On the sum of the cubes of generalized balancing numbers: The sum formula \(\sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}\)

Author(s): Yüksel Soykan1, Erkan Tasdemir2, Can Murat Dikmen1
1Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.
2Pınarhisar Vocational School, Kırklareli University, 39300, Kırklareli, Turkey
Copyright © Yüksel Soykan, Erkan Tasdemir, Can Murat Dikmen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, closed forms of the sum formulas \(\sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}\) for generalized balancing numbers are presented. As special cases, we give sum formulas of balancing, modified Lucas-balancing and Lucas-balancing numbers.

Keywords: Balancing numbers; Modified Lucas-balancing numbers; Lucas-balancing numbers; Sum formulas.

1. Introduction

Behera and Panda [1] defined balancing numbers \(n\) as solutions of the diophantine equation

\begin{equation*} 1+2+\cdots +(n-1)=(n+1)+(n+2)+\cdots +(n+r)\,, \end{equation*} for some natural number \(r\), called the balancer corresponding to \(n\). The \( n \)th balancing number is denoted by \(B_{n}\). Moreover, \(C_{n}=\sqrt{ 8B_{n}^{2}+1}\) is called the \(n\)th Lucas-balancing number (see [2]). In fact, \(B_{n}\) and \(C_{n}\) satisfy the second order linear recurrence relations \begin{equation*} B_{n}=6B_{n-1}-B_{n-2},\, B_{0}=0,B_{1}=1, \end{equation*} and \begin{equation*} C_{n}=6C_{n-1}-C_{n-2},\, C_{0}=1,C_{1}=3 \end{equation*} respectively. \((B_{n})_{n\geq 0}\) is the sequence \(A001109\) in the OEIS [3], whereas \((B_{n})_{n\geq 0}\) is the id-number \(A001541\) in OEIS. Balancing and Lucas-balancing sequences has been studied by many authors and more detail can be found in the extensive literature dedicated to these sequences, see for example, [1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27].

A generalized balancing sequence \(\{W_{n}\}_{n\geq 0}=\{W_{n}(W_{0},W_{1})\}_{n\geq 0}\) is defined by the second-order recurrence relation

\begin{equation} W_{n}=6W_{n-1}-W_{n-2}\,, \label{equation:qopweurta} \end{equation}
(1)
with the initial values \(W_{0}=c_{0},W_{1}=c_{1}\) not all being zero.

The sequence \(\{W_{n}\}_{n\geq 0}\) can be extended to negative subscripts by defining

\begin{equation*} W_{-n}=6W_{-(n-1)}-W_{-(n-2)}\,, \end{equation*} for \(n=1,2,3,….\) Therefore, recurrence (1) holds for all integer \(n.\)

The Binet formula of generalized balancing numbers can be written as

\begin{equation*} W_{n}=\dfrac{W_{1}-\beta W_{0}}{\alpha -\beta }\alpha ^{n}-\dfrac{ W_{1}-\alpha W_{0}}{\alpha -\beta }\beta ^{n}\,, \end{equation*} where \(\alpha \) and \(\beta \) are the roots of the quadratic equation \( x^{2}-6x+1=0.\) Moreover \begin{eqnarray*} \alpha &=&3+2\sqrt{2} \,,\\ \beta &=&3-2\sqrt{2}\,. \end{eqnarray*} Note that \begin{eqnarray*} \alpha +\beta &=&6, \\ \alpha \beta &=&1, \\ \alpha -\beta &=&4\sqrt{2}. \end{eqnarray*} Now we define three special cases of the sequence \(\{W_{n}\}\). Balancing sequence \(\{B_{n}\}_{n\geq 0}\), modified Lucas-balancing sequence \( \{H_{n}\}_{n\geq 0}\) and Lucas-balancing sequence \(\{C_{n}\}_{n\geq 0}\) are defined, respectively, by the second-order recurrence relations,
\begin{eqnarray} B_{n} &=&6B_{n-1}-B_{n-2},\,\, B_{0}=0,B_{1}=1, \label{equ:aserdxcyu} \\ \end{eqnarray}
(2)
\begin{eqnarray} H_{n} &=&6H_{n-1}-H_{n-2},\,\, H_{0}=2,H_{1}=6, \label{equ:bncgxhz} \\ \end{eqnarray}
(3)
\begin{eqnarray} C_{n} &=&6C_{n-1}-C_{n-2},\,\, C_{0}=1,C_{1}=3. \label{eqa:vbnmsdxc} \end{eqnarray}
(4)
The sequences \(\{B_{n}\}_{n\geq 0},\) \(\{H_{n}\}_{n\geq 0}\) and \( \{C_{n}\}_{n\geq 0}\) can be extended to negative subscripts by defining, \begin{eqnarray*} B_{-n} &=&6B_{-(n-1)}-B_{-(n-2)}, \\ H_{-n} &=&6H_{-(n-1)}-H_{-(n-2)}, \\ C_{-n} &=&6C_{-(n-1)}-C_{-(n-2)}, \end{eqnarray*} for \(n=1,2,3,…\) respectively. Therefore, recurrences (2)-(4) hold for all integer \(n.\) For more information on generalized balancing numbers, see Soykan [28].

2. The sum formula \(\sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}\)

The following theorem presents sum formulas of generalized balancing numbers;

Theorem 1. Let \(x\) be a real (or complex) number. For all integers \(m\) and \(j,\) for generalized balancing numbers (the case \(r=6,s=-1\)), we have the following sum formulas:

  • (a) If \((x^{2}-xH_{3m}+1)(x^{2}-xH_{m}+ 1)\neq 0\) then
    \begin{equation} \sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}=\frac{\Psi _{1}}{ 32(x^{2}-xH_{3m}+1)(x^{2}-xH_{m}+ 1)} \,,\label{equa:tysgsamzn} \end{equation}
    (5)
    where

    \(\Psi _{1}=32 x^{n+1}(x^{2}-xH_{m}+1)W_{mn-m+j}^{3}+32 x^{n+1}(x-H_{3m})(x^{2}-xH_{m}+1) W_{mn+j}^{3}-32x(x^{2}-xH_{m}+1)W_{j-m}^{3}\)

    \(+32 (x^{2}-xH_{m}+1)W_{j}^{3}+3x^{n}x(x^{2}-xH_{3m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn+m+j}\)

    \(+3x^{n}x(x^{2}-xH_{m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn-m+j}- 3x^{n}x (x^{2}H_{m}-(xH_{m}-1)H_{3m})(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{mn+j}\)

    \(-3x(x^{2}-xH_{3m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{m+j}\)

    \(-3x(x^{2}-xH_{m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j-m}+3x(x^{2}H_{m}-H_{3m}(xH_{m}-1))(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j}. \)

  • (b) If \( (x^{2}-xH_{3m}+1)(x^{2}-xH_{m}+ 1)=u(x-a)(x-b)(x-c)(x-d)=0\) for some \(u,a,b,c,d\in \mathbb{C}\) with \(u\neq 0\) and \(a\neq b\neq c\neq d\), i.e., \(x=a\) or \(x=b\ \)or \(x=c\) or \(x=d,\) then \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}=\frac{\Psi _{2}}{\Lambda _{1}} \,,\end{equation*} where

    \(\Psi _{2}=32 x^{n}(x^{2}(n+3)-x(n+2)H_{m}+n+1) W_{mn-m+j}^{3}+32((n+4) x^{3}-(H_{m}+H_{3m})(n+3)x^{2}+(H_{m}H_{3m}+1)(n+2) x -(n+1)H_{3m}) x^{n}W_{mn+j}^{3}+32(-3x^{2}+2xH_{m}-1)W_{j-m}^{3}\)

