On some new subclass of bi-univalent functions associated with the Opoola differential operator

Author(s): Timilehin Gideon Shaba1
1Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
Copyright © Timilehin Gideon Shaba. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

By applying Opoola differential operator, in this article, two new subclasses \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\psi,k,\tau)\) and \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\) of bi-univalent functions class \(\mathcal{H}\) defined in \(\bigtriangledown\) are introduced and investigated. The estimates on the coefficients \(|l_2|\) and \(|l_3|\) for functions of the classes are also obtained.

Keywords: Univalent function, bi-univalent function, coefficient bounds, Opoola differential operator.

Let \(\mathcal{J}\) denote the subclass of \(\mathcal{G}\) which is of the form

\begin{equation} \label{main} \Im(z)=z+\sum_{k=2}^{\infty}l_kz^k \end{equation}
(1)
consisting of functionas which are holomorphic and univalent in the unit disk \(\bigtriangledown\). Let \(\Im^{-1}\) be inverse of the function \(\Im(z)\), then we have \[\Im^{-1}(\Im(z))=z\] and \[\Im^{-1}(\Im(b))=b,\quad |b| < r_0(\Im);r_0(\Im)\ge\frac{1}{4}\] where
\begin{equation} \Im^{-1}(\Im(b))=b-l_2b^2+(2l_2^2-l_3)b^3-(5l_2^3-5l_2l_3+l_4)b^4+\cdots . \end{equation}
(2)
A function \(\Im(z)\in \mathcal{G}\) denoted by \(\mathcal{H}\) is said to be bi-univalent in \(\bigtriangledown\) if both \(\Im(z)\) and \(\Im^{-1}(z)\) are univalent in \(\bigtriangleup\) [1]. Subclasses of \(\mathcal{H}\), such as class of bi-convex and starlike functions and bi-strongly convex and starlike function similar to the well known subclasses \(\mathcal{L}^*(\vartheta)\) and \(\mathcal{K}(\vartheta)\) of starlike and convex functions of order \(\vartheta(0< \vartheta< 1)\) respectively [2].

Recently, numerous researchers [1,3,4] obtained the coefficient \(|l_2|\) and \(|l_3|\) of bi-univalent functions for the several subclasses of functions in the class \(\mathcal{H}\). Motivated by the work of Darus and Singh [5], we introduce the subclasses \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\psi,k,\tau)\) and \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\) of the function class \(\mathcal{H}\), which are associated with the Opoola differential operator and to obtain estimates on the coefficients \(|l_2|\) and \(|l_3|\) for functions in these new subclasses of the function class \(\mathcal{H}\) applying the techniques used earlier by Darus and Singh [5], Frasin and Aouf [4] and Srivastava et al., [1].

Lemma 1. [6] Suppose \(u(z)\in \mathcal{P}\) and \(z\in \bigtriangledown\), then \(|w_k|\leq2\) for each \(k\), where \(\mathcal{P}\) is the family of all function \(u\) analytic in \(\bigtriangledown\) for which \(\Re(u(z))>0\), \[u(z)=1+w_1z+w_2z^2+\cdots .\]

Definition 1. A function \(\Im(z)\in \mathcal{G}\) is in the class \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\psi,\tau)\) if the following condition are fulfilled:

\begin{equation} \label{eq1} \left|\arg\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}\right]\right|< \frac{\psi\pi}{2}, \end{equation}
(3)
\begin{equation} \label{eq2} \left|\arg\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}\right]\right|< \frac{\psi\pi}{2} \end{equation}
(4)
where \(0< \psi\leq1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0\) and
\begin{equation} h(b)=b-l_2b^2+(2l_2^2-l_3)b^3-(5l_2^3-5l_2l_3+l_4)b^4+\cdots \end{equation}
(5)
and
\begin{equation} \label{third} D^{m,\mu}_{\tau,\beta}\Im(z)=z+\sum_{k=2}^{\infty} (1+(k+\mu-\beta-1)\tau)^m l_kz^k \end{equation}
(6)
where \(\quad0\leq\mu\leq\beta, \tau\ge0\) and \( m\in \mathbb{N}_0=\{0,1,2,3\cdots\}\) is the generalized Al-oboudi derivative defined by Opoola [7].

