In the present paper, we define a class of non-Bazilevic functions in punctured unit disk and study a differential inequality to obtain certain new criteria for starlikeness of meromorphic functions.
Let \(\Sigma\) be the class of functions of the form
\[f(z)=\frac{1}{z}+\sum_0^\infty a_nz^n,\] which are analytic in the punctured unit disc \( \mathbb E_0=\mathbb E\setminus\{0\},\) where \(\mathbb E = \{z:|z|\alpha,\hspace{1.7cm}(\alpha< 1;z \in \mathbb E).\] The class of such functions is denoted by \(\mathcal {MS}^*(\alpha)\) and the class of meromorphic starlike functions is denoted by \(\mathcal {MS}^*=\mathcal {MS}^*(0)\).In the theory of meromorphic functions, many authors have obtained different sufficient conditions for meromorphically starlike functions. Some of them are stated below:
Kargar et al., [1] proved the following results:
Theorem 1. Assume that \(f(z)\neq 0\) for \(\mathbb E_0.\) If \(f\in\Sigma(p)\) satisfies \[\left|\frac{1}{\sqrt[p]{ f(z)}} \left(\frac{f'(z)}{f(z)}+\right)+p\right| < p\lambda(\beta)|b(z)|, ~z\in\mathbb E_0,\] then \(f\) is a \(p\)-valently meromorphic strongly-starlike of order \(\beta\).
Theorem 2. Assume that \(f(z)\neq 0\) for \(\mathbb E_0.\) If \(f\in\Sigma\) satisfies \[\left|\left(\frac{f(z)}{z^{-\alpha}}\right)^\frac{1}{\alpha-1} \left(\frac{f'(z)}{f(z)}+\frac{\alpha}{z}\right)+1-\alpha\right| < \frac{2}{\sqrt 5}, ~z\in\mathbb E_0,\] then \(f\) is meromorphic starlike function of order \(\alpha\).
Goswami et al., [2] proved the following results:Theorem 3. If \(f(z) \in \Sigma_p,n\) with \(f(z)\neq 0\) for all \(z\in\mathbb E_0\), satisfies the following inequality \[\left|\displaystyle [z^p f(z)]^{\frac{1}{\alpha-p}}\left(\frac{z f'(z)}{f(z)}+\alpha\right)+p-\alpha\right|< \frac{(n+1)(p-\alpha)}{\sqrt{(n+1)^2+1}}, z\in\mathbb E, \] for some real values of \(\alpha~(0\leq\alpha< p)\), then \(f\in\mathcal{MS}_{p,n}^*(\alpha).\)
Theorem 4.If \(f(z) \in \Sigma_p,n\) with \(f(z)\neq 0\) for all \(z\in\mathbb E_0\) satisfies the following inequality \[\left|\frac{ \gamma [z^p f(z)]^\gamma}{z}\left(\frac{z f'(z)}{f(z)}+p\right)\right| \leq\frac{(n+1)}{2\sqrt{(n+1)^2+1}}, z\in\mathbb E, \] for \(\gamma\leq-\displaystyle\frac{1}{p}\), then \(f\in\mathcal{MS}_{p,n}^*\left(p+\displaystyle\frac{1}{\gamma}\right).\)
In [3], Sahoo et al., investigated a new class \(\mathcal{U}_n(\alpha,\lambda,\mu),\) of non-Bazilevic analytic functions by
\[\mathcal{U}_n(\alpha,\lambda,\mu)=\left\{f\in\mathcal {A}_n:\left|(1-\alpha)\left(\frac{z}{f(z)}\right)^\mu+\alpha f'(z)\left(\frac{z}{f(z)}\right)^{\mu+1}-1\right|< \lambda, ~z\in\mathbb E\right\}.\] For different choices of \(\mu\) with \(\alpha=1\), many authors has studied this class which are included in [4,5,6]. In this paper, we define above class of non-Bazilevic functions in punctured unit disk and study a differential inequality to obtain certain new criteria for starlikeness of meromorphic functions.Lemma 1. Let G be a convex function in \(\mathbb E\), with \(G(0)=a\) and let \(\gamma\) be a complex number, with \(\Re(\gamma)>0\). If \(F(z)=a+a_nz^n+a_{n+1}z^{n+1}+\ldots\) , is analytic in \(\mathbb E\) nd \(F\prec G\), then \[\frac{1}{z^\gamma} \int^z_0 F(w)w^{\gamma-1}dw\prec \frac{1}{nz^{\frac{\gamma}{n}}}\int^z_0 G(w)w^{\frac{\gamma}{n}-1}dw .\]
Theorem 5. Let \(\alpha, \beta, \delta\) be real numbers such that \(\displaystyle \alpha0\), \(0\leq\delta< 1\) and let
Proof. Let us define \[\left(\frac{1}{zf(z)}\right)^\beta=u(z),~z\in\mathbb E.\] Differentiate logarithmically, we obtain
Remark 1. Let \(\alpha, \beta, \delta\) be real numbers such that \(\displaystyle \alpha< \frac{2}{\delta-1},\) \(0\leq\delta0\) and if \( f(z)\in\Sigma\) satisfies \[\left|\left(\frac{1}{zf(z)}\right)^\beta \left(\frac{1}{\alpha}+1+\frac{zf'(z)}{f(z)}\right)-\frac{1}{\alpha}\right|\delta, ~z\in\mathbb E.\]
Letting \(\alpha\rightarrow\infty\) in above remark, we get the following result:Theorem 6. Let \(\beta, \delta\) be real numbers such that \(\beta>0, 0\leq\delta< 1\) and let \(f(z)\in\Sigma\) satisfy \[\left|\left(\frac{1}{zf(z)}\right)^\beta \left(1+\frac{zf'(z)}{f(z)}\right)\right|\delta, ~z\in\mathbb E.\]
Corollary 1. Let \(\alpha\) and \(\delta\) be real numbers such that \(\displaystyle \alpha< \frac{2}{\delta-1},\) \(0\leq\delta< 1\) and suppose that \(f\in\Sigma\) satisfies \[\displaystyle \left|\frac{1}{zf(z)} \left(1+\alpha+\alpha\frac{zf'(z)}{f(z)}\right)-1\right|\delta~, z\in\mathbb E,\] i.e., \(f\in\mathcal{MS}^*(\delta),~z\in\mathbb E.\)
Writing \(\delta=0\) in above corollary, we get the following result:Corollary 2. Let \(f\in\Sigma\) satisfy \[\displaystyle\left|\frac{1}{zf(z)} \left(1+\alpha+\alpha\frac{zf'(z)}{f(z)}\right)-1\right|< \frac{(1-\alpha)(2+\alpha)}{2\alpha},~z\in\mathbb E,\] then \(f\in\mathcal{MS}^*,~z\in\mathbb E\).
Setting \(\beta=1\) in Theorem 6, we get the following result:Corollary 3. Let \(\delta\) be a real number such that \( 0\leq\delta< 1\) and let \(f(z)\in\Sigma\) satisfy \[\left|\frac{1}{zf(z)} \left(1+\frac{zf'(z)}{f(z)}\right)\right|\delta, ~z\in\mathbb E.\]
Setting \(\delta=0\) in above corollary, we get the following result:Corollary 4. Let \(f(z)\in\Sigma\) satisfy \[\left|\frac{1}{zf(z)} \left(1+\frac{zf'(z)}{f(z)}\right)\right|< \displaystyle \frac{1}{2}\] then \(f\in\mathcal{MS}^*,~z\in\mathbb E\).