    \(+32(2x-H_{m})W_{j}^{3}+3((n+3)x^{2}-x(n+2)H_{3m}+n+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})x^{n}W_{mn+m+j}+3((n+3)x^{2}-x(n+2)H_{m}+n+1)x^{n}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn-m+j}+3(-(n+3)x^{2}H_{m}\)

    \(+x(n+2)H_{3m}H_{m}-(n+1)H_{3m})x^{n}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{mn+j}+3(-3x^{2}+2xH_{3m}-1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{m+j}\)

    \(+3(-3x^{2}+2xH_{m}-1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{j-m}\)

    \(+3(3x^{2}H_{m}-2xH_{m}H_{3m}+H_{3m}) (W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j}\)

    and

    \(\Lambda _{1}=32(4x^{3}-3(H_{m}+H_{3m})x^{2}+2(2+H_{m}H_{3m})x-(H_{m}+H_{3m})).\)

  • (c) If \( (x^{2}-xH_{3m}+1)(x^{2}-xH_{m}+ 1)=u(x-a)^{2}(x-b)(x-c)=0\) for some \(u,a,b,c\in \mathbb{C}\) with \(u\neq 0\) and \(a\neq b\neq c\), i.e., \(x=a\) or \(x=b\) or \(x=c,\) then if \(x=b\) or \(x=c\) then \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}=\frac{\Psi _{3}}{\Lambda _{2}} \,,\end{equation*} where

    \(\Psi _{3}=32 x^{n}(x^{2}(n+3)-x(n+2)H_{m}+n+1) W_{mn-m+j}^{3}+32((n+4) x^{3}-(H_{m}+H_{3m})(n+3)x^{2}+(H_{m}H_{3m}+1)(n+2) x -(n+1)H_{3m}) x^{n}W_{mn+j}^{3}+32(-3x^{2}+2xH_{m}-1)W_{j-m}^{3}\)

    \(+32(2x-H_{m})W_{j}^{3}+3((n+3)x^{2}-x(n+2)H_{3m}+n+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})x^{n}W_{mn+m+j}+3((n+3)x^{2}-x(n+2)H_{m}+n+1)x^{n}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn-m+j}\)

    \(+3(-(n+3)x^{2}H_{m}+x(n+2)H_{3m}H_{m}-(n+1)H_{3m})x^{n}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{mn+j}+3(-3x^{2}+2xH_{3m}-1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{m+j}\)

    \(+3(-3x^{2}+2xH_{m}-1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{j-m}+3(3x^{2}H_{m}-2xH_{m}H_{3m}+H_{3m}) (W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j}\,, \)

    and

    \(\Lambda _{2}=32(4x^{3}-3(H_{m}+H_{3m})x^{2}+2(2+H_{m}H_{3m})x-(H_{m}+H_{3m}))\), and if \(x=a\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}=\frac{\Psi _{4}}{64 (6x^{2}-3x(H_{m}+H_{3m})+2+H_{m}H_{3m})} \,,\end{equation*} where

    \(\Psi _{4}=32 ((n+3)(n+2)x^{2}-x(n+2)(n+1)H_{m}+n(n+1)) x^{n-1}W_{mn-m+j}^{3}+32 ((n+4)(n+3) x^{3} -(n+3)(n+2)(H_{m}+H_{3m})x^{2} \)

    \(+x(n+2)(n+1)(H_{m}H_{3m}+1)-n(n+1)H_{3m})x^{n-1}W_{mn+j}^{3}+64(H_{m}-3x)W_{j-m}^{3}+64W_{j}^{3}\)

    \(+3((n+3)(n+2)x^{2}-x(n+2)(n+1)H_{3m}+n(n+1))(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})x^{n-1} W_{mn+m+j}+3x^{n-1}((n+3)(n+2)x^{2}\)

    \(-x(n+2)(n+1)H_{m}+n(n+1))(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn-m+j}+3x^{n-1}(-x^{2}(n+3)(n+2)H_{m}\)

    \(+x(n+2)(n+1)H_{3m}H_{m}-n(n+1)H_{3m})(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn+j}+6(H_{3m}-3x)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{m+j}\)

    \(+6(H_{m}-3x)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j-m}+6(3x-H_{3m})H_{m}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j}. \)

  • (d) If \( (x^{2}-xH_{3m}+1)(x^{2}-xH_{m}+ 1)=u(x-a)^{3}(x-b)=0\) for some \( u,a,b\in \mathbb{C}\) with \(u\neq 0\) and \(a\neq b\), i.e., \(x=a\) or \(x=b,\) then if \(x=b\) then \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}=\frac{\Psi _{4}}{\Lambda _{3}} \,,\end{equation*} where

    \(\Psi _{5}=32 x^{n}(x^{2}(n+3)-x(n+2)H_{m}+n+1) W_{mn-m+j}^{3}+32((n+4) x^{3}-(H_{m}+H_{3m})(n+3)x^{2}+(H_{m}H_{3m}+1)(n+2) x -(n+1)H_{3m}) x^{n}W_{mn+j}^{3}+32(-3x^{2}+2xH_{m}-1)W_{j-m}^{3}\)

    \(+32(2x-H_{m})W_{j}^{3}+3((n+3)x^{2}-x(n+2)H_{3m}+n+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})x^{n}W_{mn+m+j}+3((n+3)x^{2}-x(n+2)H_{m}+n+1)x^{n}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn-m+j}\)

    \(+3(-(n+3)x^{2}H_{m}+x(n+2)H_{3m}H_{m}-(n+1)H_{3m})x^{n}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{mn+j}+3(-3x^{2}+2xH_{3m}-1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{m+j}\)

    \(+3(-3x^{2}+2xH_{m}-1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{j-m}+3(3x^{2}H_{m}-2xH_{m}H_{3m}+H_{3m}) (W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j}\,, \)

    and

    \(\Lambda _{3}=32(4x^{3}-3(H_{m}+H_{3m})x^{2}+2(2+H_{m}H_{3m})x-(H_{m}+H_{3m}))\,,\)

    and if \(x=a\) then \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}=\frac{\Psi _{6}}{192(4x-H_{m}-H_{3m})} \,,\end{equation*} where

    \(\Psi _{6}=32 (n+1)((n+3)(n+2)x^{2}-xn(n+2)H_{m}+n(n-1))x^{n-2}W_{mn-m+j}^{3}\)

    \(+32((n+3)(n+2)(n+4)x^{3} -(n+3)(n+2)(n+1)(H_{m}+H_{3m}) x^{2}+ n(n+2)(n+1)(H_{m}H_{3m}+1) x-n(n-1)(n+1)H_{3m}) x^{n-2}W_{mn+j}^{3}\)

    \(-192 W_{j-m}^{3}+3(n+1)((n+3)(n+2)x^{2}-xn(n+2)H_{3m}+n(n-1))(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) x^{n-2}W_{mn+m+j}\)

    \(+3(n+1)((n+3)(n+2)x^{2}-xn(n+2)H_{m}+n(n-1))(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})x^{n-2}W_{mn-m+j}+3(n+1)(-x^{2}(n+3)(n+2)H_{m}\)

    \(+xn(n+2)H_{3m}H_{m}-n(n-1)H_{3m})(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) x^{n-2}W_{mn+j}-18(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{m+j}-18(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j-m}+18H_{m}(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j}. \)