Remark 1.

  • 1. \(\mathcal{M}_{\mathcal{H},1}^{\mu,\beta}(0,\psi,\tau)\)=\(\mathcal{M}_{\mathcal{H}}(\psi)\) which Srivastava et al., [1] presented and studied.
  • 2. \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(0,\psi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(\psi)\) which Frasin and Aouf [4] presented and studied.
  • 3. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\psi,1)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\psi)\) which Porwal and Darus [8] presented and studied.
  • 4. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\psi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\psi,\tau)\) which Darus and Singh [5] presented and studied.

2. Coefficient Bounds For The Function Class \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\psi,k,\tau)\)

Theorem 1. Let \(\Im(z)\in \mathcal{G}\) be in the class \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\psi,k,\tau)\), \(0< \psi\leq1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0\) , then

\begin{equation} \label{new} |l_2|\leq\frac{2\psi}{\sqrt{{2\psi[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]-}{\psi(\psi-1)[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}}} \end{equation}
(7)
and
\begin{eqnarray} |l_3|&\leq& \frac{2\psi}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\notag\\&&+\frac{4\psi^2}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{eqnarray}
(8)

Proof. It follows from (3) and (4) that

\begin{equation} \label{mb} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}=(q(z))^\psi, \end{equation}
(9)
and
\begin{equation} \label{mb1} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}=(t(b))^\psi, \end{equation}
(10)
where \(q(z)=1+q_1z+q_2z^2+q_3z^3+\cdots\) and \(t(b)=1+t_1b+t_2b^2+t_3b^3\cdots\) are in \(\mathcal{P}\). Equating the coefficient in (9) and (10), we have
\begin{equation} \label{mb2} [(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=\psi q_1, \end{equation}
(11)
\begin{equation} \label{mb3} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3=\psi q_2+\frac{\psi(\psi-1)}{2}q_1^2, \end{equation}
(12)
\begin{equation} \label{mb4} -[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=\psi t_1, \end{equation}
(13)
\begin{equation} \label{mb5} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2. \end{equation}
(14)
From (11) and (13), we get
\begin{equation} \label{mb6} q_1=-t_1, \end{equation}
(15)
and
\begin{equation} \label{mb7} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=\psi^2 (q_1^2+t_1^2). \end{equation}
(16)
From (12),(14) and (16), we get \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2\\&&-[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_3=\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2 \end{eqnarray*} implies \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2\\&&=[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_3+\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2. \end{eqnarray*} Then from (12), we have \begin{multline*} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=\psi q_2+\frac{\psi(\psi-1)}{2}q_1^2+\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2, \end{multline*} implies \begin{multline*} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=\psi (q_2+t_2)+\frac{\psi(\psi-1)}{2}(q_1^2+t_1^2). \end{multline*} Then from (16), we get \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2\\&&=\psi (q_2+t_2)+\frac{\psi(\psi-1)}{2}\frac{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}{\psi^2}l_2^2, \end{eqnarray*} implies
\begin{align}\label{mb8} l_2^2=\frac{\psi^2(q_2+t_2)}{ {2\psi[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]-}{\psi(\psi-1)[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}}. \end{align}
(17)
Applying Lemma 1 for (17), we get \begin{equation*} |l_2|\leq\frac{2\psi}{\sqrt{ {2\psi[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]-}{\psi(\psi-1)[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}}} \end{equation*} which gives the desired estimate on \(|l_2|\) in (7). Hence in order to find the bound on \(|l_3|\), \begin{eqnarray*} &&[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3-[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}\\&&+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=\psi q_2+\frac{\psi(\psi-1)}{2}q_1^2-[\psi t_2+\frac{\psi(\psi-1)}{2}t_1^2], \end{eqnarray*} implies \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&=[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]2l_2^2+\psi (q_2-t_2)+\frac{\psi(\psi-1)}{2}(q_1^2-t_1^2). \end{eqnarray*} Since \((q_1)^2=(-t_1)^2\Longrightarrow q_1^2=t_1^2\), then we have \begin{eqnarray*} &&2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&=\psi (q_2-t_2)+[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]2l_2^2 \end{eqnarray*} \begin{eqnarray*} l_3&=& \frac{\psi(q_2-t_2)}{2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\\&&+\frac{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}{2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}2l_2^2. \end{eqnarray*} From (16), we have \begin{eqnarray*} l_3&=& \frac{\psi(q_2-t_2)}{2[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\\&&+\frac{\psi^2 (q_1^2+t_1^2)}{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}. \end{eqnarray*} Applying Lemma 1 for coefficient \(q_1,q_2,t_1\) and \(t_2\), we have \begin{eqnarray*} |l_3|&\leq& \frac{2\psi}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}\\&&+\frac{4\psi^2 }{[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}. \end{eqnarray*}

