;q)_\infty}\,{\mathrm d}x %\\[0.2cm]&&\hspace{2.3cm} =\frac{-\left(tq^{\alpha-\beta}\right)^n (t;q)_\infty(\gamma;q)_n}{q^n(\gamma t ;q)_\infty(q^{\alpha+1};q)_n} \\[0.2cm] &&\hspace{4.3cm}\times 2\phi_1\left(\begin{array}{c} q^{\alpha-\beta},\gamma q^n\\ q^{\alpha+n+1} \end{array} ;q,t \right) \left\{ \begin{array}{l@{\, \mathrm{if}\,}l} \displaystyle \frac{\pi(q^{-\beta};q)_\infty(q^{\beta+1};q)_n} {\sin(\pi\beta)(q;q)_\infty(q;q)_n}, & \beta\in(-1,\infty)\setminus\mathbb N_0, \\[0.6cm] \displaystyle \frac{(q^{n+1};q)_\beta\log q}{q^{\beta(\beta+1)/2}}, & \beta\in\mathbb N_0. \end{array}\right. \end{eqnarray*}
Proof. Using (44) with (40) completes the proof.
Corollary 23. Let \(n\in\mathbb N_0,\) \(0< |q|< 1\), \(\alpha,\beta\in(0,q^{-1})\), \(|t|< \min\{(1-\beta^2)(1+\sqrt{q}|\beta|),1\}\). Then \begin{eqnarray*} && \sum_{k=0}^\infty \frac{(q\beta)^k} {(tq^k;q)_\infty} 0\phi_1\left(\begin{array}{c} -\\ q^{\alpha} \end{array} ;q,t\alpha q^{+1} \right) \dfrac{p_n\left(q^k;\beta|q\right)}{(q;q)_k}= \frac{q^{\binom n 2}(-q\beta t)^n}{(t,q\beta;q)_\infty(q\alpha;q)_n}1\phi_1\left(\begin{array}{c} \alpha/\beta\\ \alpha q^{n+1} \end{array} ;q,t\beta q^{n+1} \right). \end{eqnarray*}
Proof. We begin with the generalized generating function (29) and using (43) completes the proof. This orthogonality isn’t there.
Corollary 24. Let \(n\in\mathbb N_0,\) \(0< |q|< 1\), \(\alpha,\beta\in\left(-1,\infty\right)\), \(|t|0\). Then \begin{eqnarray*} &&\sum_{k=-\infty}^\infty 0\phi_1\left(\begin{array}{c} -\\ q^{\alpha+1} \end{array} ;q,-ctq^{\alpha+k+1} \right) \frac{q^{(\beta+1)k}}{(-cq^k;q)_\infty}\nonumber\\[0.2cm] &&\hspace{3cm}=\frac{\left(tq^{\alpha-\beta}\right)^n(t,q,-cq^{\beta +1},-q^{-\beta}/c;q)_\infty(q^{\beta+1};q)_n} {q^n(q^{\beta+1},-c,-q/c;q)_\infty(q,q^{\alpha+1};q)_n} 2\phi_1\left(\begin{array}{c} q^{\alpha-\beta},0\\ q^{\alpha+n+1} \end{array} ;q,t \right) \end{eqnarray*}
Proof. This follows using (35) with (45).
Corollary 25. Let \(n\in\mathbb N_0,\) \(0< |q|< 1\), \(\alpha,\beta\in\left(-1,\infty\right)\), \(|t|0\). Then \begin{eqnarray*} &&\sum_{k=-\infty}^\infty 0\phi_2\left(\begin{array}{c} -\\ q^{\alpha+1},t \end{array} ;q,-ctq^{\alpha+k+1} \right) \frac{q^{(\beta+1)k}}{(-cq^k;q)_\infty}\nonumber\\[0.2cm] &&\hspace{3cm}=\frac{\left(-tq^{\alpha-\beta}\right)^nq^{\binom n 2} (q,-cq^{\beta+1},-q^{-\beta}/c;q)_\infty (q^{\beta+1};q)_n} {q^n(t,q^{\beta+1},-c,-q/c;q)_\infty(q,q^{\alpha+1};q)_n} 1\phi_1\left(\begin{array}{c} q^{\alpha-\beta}\\ q^{\alpha+n+1} \end{array} ;q,tq^n \right). \end{eqnarray*}
Proof. This follows using (38) with (45).