  • (e) If \( (x^{2}-xH_{3m}+1)(x^{2}-xH_{m}+ 1)=u(x-a)^{4}=0\) for some \(u,a\in \mathbb{C}\),\(u\neq 0\) i.e., \(x=a\) then \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}=\frac{\Psi _{7}}{768} \,,\end{equation*} where

    \(\Psi _{7}=32 n(n+1)((n+3)(n+2)x^{2}-x(n-1)(n+2)H_{m}+(n-1)(n-2)) x^{n-3}W_{mn-m+j}^{3}\)

    \(+32(n+1) ( x^{3}(n+4)(n+3)(n+2)-x^{2}n(n+3)(n+2)(H_{m}+H_{3m}) + xn(n-1)(n+2)(H_{m}H_{3m}+1) -n(n-1)(n-2)H_{3m})x^{n-3}W_{mn+j}^{3}\)

    \(+3n(n+1)(x^{2}(n+3)(n+2)-x(n+2)(n-1)H_{3m}+(n-1)(n-2))(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) x^{n-3}W_{mn+m+j}\)

    \(+3n(n+1)(x^{2}(n+3)(n+2)-x(n+2)(n-1)H_{m}+(n-1)(n-2)) (W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})x^{n-3}W_{mn-m+j}\)

    \(+3n(n+1)( -x^{2}(n+3)(n+2)H_{m}+x(n+2)(n-1)H_{3m}H_{m}-(n-1)(n-2)H_{3m})(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) x^{n-3}W_{mn+j}. \)

Proof. Take \(r=6,s=-1\) and \(H_{n}=H_{n}\) in Soykan [29, Theorem 2.1.].

Note that (5) can be written in the following form: \begin{equation*} \sum\limits_{k=1}^{n}x^{k}W_{mk+j}^{2}=\frac{\Psi _{8}}{ 32(x^{2}-xH_{3m}+1)(x^{2}-xH_{m}+ 1)} \,,\end{equation*} where

\(\Psi _{8}=32 x^{n+1}(x^{2}-xH_{m}+1)W_{mn-m+j}^{3}+32 x^{n+1}(x-H_{3m})(x^{2}-xH_{m}+1) W_{mn+j}^{3}-32x(x^{2}-xH_{m}+1)W_{j-m}^{3}+32(H_{3m}-x)(x^{2}-xH_{m}+1) x W_{j}^{3}\)

\(+3x^{n}x(x^{2}-xH_{3m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{mn+m+j}+3x^{n}x(x^{2}-xH_{m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{mn-m+j}- \)

\( 3x^{n}x (x^{2}H_{m}-(xH_{m}-1)H_{3m})(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{mn+j}-3x(x^{2}-xH_{3m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{m+j}\)

\(-3x(x^{2}-xH_{m}+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j-m}+3x(x^{2}H_{m}-H_{3m}(xH_{m}-1))(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{j}. \)

As special cases of \(m\) and \(j\) in the last Theorem, we obtain the following proposition;

Proposition 1. For generalized balancing numbers (the case \(r=6,s=-1\)), we have the following sum formulas for \(n\geq 0\):

  • (a) \((m=1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{k}^{3}=\frac{\Psi _{1}}{32\left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x-198)(x^{2}-6x+1)W_{n}^{3}+32x^{n+1}(x^{2}-6x+1)W_{n-1}^{3}+3x^{n+1}(x^{2}-198x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{n+1}\)

    \(-18x^{n+1}(x^{2}-198x+33)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{n}+3x^{n+1}(x^{2}-6x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{n-1}\)

    \(-32(-x(x^{2}+12x+1)W_{1}^{3}+(216x^{3}-1189x^{2}+204x-1)W_{0}^{3}+18x^{2}(x+6)W_{1}^{2}W_{0}-18x^{2}(6x+1)W_{0}^{2}W_{1})\,, \)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x-198)(x^{2}-6x+1)+4x^{3}-612x^{2}+2378x-198)W_{n}^{3}+32x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)W_{n-1}^{3} \)

    \(+3x^{n}(n(x^{2}-198x+1)+3x^{2}-396x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{n+1}-18x^{n}(n(x^{2}-198x+33)+3x^{2}-396x+33)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{n} \)

    \(+3x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{n-1}+32((3x^{2}+24x+1)W_{1}^{3}-2(324x^{2}-1189x+102)W_{0}^{3}-54x(x+4)W_{1}^{2}W_{0}+36x(9x+1)W_{0}^{2}W_{1}). \)

  • (b) \((m=2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{2k}^{3}=\frac{\Psi _{1}}{3 2\left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x-39202)(x^{2}-34x+1)W_{2n}^{3}+32x^{n+1}(x^{2}-34x+1)W_{2n-2}^{3}\)

    \(+3x^{n+1}(x^{2}-39202x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n+2}-102x^{n+1}(x^{2}-39202x+1153)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{2n}\)

    \(+3x^{n+1}(x^{2}-34x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n-2}+32(216x(x^{2}+68x+1)W_{1}^{3}-(42875x^{3}-1329231x^{2}\)

    \(+39237x-1)W_{0}^{3}-108x(35x^{2}+1224x+1)W_{1}^{2}W_{0}+18x(1225x^{2}+2414x+1)W_{0}^{2}W_{1})\,, \)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{2k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))W_{2n}^{3}+32x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)W_{2n-2}^{3} \)

    \(+3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n+2}-102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n} +3x^{n}(n(x^{2}-34x+1)\)

    \(+3x^{2}-68x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n-2}+96(72(3x^{2}+136x+1)W_{1}^{3}-(42875x^{2}-886154x+13079)W_{0}^{3}\)

    \(-36(105x^{2}+2448x+1)W_{1}^{2}W_{0}+6(3675x^{2}+4828x+1)W_{0}^{2}W_{1}). \)

  • (c) \((m=2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{2k+1}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x-39202)(x^{2}-34x+1)W_{2n+1}^{3}+32x^{n+1}(x^{2}-34x+1)W_{2n-1}^{3}\)

    \(+3x^{n+1}(x^{2}-39202x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n+3}\)

    \(-102x^{n+1}\left( (x^{2}-39202x+1153)\right) (W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n+1}\)

    \(+3x^{n+1}(x^{2}-34x+1) (W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n-1}+32((x+1)(x^{2}+3638x+1)W_{1}^{3}\)

    \(-216x(x^{2}+68x+1)W_{0}^{3}-18x(x^{2}+2414x+1225)W_{0}W_{1}^{2}+108x(x^{2}+1224x+35)W_{0}^{2}W_{1}) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{2k+1}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))W_{2n+1}^{3}\)

    \(+32x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)W_{2n-1}^{3}+3x^{n}(n(x^{2}-39\,202x+1)\)

    \(+3x^{2}-78404x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n+3}-102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{2n+1}+3x^{n}(n(x^{2}-34x+1)\)

    \(+3x^{2}-68x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{2n-1}+96((x^{2}+2426x+1213)W_{1}^{3}-72(3x^{2}+136x+1)W_{0}^{3}\)

    \(-6(3x^{2}+4828x+1225)W_{1}^{2}W_{0}+36(3x^{2}+2448x+35)W_{0}^{2}W_{1}). \)

  • (d) \((m=-1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{-k}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x^{2}-6x+1)W_{-n+1}^{3}+32x^{n+1}(x-198)(x^{2}-6x+1)W_{-n}^{3}\)