3. Coefficient bounds for the function class \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\)

Definition 2. A function \(\Im(z)\in \mathcal{G}\) is said to be in the class \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\) if the following condition are fulfilled:

\begin{equation} \label{eq3} \Re\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}\right]>\xi, \end{equation}
(18)
\begin{equation} \label{eq4} \Re\left[\frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}\right]>\xi, \end{equation}
(19)
where \(\Im(z)\in \mathcal{H}\), \(0\leq\xi< 1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0,\) and
\begin{equation} h(b)=b-l_2b^2+(2l_2^2-l_3)b^3-(5l_2^3-5l_2l_3+l_4)b^4+\cdots, \end{equation}
(20)
and
\begin{equation} D^{m,\mu}_{\tau,\beta}\Im(z)=z+\sum_{k=2}^{\infty} (1+(k+\mu-\beta-1)\tau)^m l_kz^k, \end{equation}
(21)
where \(\quad0\leq\mu\leq\beta, \tau\ge0\) and \( m\in \mathbb{N}_0=\{0,1,2,3\cdots\}\) is the generalized Al-oboudi derivative defined by Opoola [7].

Remark 2.

  • 1. \(\mathcal{M}_{\mathcal{H},1}^{\mu,\beta}(0,\xi,\tau)\)=\(\mathcal{M}_{\mathcal{H}}(\xi)\) which Srivastava et al., [1] presented and studied.
  • 2. \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(0,\xi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(\xi)\) which Frasin and Aouf [4] presented and studied.
  • 3. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\xi,1)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\xi)\) which Porwal and Darus [8] presented and studied.
  • 4. \(\mathcal{M}_{\mathcal{H},\sigma}^{1,1}(m,\xi,\tau)\)=\(\mathcal{M}_{\mathcal{H},\sigma}(m,\xi,\tau)\) which Darus and Singh [5] presented and studied.

Theorem 2. Let \(\Im(z)\in \mathcal{G}\) be in the class \(\mathcal{M}_\mathcal{H}^{\mu,\beta}(m,\xi,k,\tau)\), \(0\leq\xi< 1\), \(\sigma\ge 1\), \(\tau\ge0\), \(z\in \bigtriangleup\), \(b\in \bigtriangleup\), \(0\leq\mu\leq\beta\), \(m\in \mathcal{N}_0\), then

\begin{equation} \label{tb1} |l_2|\leq \sqrt{\frac{2(1-\xi)}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}}, \end{equation}
(22)
and
\begin{eqnarray}\label{tb2} |l_3|&\leq& \frac{4(1-\xi)^2}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]^2}\notag\\&&+\frac{2(1-\xi)}{[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{eqnarray}
(23)