Corollary 26. Let \(n\in\mathbb N_0,\) \(0< |q|< 1\), \(\alpha,\beta\in\left(-1,\infty\right)\), \(\gamma\in\mathbb C\), \(|t|0\). Then \begin{eqnarray*} &&\sum_{k=-\infty}^\infty 1\phi_2\left(\begin{array}{c} \gamma\\ q^{\alpha+1},\gamma t \end{array} ;q,-ctq^{\alpha+k+1} \right) \frac{q^{(\beta+1)k}}{(-cq^k;q)_\infty}\nonumber\\[0.2cm] &&\hspace{3cm}=\frac{\left(tq^{\alpha-\beta}\right)^n (t,q,-cq^{\beta+1},-q^{-\beta}/c;q)_\infty (\gamma,q^{\beta+1};q)_n} {q^n(\gamma t,q^{\beta+1},-c,-q/c;q)_\infty(q,q^{\alpha+1};q)_n} 2\phi_1\left(\begin{array}{c} q^{\alpha-\beta},\gamma q^n\\ q^{\alpha+n+1} \end{array} ;q,t \right). \end{eqnarray*}
Proof. This follows using (40) with (45).
Corollary 27. Let \(n\in\mathbb N_0,\) \(0< |q|< 1\), \(\alpha,\beta\in\left(-1,\infty\right),\) \(|t|< (1-q^{\alpha+1})(1-q)\). Then \begin{eqnarray*} &&\int_0^\infty 0\phi_1\left(\begin{array}{c} -\\ q^{\alpha+1} \end{array} ;q,-xtq^{\alpha+1} \right) L_n^{(\beta)}(x;q) \frac{x^\beta}{(-x;q)_\infty}\,{\mathrm d}_qx\nonumber\\[0.2cm] &&\hspace{3cm}=\frac{(1-q)\left(tq^{\alpha-\beta}\right)^n(t,q,-q^{\beta +1},-q^{-\beta};q)_\infty(q^{\beta+1};q)_n} {2q^n(q^{\beta+1},-q,-q;q)_\infty(q,q^{\alpha+1};q)_n} 2\phi_1\left(\begin{array}{c} q^{\alpha-\beta},0\\ q^{\alpha+n+1} \end{array} ;q,t \right).\nonumber \end{eqnarray*}
Proof. Using (35) with (46) completes this proof.
Corollary 28. Let \(n\in\mathbb N_0,\) \(0< |q|< 1\), \(\alpha,\beta\in\left(-1,\infty\right),\) \(|t|< (1-q^{\alpha+1})(1-q)\). Then \begin{eqnarray*} \hspace{-3cm}&&\int_0^\infty 0\phi_2\left(\begin{array}{c} -\\ q^{\alpha+1},t \end{array} ;q,-xtq^{\alpha+1} \right) L_n^{(\beta)}(x;q) \frac{x^\beta}{(-x;q)_\infty}\,{\mathrm d}_qx\nonumber\\[0.2cm] &&\hspace{1cm}=\frac{(1-q)\left(-tq^{\alpha-\beta}\right)^nq^{\binom n 2} (q,-q^{\beta+1},-q^{-\beta};q)_\infty(q^{\beta+1};q)_n} {2q^n(t,q^{\beta+1},-q,-q;q)_\infty(q,q^{\alpha+1};q)_n} 1\phi_1\left(\begin{array}{c} q^{\alpha-\beta}\\ q^{\alpha+n+1} \end{array} ;q,tq^{n} \right).\nonumber \end{eqnarray*}
Proof. Using (38) with (46) completes this proof.
Corollary 29. Let \(n\in\mathbb N_0,\) \(0< |q|< 1\), \(\alpha,\beta\in\left(-1,\infty\right),\) \(\gamma\in\mathbb C\), \(|t|< 1-q\). Then \begin{eqnarray*} &&\int_0^\infty 1\phi_2\left(\begin{array}{c} \gamma\\ q^{\alpha+1},\gamma t \end{array} ;q,-xtq^{\alpha+1} \right) L_n^{(\beta)}(x;q) \frac{x^\beta}{(-x;q)_\infty}\,{\mathrm d}_qx\nonumber\\[0.2cm] &&\hspace{3cm}=\frac{(1-q)\left(tq^{\alpha-\beta}\right)^n (t,q,-q^{\beta+1},-q^{-\beta};q)_\infty (\gamma,q^{\beta+1};q)_n} {2q^n(\gamma t,q^{\beta+1},-q,-q;q)_\infty(q,q^{\alpha+1};q)_n} 2\phi_1\left(\begin{array}{c} q^{\alpha-\beta},\gamma q^n\\ q^{\alpha+n+1} \end{array} ;q,t \right).\nonumber \end{eqnarray*}
Proof. Using (40) with (46) completes this proof.