    \(+3x^{n+1}(x^{2}-6x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-n+1}-18x^{n+1}(x^{2}-198x+33)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{-n}\)

    \(+3x^{n+1}(x^{2}-198x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{-n-1}\)

    \(+32(-x(x^{2}+12x+1)W_{1}^{3}+(x^{2}+12x+1)W_{0}^{3}+18x(6x+1)W_{1}^{2}W_{0}-18x(x+6)W_{0}^{2}W_{1}) \,,\)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{-k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)W_{-n+1}^{3}+32x^{n}(n(x-198)(x^{2}-6x+1)\)

    \(+2(2x^{3}-306x^{2}+1189x-99))W_{-n}^{3}+3x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-n+1} \)

    \(-18x^{n}(n(x^{2}-198x+33)+3x^{2}-396x+33)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-n}+3x^{n}(n(x^{2}-198x+1)\)

    \(+3x^{2}-396x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-n-1}+32(-(3x^{2}+24x+1)W_{1}^{3}\)

    \(+2(x+6)W_{0}^{3}+18(12x+1)W_{1}^{2}W_{0}-36(x+3)W_{0}^{2}W_{1}). \)

  • (e) \((m=-2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{-2k}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x^{2}-34x+1)W_{-2n+2}^{3}+32x^{n+1}(x-39202)(x^{2}-34x+1)W_{-2n}^{3}\)

    \(+3x^{n+1}(x^{2}-34x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-2n+2}-102x^{n+1}(x^{2}-39202x+1153)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{-2n}\)

    \(+3x^{n+1}(x^{2}-39202x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{-2n-2}+32(-216x(x^{2}+68x+1)W_{1}^{3}+(x+1)(x^{2}+3638x+1)W_{0}^{3}\)

    \(+108x(x^{2}+1224x+35)W_{1}^{2}W_{0}-18x(x^{2}+2414x+1225)W_{0}^{2}W_{1}) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{-2k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)W_{-2n+2}^{3}+32x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))W_{-2n}^{3}\)

    \(+3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-2n+2}-102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{-2n}+3x^{n}(n(x^{2}-39202x+1)\)

    \(+3x^{2}-78404x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-2n-2}+96(-72(3x^{2}+136x+1)W_{1}^{3}+(x^{2}+2426x+1213)W_{0}^{3}\)

    \(+36(3x^{2}+2448x+35)W_{1}^{2}W_{0}-6(3x^{2}+4828x+1225)W_{0}^{2}W_{1}). \)

  • (f) \((m=-2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{-2k+1}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x^{2}-34x+1)W_{-2n+3}^{3}+32x^{n+1}(x-39202)(x^{2}-34x+1)W_{-2n+1}^{3}\)

    \(+3x^{n+1}(x^{2}-34x+1)\left( W_{0}^{2}+W_{1}^{2}-6W_{0}W_{1}\right) W_{-2n+3}\)

    \(-102x^{n+1}(x^{2}-39202x+1153)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1}) W_{-2n+1}\)

    \(+3x^{n+1}(x^{2}-39202x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-2n-1}+32(-(42875x^{3}-1329231x^{2}\)

    \(+39237x-1)W_{1}^{3}+216x(x^{2}+68x+1)W_{0}^{3}+18x(1225x^{2}+2414x+1)W_{0}W_{1}^{2}-108x(35x^{2}+1224x+1)W_{0}^{2}W_{1}) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}W_{-2k+1}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)W_{-2n+3}^{3}+32x^{n}(n(x-39202)(x^{2}-34x+1)\)

    \(+4x^{3}-117708x^{2}+2665738x-39202)W_{-2n+1}^{3}+3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-2n+3} \)

    \(-102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-2n+1}+3x^{n}(n(x^{2}-39202x+1)\)

    \(+3x^{2}-78404x+1)(W_{1}^{2}+W_{0}^{2}-6W_{0}W_{1})W_{-2n-1}+96(-(42875x^{2}-886154x+13079)W_{1}^{3} \)

    \(+72(3x^{2}+136x+1)W_{0}^{3}+6(3675x^{2}+4828x+1)W_{1}^{2}W_{0}-36(105x^{2}+2448x+1)W_{0}^{2}W_{1}) . \)

From the above proposition, we have the following corollary which gives sum formulas of balancing numbers (take \(W_{n}=B_{n}\) with \(B_{0}=0,B_{1}=1\));

Corollary 2. For \(n\geq 0,\) balancing numbers have the following properties:

  • (a) \((m=1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{k}^{3}=\frac{\Psi _{1}}{32\left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x-198)(x^{2}-6x+1)B_{n}^{3}+32x^{n+1}(x^{2}-6x+1)B_{n-1}^{3}\)

    \(+3x^{n+1}(x^{2}-198x+1)B_{n+1}-18x^{n+1}(x^{2}-198x+33)B_{n}+3x^{n+1}(x^{2}-6x+1)B_{n-1}+32x(x^{2}+12x+1)\,, \)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x-198)(x^{2}-6x+1)+4x^{3}-612x^{2}+2378x-198)B_{n}^{3}+32x^{n}(n(x^{2}-6x+1)\)

    \(+3x^{2}-12x+1)B_{n-1}^{3}+3x^{n}(n(x^{2}-198x+1)+3x^{2}-396x+1)B_{n+1}-18x^{n}(n(x^{2}-198x+33)\)

    \(+3x^{2}-396x+33)B_{n} +3x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)B_{n-1}+32(3x^{2}+24x+1).\)

  • (b) \((m=2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{2k}^{3}=\frac{\Psi _{1}}{3 2\left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x-39202)(x^{2}-34x+1)B_{2n}^{3}+32x^{n+1}(x^{2}-34x+1)B_{2n-2}^{3}+3x^{n+1}(x^{2}-39202x+1)B_{2n+2}\)

    \(-102x^{n+1}(x^{2}-39202x+1153)B_{2n}+3x^{n+1}(x^{2}-34x+1)B_{2n-2}+6912x\left( x^{2}+68x+1\right)\,, \)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{2k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))B_{2n}^{3}+32x^{n}(n(x^{2}-34x+1)\)

    \(+3x^{2}-68x+1)B_{2n-2}^{3}+3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)B_{2n+2} -102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)B_{2n}+3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)B_{2n-2}+6912(3x^{2}+136x+1). \)

  • (c) \((m=2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{2k+1}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x-39202)(x^{2}-34x+1)B_{2n+1}^{3}+32x^{n+1}(x^{2}-34x+1)B_{2n-1}^{3}+3x^{n+1}(x^{2}-39202x+1)B_{2n+3}\)

    \(-102x^{n+1}\left( (x^{2}-39202x+1153)\right) B_{2n+1}+3x^{n+1}(x^{2}-34x+1) B_{2n-1}+32(x+1)(x^{2}+3638x+1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{2k+1}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))B_{2n+1}^{3}\)

    \(+32x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)B_{2n-1}^{3}+3x^{n}(n(x^{2}-39\,202x+1)+3x^{2}-78404x+1)B_{2n+3}\)

    \(-102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)B_{2n+1}+3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)B_{2n-1}+96(x^{2}+2426x+1213). \)

  • (d) \((m=-1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{-k}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x^{2}-6x+1)B_{-n+1}^{3}+32x^{n+1}(x-198)(x^{2}-6x+1)B_{-n}^{3}+3x^{n+1}(x^{2}-6x+1)B_{-n+1}-18x^{n+1}(x^{2}\)