Proof. From (18) and (19), where \(q(z),t(z)\in \mathcal{P}\),

\begin{equation} \label{tb3} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}\Im(z)+\sigma D^{m+1,\mu}_{\tau,\beta}\Im(z)}{z}=\xi+(1-\xi)q(z), \end{equation}
(24)
and
\begin{equation} \label{tb4} \frac{(1-\sigma)D^{m,\mu}_{\tau,\beta}h(b)+\sigma D^{m+1,\mu}_{\tau,\beta}h(b)}{b}=\xi+(1-\xi)t(b), \end{equation}
(25)
where \(q(z)=1+q_1z+q_2z^2+q_3z^3+\cdots\) and \(t(b)=1+t_1b+t_2b^2+t_3b^3\cdots\). Now on equating the coefficient in (24) and (25), we have
\begin{equation} \label{tb5} [(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=(1-\xi) q_1, \end{equation}
(26)
\begin{equation} \label{tb6} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3=(1-\xi) q_2, \end{equation}
(27)
\begin{equation} \label{tb7} -[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2=(1-\xi) t_1, \end{equation}
(28)
\begin{equation} \label{tb8} [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=(1-\xi) t_2. \end{equation}
(29)
From (26) and (28), we have
\begin{equation} \label{tb88} q_1=-t_1, \end{equation}
(30)
and
\begin{equation} \label{tb9} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2l_2^2=(1-\xi)^2 (q_1^2+t_1^2). \end{equation}
(31)
From (27) and (29), we have
\begin{equation} \label{mb10} 2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]l_2^2=(1-\xi) (q_2+t_2), \end{equation}
(32)
or we have \begin{equation*}\label{mb11} l_2^2=\frac{(1-\xi) (q_2+t_2)}{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]} \end{equation*} implies \begin{equation*} |l_2^2|\leq\frac{2(1-\xi) }{[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]} \end{equation*} which is the bound on \(|l_2|\) as given in (22). Hence in order to find the bound on \(|l_3|\), we subtract (27) and (29) and get \begin{eqnarray*} &&[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&-[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}](2l_2^2-l_3)=(1-\xi) q_2-[(1-\xi) t_2], \end{eqnarray*} implies \begin{eqnarray*} &&2 [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]l_3\\&&=[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]2l_2^2+(1-\xi) (q_2-t_2), \end{eqnarray*} implies \begin{equation*} l_3=l_2^2+\frac{(1-\xi) (q_2-t_2)}{2 [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{equation*} Then from (31), we have \begin{eqnarray*} l_3&=&\frac{(1-\xi)^2 (q_1^2+t_1^2)}{2[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}\notag\\&&+\frac{(1-\xi) (q_2-t_2)}{2 [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}. \end{eqnarray*} Applying Lemma 1 for the coefficient \(q_1,q_2,t_1\) and \(t_2\), we get \begin{eqnarray*} |l_3|&\leq&\frac{4(1-\xi)^2 }{[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}]^2}\notag\\&&+\frac{2(1-\xi) }{ [(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}]}, \end{eqnarray*} which is the bond on \(|l_3|\) in (23).

4. Conclusion

In this present paper, two new subclasses of bi-univalent functions associated with Opoola differential operator \(D^{m,\mu}_{\tau,\beta}\) were introduced and worked on. Furthermore, the coefficient bounds for \(|l_2|\) and \(|l_3|\) of functions in these classes are obtained.

Conflict of Interests

The author declares no conflict of interest.

References:

  1. Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10), 1188-1192. [Google Scholor]
  2. Brannan, D.A., & Taha, T. (1986). On some classes of bi-univalent functions. Babes-Bolyai Math, 31(2), 70-77. [Google Scholor]
  3. Xu, Q.H., & Gui, Y.C., & Srivastava, H.M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218, 11461-11465. [Google Scholor]
  4. Frasin, B.A., & Aouf, M.K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24, 1569-1573. [Google Scholor]
  5. Darus, M., & Singh, S. (2018). On some new classes of bi-univalent functions. Journal of Applied Mathematics, Statistics and Informatics, 14, 19–26. [Google Scholor]
  6. Pommerenke, C.H. (1975). Univalent Functions. Vandendoeck and Rupercht, Gottingen. [Google Scholor]
  7. Opoola, T.O. (2017). On a subclass of univalent function defined by generalized differential operator. International Journal of Mathematical Analysis, 11, 869-876. [Google Scholor]
  8. Porwal, S., & Darus, M. (2013). On a class of bi-univalent functions. Journal of Egyptian Mathematical Society, 21, 190-193. [Google Scholor]