    \(-198x+33)B_{-n}+3x^{n+1}(x^{2}-198x+1)B_{-n-1}-32x(x^{2}+12x+1) \,,\)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{-k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)B_{-n+1}^{3}+32x^{n}(n(x-198)(x^{2}-6x+1)+2(2x^{3}-306x^{2}+1189x-99))B_{-n}^{3}+3x^{n}(n(x^{2}-6x+1)\)

    \(+3x^{2}-12x+1)B_{-n+1}-18x^{n}(n(x^{2}-198x+33)+3x^{2}-396x+33)B_{-n} +3x^{n}(n(x^{2}-198x+1)\)

    \(+3x^{2}-396x+1)B_{-n-1}-32(3x^{2}+24x+1).\)

  • (e) \((m=-2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{-2k}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x^{2}-34x+1)B_{-2n+2}^{3}+32x^{n+1}(x-39202)(x^{2}-34x+1)B_{-2n}^{3}+3x^{n+1}(x^{2}-34x+1)B_{-2n+2}\)

    \(-102x^{n+1}(x^{2}-39202x+1153)B_{-2n}+3x^{n+1}(x^{2}-39202x+1)B_{-2n-2}-6912x(x^{2}+68x+1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{-2k}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)B_{-2n+2}^{3}+32x^{n}(n(x-39202)(x^{2}-34x+1)\)

    \(+2(2x^{3}-58854x^{2}+1332869x-19601))B_{-2n}^{3}+3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)B_{-2n+2}-102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)B_{-2n}+3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)B_{-2n-2}-6912(3x^{2}+136x+1). \)

  • (f) \((m=-2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{-2k+1}^{3}=\frac{\Psi _{1}}{32 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=32x^{n+1}(x^{2}-34x+1)B_{-2n+3}^{3}+32x^{n+1}(x-39202)(x^{2}-34x+1)B_{-2n+1}^{3}\)

    \(+3x^{n+1}(x^{2}-34x+1)\left( B_{0}^{2}+B_{1}^{2}-6B_{0}B_{1}\right) B_{-2n+3}-102x^{n+1}(x^{2}-39202x+1153)B_{-2n+1}\)

    \(+3x^{n+1}(x^{2}-39202x+1)B_{-2n-1}-32(42875x^{3}-1329231x^{2}+39237x-1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}B_{-2k+1}^{3}=\frac{\Psi _{2}}{128\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=32x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)B_{-2n+3}^{3}+32x^{n}(n(x-39202)(x^{2}-34x+1)+4x^{3}-117708x^{2}+2665738x-39202)B_{-2n+1}^{3}\)

    \(+3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)B_{-2n+3} -102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)B_{-2n+1}+3x^{n}(n(x^{2}-39202x+1)\)

    \(+3x^{2}-78404x+1)B_{-2n-1}-96(42875x^{2}-886154x+13079). \)

Taking \(W_{n}=H_{n}\) with \(H_{0}=2,H_{1}=6\) in the last proposition, we have the following corollary which presents sum formulas of modified Lucas-balancing numbers;

Corollary 3. For \(n\geq 0,\) modified Lucas-balancing numbers have the following properties:

  • (a) \((m=1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{k}^{3}=\frac{\Psi _{1}}{\left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=x^{n+1}(x-198)(x^{2}-6x+1)H_{n}^{3}+x^{n+1}(x^{2}-6x+1)H_{n-1}^{3}-3x^{n+1}(x^{2}-198x+1)H_{n+1}\)

    \(+18x^{n+1}(x^{2}-198x+33)H_{n}-3x^{n+1}(x^{2}-6x+1)H_{n-1}-8(27x^{3}-595x^{2}+177x-1) \,,\)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{k}^{3}=\frac{\Psi _{2}}{4\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=x^{n}(n(x-198)(x^{2}-6x+1)+4x^{3}-612x^{2}+2378x-198)H_{n}^{3}+x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)H_{n-1}^{3}-3x^{n}(n(x^{2}-198x+1)\)

    \(+3x^{2}-396x+1)H_{n+1}+18x^{n}(n(x^{2}-198x+33)+3x^{2}-396x+33)H_{n} -3x^{n}(n(x^{2}-6x+1)\)

    \(+3x^{2}-12x+1)H_{n-1}-8(81x^{2}-1190x+177).\)

  • (b) \((m=2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{2k}^{3}=\frac{\Psi _{1}}{\left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=x^{n+1}(x-39202)(x^{2}-34x+1)H_{2n}^{3}+x^{n+1}(x^{2}-34x+1)H_{2n-2}^{3}-3x^{n+1}(x^{2}-39202x+1)H_{2n+2}+102x^{n+1}(x^{2}-39202x+1153)H_{2n}\)

    \(-3x^{n+1}(x^{2}-34x+1)H_{2n-2}-8(4913x^{3}-666435x^{2}+34323x-1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{2k}^{3}=\frac{\Psi _{2}}{4\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))H_{2n}^{3}+x^{n}(n(x^{2}-34x+1)\)

    \(+3x^{2}-68x+1)H_{2n-2}^{3}-3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)H_{2n+2} +102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)H_{2n}-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)H_{2n-2}-24(4913x^{2}-444290x+11441). \)

  • (c) \((m=2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{2k+1}^{3}=\frac{\Psi _{1}}{ \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=x^{n+1}(x-39202)(x^{2}-34x+1)H_{2n+1}^{3}+x^{n+1}(x^{2}-34x+1)H_{2n-1}^{3}-3x^{n+1}(x^{2}-39202x+1)H_{2n+3}\)

    \(+102x^{n+1}\left( (x^{2}-39202x+1153)\right) H_{2n+1}-3x^{n+1}(x^{2}-34x+1) H_{2n-1}-216(x-1)(x^{2}-3298x+1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{2k+1}^{3}=\frac{\Psi _{2}}{4\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))H_{2n+1}^{3}+x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)H_{2n-1}^{3}\)

    \(-3x^{n}(n(x^{2}-39\,202x+1)+3x^{2}-78404x+1)H_{2n+3}+102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)H_{2n+1}\)

    \(-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)H_{2n-1}-216(3x^{2}-6598x+3299). \)

  • (d) \((m=-1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{-k}^{3}=\frac{\Psi _{1}}{ \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=x^{n+1}(x^{2}-6x+1)H_{-n+1}^{3}+x^{n+1}(x-198)(x^{2}-6x+1)H_{-n}^{3}-3x^{n+1}(x^{2}-6x+1)H_{-n+1}\)

    \(+18x^{n+1}(x^{2}-198x+33)H_{-n}-3x^{n+1}(x^{2}-198x+1) H_{-n-1}-8(27x^{3}-595x^{2}+177x-1) \,,\)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{-k}^{3}=\frac{\Psi _{2}}{4\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)H_{-n+1}^{3}+x^{n}(n(x-198)(x^{2}-6x+1)+2(2x^{3}-306x^{2}+1189x-99))H_{-n}^{3}\)

    \(-3x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)H_{-n+1}+18x^{n}(n(x^{2}-198x+33)+3x^{2}-396x+33)H_{-n} \)

    \(-3x^{n}(n(x^{2}-198x+1)+3x^{2}-396x+1)H_{-n-1}-8(81x^{2}-1190x+177).\)

  • (e) \((m=-2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{-2k}^{3}=\frac{\Psi _{1}}{ \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=x^{n+1}(x^{2}-34x+1)H_{-2n+2}^{3}+x^{n+1}(x-39202)(x^{2}-34x+1)H_{-2n}^{3}-3x^{n+1}(x^{2}-34x+1)H_{-2n+2}+102x^{n+1}(x^{2}-39202x+1153)H_{-2n}\)

    \(-3x^{n+1}(x^{2}-39202x+1)H_{-2n-2}-8(4913x^{3}-666435x^{2}+34323x-1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{-2k}^{3}=\frac{\Psi _{2}}{4\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)H_{-2n+2}^{3}+x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))H_{-2n}^{3}\)

    \(-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)H_{-2n+2}+102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)H_{-2n}\)

    \(-3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)H_{-2n-2}-24(4913x^{2}-444290x+11441). \)

  • (f) \((m=-2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{-2k+1}^{3}=\frac{\Psi _{1}}{\left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=x^{n+1}(x^{2}-34x+1)H_{-2n+3}^{3}+x^{n+1}(x-39202)(x^{2}-34x+1)H_{-2n+1}^{3}\)

    \(-3x^{n+1}(x^{2}-34x+1)H_{-2n+3}+102x^{n+1}(x^{2}-39202x+1153)H_{-2n+1}\)

    \(-3x^{n+1}(x^{2}-39202x+1)H_{-2n-1}-216(35937x^{3}-1329571x^{2}+39235x-1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}H_{-2k+1}^{3}=\frac{\Psi _{2}}{4\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)H_{-2n+3}^{3}+x^{n}(n(x-39202)(x^{2}-34x+1)+4x^{3}-117708x^{2}+2665738x-39202)H_{-2n+1}^{3}\)

    \(-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)H_{-2n+3} +102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)H_{-2n+1}\)

    \(-3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)H_{-2n-1}-216(107811x^{2}-2659142x+39235). \)

From the above proposition, we have the following corollary which gives sum formulas of Lucas-balancing numbers (take \(W_{n}=C_{n}\) with \( C_{0}=1,C_{1}=3 \));

Corollary 4. For \(n\geq 0,\) Lucas-balancing numbers have the following properties:

  • (a) \((m=1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{k}^{3}=\frac{\Psi _{1}}{4\left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=4x^{n+1}(x-198)(x^{2}-6x+1)C_{n}^{3}+4x^{n+1}(x^{2}-6x+1)C_{n-1}^{3}-3x^{n+1}(x^{2}-198x+1)C_{n+1}\)

    \(+18x^{n+1}(x^{2}-198x+33)C_{n}-3x^{n+1}(x^{2}-6x+1)C_{n-1}-4(27x^{3}-595x^{2}+177x-1) \,,\)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{k}^{3}=\frac{\Psi _{2}}{16\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=4x^{n}(n(x-198)(x^{2}-6x+1)+4x^{3}-612x^{2}+2378x-198)C_{n}^{3}+4x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)C_{n-1}^{3}\)

    \(-3x^{n}(n(x^{2}-198x+1)+3x^{2}-396x+1)C_{n+1}+18x^{n}(n(x^{2}-198x+33)+3x^{2}-396x+33)C_{n}-3x^{n}(n(x^{2}-6x+1)\)

    \(+3x^{2}-12x+1)C_{n-1}-4(81x^{2}-1190x+177). \)

  • (b) \((m=2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{2k}^{3}=\frac{\Psi _{1}}{4\left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=4x^{n+1}(x-39202)(x^{2}-34x+1)C_{2n}^{3}+4x^{n+1}(x^{2}-34x+1)C_{2n-2}^{3}-3x^{n+1}(x^{2}-39202x+1)C_{2n+2}\)

    \(+102x^{n+1}(x^{2}-39202x+1153)C_{2n}-3x^{n+1}(x^{2}-34x+1)C_{2n-2}-4(4913x^{3}-666\,435x^{2}+34\,323x-1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{2k}^{3}=\frac{\Psi _{2}}{16\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=4x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))C_{2n}^{3}+4x^{n}(n(x^{2}-34x+1)\)

    \(+3x^{2}-68x+1)C_{2n-2}^{3}-3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)C_{2n+2} \)

    \(+102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)C_{2n}-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)C_{2n-2}-12(4913x^{2}-444290x+11441). \)

  • (c) \((m=2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{2k+1}^{3}=\frac{\Psi _{1}}{4 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=4x^{n+1}(x-39202)(x^{2}-34x+1)C_{2n+1}^{3}+4x^{n+1}(x^{2}-34x+1)C_{2n-1}^{3}-3x^{n+1}(x^{2}-39202x+1)C_{2n+3}\)

    \(+102x^{n+1}\left( (x^{2}-39202x+1153)\right) C_{2n+1}-3x^{n+1}(x^{2}-34x+1)C_{2n-1}-108(x-1)(x^{2}-3298x+1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{2k+1}^{3}=\frac{\Psi _{2}}{16\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=4x^{n}(n(x-39202)(x^{2}-34x+1)+2(2x^{3}-58854x^{2}+1332869x-19601))C_{2n+1}^{3}+4x^{n}(n(x^{2}-34x+1)\)

    \(+3x^{2}-68x+1)C_{2n-1}^{3}-3x^{n}(n(x^{2}-39\,202x+1)+3x^{2}-78404x+1)C_{2n+3}+102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)C_{2n+1}-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)C_{2n-1}-108(3x^{2}-6598x+3299). \)

  • (d) \((m=-1,\) \(j=0)\)

    If \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) \neq 0,\) i.e., \(x\neq 99+70\sqrt{2},\) \(x\neq 99-70\sqrt{2},\) \(x\neq 3+2\sqrt{2},\) \( x\neq 3-2\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{-k}^{3}=\frac{\Psi _{1}}{4 \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=4x^{n+1}(x^{2}-6x+1)C_{-n+1}^{3}+4x^{n+1}(x-198)(x^{2}-6x+1)C_{-n}^{3}-3x^{n+1}(x^{2}-6x+1)C_{-n+1}\)

    \(+18x^{n+1}(x^{2}-198x+33)C_{-n}-3x^{n+1}(x^{2}-198x+1)C_{-n-1}-4(27x^{3}-595x^{2}+177x-1) \,,\)

    and

    if \( \left( x^{2}-6x+1\right) \left( x^{2}-198x+1\right) =0,\) i.e., \(x=99+70\sqrt{2}\) or \(x=99-70\sqrt{2}\) or \(x=3+2\sqrt{2}\) or \(x=3-2 \sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{-k}^{3}=\frac{\Psi _{2}}{16\left( x^{3}-153x^{2}+595x-51\right) } \,,\end{equation*} where

    \(\Psi _{2}=4x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)C_{-n+1}^{3}+4x^{n}(n(x-198)(x^{2}-6x+1)+2(2x^{3}-306x^{2}+1189x-99))C_{-n}^{3}\)

    \(-3x^{n}(n(x^{2}-6x+1)+3x^{2}-12x+1)C_{-n+1}+18x^{n}(n(x^{2}-198x+33)+3x^{2}-396x+33)C_{-n}\)

    \(-3x^{n}(n(x^{2}-198x+1)+3x^{2}-396x+1)C_{-n-1}-4(81x^{2}-1190x+177). \)

  • (e) \((m=-2,\) \(j=0)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{-2k}^{3}=\frac{\Psi _{1}}{4 \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=4x^{n+1}(x^{2}-34x+1)C_{-2n+2}^{3}+4x^{n+1}(x-39202)(x^{2}-34x+1)C_{-2n}^{3}-3x^{n+1}(x^{2}-34x+1)C_{-2n+2}\)

    \(+102x^{n+1}(x^{2}-39202x+1153) C_{-2n}-3x^{n+1}(x^{2}-39202x+1)C_{-2n-2}-4(4913x^{3}-666435x^{2}+34323x-1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{-2k}^{3}=\frac{\Psi _{2}}{16\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=4x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)C_{-2n+2}^{3}+4x^{n}(n(x-39202)(x^{2}-34x+1)\)

    \(+2(2x^{3}-58854x^{2}+1332869x-19601))C_{-2n}^{3}-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)C_{-2n+2}+102x^{n}(n(x^{2}-39202x+1153)\)

    \(+3x^{2}-78404x+1153)C_{-2n}-3x^{n}(n(x^{2}-39202x+1)+3x^{2}-78404x+1)C_{-2n-2}-12(4913x^{2}-444290x+11441). \)

  • (f) \((m=-2,\) \(j=1)\)

    If \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) \neq 0,\) i.e., \(x\neq 19601+13860\sqrt{2},\) \(x\neq 19601-13860\sqrt{2},\) \(x\neq 17+12 \sqrt{2},\) \(x\neq 17-12\sqrt{2},\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{-2k+1}^{3}=\frac{\Psi _{1}}{4\left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) } \,,\end{equation*} where

    \(\Psi _{1}=4x^{n+1}(x^{2}-34x+1)C_{-2n+3}^{3}+4x^{n+1}(x-39202)(x^{2}-34x+1)C_{-2n+1}^{3}-3x^{n+1}(x^{2}-34x+1)C_{-2n+3}+102x^{n+1}(x^{2}-39202x+1153)C_{-2n+1}\)

    \(-3x^{n+1}(x^{2}-39202x+1)C_{-2n-1}-108(35937x^{3}-1329571x^{2}+39235x-1) \,,\)

    and

    if \( \left( x^{2}-34x+1\right) \left( x^{2}-39202x+1\right) =0,\) i.e., \(x=19601+13860\sqrt{2}\) or \(x=19601-13860\sqrt{2}\) or \( x=17+12 \sqrt{2}\) or \(x=17-12\sqrt{2}\) then

    \begin{equation*} \sum\limits_{k=0}^{n}x^{k}C_{-2k+1}^{3}=\frac{\Psi _{2}}{16\left( x^{3}-29427x^{2}+666435x-9809\right) } \,,\end{equation*} where

    \(\Psi _{2}=4x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)C_{-2n+3}^{3}+4x^{n}(n(x-39202)(x^{2}-34x+1)+4x^{3}-117708x^{2}+2665738x-39202)C_{-2n+1}^{3}\)

    \(-3x^{n}(n(x^{2}-34x+1)+3x^{2}-68x+1)C_{-2n+3}+102x^{n}(n(x^{2}-39202x+1153)+3x^{2}-78404x+1153)C_{-2n+1}-3x^{n}(n(x^{2}-39202x+1)\)

    \(+3x^{2}-78404x+1)C_{-2n-1}-108(107811x^{2}-2659142x+39235). \)

Taking \(x=1\) in the last two corollaries we get the following corollary;

Corollary 5. For \(n\geq 0,\) balancing\ numbers, modified Lucas-balancing numbers and Lucas-balancing\ numbers have the following properties:

    • (a) \(\sum\limits_{k=0}^{n}B_{k}^{3}=\frac{1}{6272} (6304B_{n}^{3}-32B_{n-1}^{3}-147B_{n+1}+738B_{n}-3B_{n-1}+112).\)
    • (b) \(\sum\limits_{k=0}^{n}B_{2k}^{3}=\frac{1}{1254400} (1254432B_{2n}^{3}-32B_{2n-2}^{3}-3675B_{2n+2}+121278B_{2n}-3B_{2n-2}+15120). \)
    • (c) \(\sum\limits_{k=0}^{n}B_{2k+1}^{3}= \frac{1}{1254400} (1254432B_{2n+1}^{3}-32B_{2n-1}^{3}-3675B_{2n+3}+ 121278B_{2n+1}-3B_{2n-1}+7280).\)
    • (d) \(\sum\limits_{k=0}^{n}B_{-k}^{3}=\frac{1}{6272} (6304B_{-n}^{3}-32B_{-n+1}^{3}-3B_{-n+1}+738B_{-n}-147B_{-n-1}-112).\)
    • (e) \(\sum\limits_{k=0}^{n}B_{-2k}^{3}=\frac{1}{1254400} (-32B_{-2n+2}^{3}+1254432B_{-2n}^{3}-3B_{-2n+2}+121278B_{-2n}-3675B_{-2n-2}-15120). \)
    • (f) \(\sum\limits_{k=0}^{n}B_{-2k+1}^{3}=\frac{1}{1254400} (-32B_{-2n+3}^{3}+1254432B_{-2n+1}^{3}- 3B_{-2n+3}+121278B_{-2n+1}-3675B_{-2n-1}+1247120).\)
    • (a) \(\sum\limits_{k=0}^{n}H_{k}^{3}=\frac{1}{196} (197H_{n}^{3}-H_{n-1}^{3}+147H_{n+1}-738H_{n}+3H_{n-1}+784).\)
    • (b) \(\sum\limits_{k=0}^{n}H_{2k}^{3}=\frac{1}{39200} (39201H_{2n}^{3}-H_{2n-2}^{3}+3675H_{2n+2}-121278H_{2n}+3H_{2n-2}+156800).\)
    • (c) \(\sum\limits_{k=0}^{n}H_{2k+1}^{3}=\frac{1}{39200} (39201H_{2n+1}^{3}-H_{2n-1}^{3}+3675H_{2n+3}-121278 H_{2n+1}+3H_{2n-1}).\)
    • (d) \(\sum\limits_{k=0}^{n}H_{-k}^{3}=\frac{1}{196} (197H_{-n}^{3}-H_{-n+1}^{3}+3H_{-n+1}-738H_{-n}+147H_{-n-1}+784).\)
    • (e) \(\sum\limits_{k=0}^{n}H_{-2k}^{3}=\frac{1}{39200} (-H_{-2n+2}^{3}+39201H_{-2n}^{3}+3H_{-2n+2}-121278H_{-2n}+3675H_{-2n-2}+156800). \)
    • (f) \(\sum\limits_{k=0}^{n}H_{-2k+1}^{3}=\frac{1}{39200} (-H_{-2n+3}^{3}+39201H_{-2n+1}^{3}+3H_{-2n+3}-121278H_{-2n+1}+3675H_{-2n-1}+8467200). \)
    • (a) \(\sum\limits_{k=0}^{n}C_{k}^{3}=\frac{1}{784} (788C_{n}^{3}-4C_{n-1}^{3}+147C_{n+1}-738C_{n}+3C_{n-1}+392).\)
    • (b) \(\sum\limits_{k=0}^{n}C_{2k}^{3}=\frac{1}{156800} (156804C_{2n}^{3}-4C_{2n-2}^{3}+3675C_{2n+2}-121278C_{2n}+3C_{2n-2}+78400).\)
    • (c) \(\sum\limits_{k=0}^{n}C_{2k+1}^{3}=\frac{1}{156800} (156804C_{2n+1}^{3}-4C_{2n-1}^{3}+3675C_{2n+3}-121278 C_{2n+1}+3C_{2n-1}).\)
    • (d \(\sum\limits_{k=0}^{n}C_{-k}^{3}=\frac{1}{784} (-4C_{-n+1}^{3}+788C_{-n}^{3}+3C_{-n+1}-738C_{-n}+147C_{-n-1}+392).\)
    • (e) \(\sum\limits_{k=0}^{n}C_{-2k}^{3}=\frac{1}{156800} (-4C_{-2n+2}^{3}+156804C_{-2n}^{3}+3C_{-2n+2}-121278C_{-2n}+3675C_{-2n-2}+78400). \)
    • (f) \(\sum\limits_{k=0}^{n}C_{-2k+1}^{3}=\frac{1}{156800} (-4C_{-2n+3}^{3}+156804C_{-2n+1}^{3}+3C_{-2n+3}-121278C_{-2n+1}+3675C_{-2n-1}+4233600). \)

3. Conclusions

Recently, there have been so many studies of the sequences of numbers in the literature and the sequences of numbers were widely used in many research areas, such as architecture, nature, art, physics and engineering. In this work, sum identities were proved. The method used in this paper can be used for the other linear recurrence sequences, too. We have written sum identities in terms of the generalized balancing sequence, and then we have presented the formulas as special cases the corresponding identity for the balancing, modified Lucas-balancing and Lucas-balancing numbers. All the listed identities in the corollaries may be proved by induction, but that method of proof gives no clue about their discovery. We give the proofs to indicate how these identities, in general, were discovered.

Author Contributions:

All authors contributed equally to this work. They all read and approved the last version of the manuscript.

Conflicts of Interest:

The authors declare no conflict of interest.

Data Availability:

No data is required for this research.

Funding Information:

No funding is available for this research.

References:

  1. Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. Fibonacci Quarterly, 37, 98-105. [Google Scholor]
  2. Panda, G. K. (2006). Some Fascinating Properties of Balancing Numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194, 185-189. [Google Scholor]
  3. Sloane, N. J. (2007). The on-line encyclopedia of integer sequences. In Towards Mechanized Mathematical Assistants (pp. 130-130). Springer, Berlin, Heidelberg. [Google Scholor]
  4. Liptai, K., Luca, F., Pintér, Á., & Szalay, L. (2009). Generalized balancing numbers. Indagationes Mathematicae, 20(1), 87-100. [Google Scholor]
  5. Bérczes, A., Liptai, K., & Pink, I. (2010). On generalized balancing sequences. Fibonacci Quarterly, 48(2), 121-128. [Google Scholor]
  6. Bhanotar, S. A., & Kaabar, M. K. (2022). On multiple primitive Pythagorean triplets. Palestine Journal of Mathematics, 11(Special Issue), 1-10. [Google Scholor]
  7. Catarino, P., Campos, H., & Vasco, P. (2015). On some identities for balancing and cobalancing numbers. Analysis and Mathematical Physics 45, 11-24. [Google Scholor]
  8. Davala, R. K., & Panda, G. K. (2015). On sum and ratio formulas for balancing numbers. Journal of the Indian Mathematical Society, 82(1-2), 23-32. [Google Scholor]
  9. Frontczak, R. (2019). Identities for generalized balancing numbers. Notes on Number Theory and Discrete Mathematics, 25(2), 169-180. [Google Scholor]
  10. Kaabar, M. K., & Yenoke, K. (2022). Radio and Radial Radio Numbers of Certain Sunflower Extended Graphs. International Journal of Mathematics and Mathematical Sciences, 2022, Article ID: 9229409. https://doi.org/10.1155/2022/9229409. [Google Scholor]
  11. Keskin, R., & Karaatly, O. (2012). Some new properties of balancing numbers and square triangular numbers. Journal of Integer Sequences, 15(1), 1-13. [Google Scholor]
  12. Kovács, T., Liptai, K., & Olajos, P. (2010). On \((a, b)-\)balancing numbers. Publicationes Mathematicae Debrecen, 77(3-4), 485-498. [Google Scholor]
  13. Liptai, K. (2004). Fibonacci balancing numbers. Fibonacci Quarterly, 42(4), 330-340. [Google Scholor]
  14. Olajos, P. (2010, January). Properties of balancing, cobalancing and generalized balancing numbers. Annales Mathematicae et Informaticae, 37, 125-138.[Google Scholor]
  15. Özkoç, A. (2015). Tridiagonal matrices via k-balancing number. British Journal of Mathematics and Computer Science, 10(4), 1-11. [Google Scholor]
  16. Panda, G. K., Komatsu, T., & Davala, R. K. (2018). Reciprocal sums of sequences involving balancing and lucas-balancing numbers. Mathematical Reports, 20(70), 201-214. [Google Scholor]
  17. Patra, A., & Kaabar, M. K. (2021). Catalan Transform of-Balancing Sequences. International Journal of Mathematics and Mathematical Sciences, 2021, Article ID: 9987314. https://doi.org/10.1155/2021/9987314. [Google Scholor]
  18. Ray, P. K. (2014). On the properties of Lucas-balancing numbers by matrix method. Sigmae, 3(1), 1-6. [Google Scholor]
  19. Ray, P. K. (2014). Balancing sequences of matrices with application to algebra of balancing numbers. Notes on Number Theory and Discrete Mathematics, 20(1), 49-58. [Google Scholor]
  20. Ray, P. K. (2014). Some Congruences for Balancing and Lucas-Balancing Numbers and Their Applications. Integers, 14, A8. [Google Scholor]
  21. Ray, P. K. (2015). Balancing and Lucas-balancing sums by matrix methods. Mathematical Reports, 17(2), 225-233. [Google Scholor]
  22. Ray, P. K., Patel, S., & Mandal, M. K. (2016). Identities for balancing numbers using generating function and some new congruence relations. Notes on Number Theory and Discrete Mathematics, 22(4), 41-48. [Google Scholor]
  23. Ray, P. K., & Sahu, J. (2016). Generating functions for certain balancing and lucas-balancing numbers. Palestine Journal of Mathematics, 5(2), 122-129. [Google Scholor]
  24. Ray, P. K. (2017). Balancing polynomials and their derivatives. Ukrainian Mathematical Journal, 69(4), 646-663. [Google Scholor]
  25. Rayaguru, S. G., & Panda, G. K. (2019). Sum Formulas Involving Powers of Balancing and Lucas-balancing Numbers, Journal of the Indian Mathematical Society, 86(1-2), 137-160. [Google Scholor]
  26. Rayaguru, S. G., & Panda, G. K. (2019). Sum Formulas Involving Powers of Balancing and Lucas-balancing Numbers-II. Notes on Number Theory and Discrete Math, 25(3), 102-110. [Google Scholor]
  27. Yenoke, K., Kaabar, M. K., Al-Shamiri, M. M. A., & Thivyarathi, R. C. (2021). Radial Radio number of hexagonal and its derived networks. International Journal of Mathematics and Mathematical Sciences, 2021, Article ID: 5101021. https://doi.org/10.1155/2021/5101021. [Google Scholor]
  28. Soykan, Y.(2021). A Study on Generalized Balancing Numbers, Asian Journal of Advanced Research and Reports, 15(5), 78-100.[Google Scholor]
  29. Soykan, Y. (2021). Sums of cubes of generalized Fibonacci numbers with indices in arithmetic progression: the sum formulas \(\sum\limits_{k=0}^{n}x^{k}W_{mk+j}^{3}.\) International Journal of Advances in Applied Mathematics and Mechanics, 9(1), 6-41. [Google Scholor]