Certain new subclasses of \(m\)-fold symmetric bi-pseudo-starlike functions using \(Q\)-derivative operator

Author(s): Timilehin Gideon Shaba1
1Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
Copyright © Timilehin Gideon Shaba. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with \(q\)-derivative operator; both \(f\) and \(f^{-1}\) are \(m\)-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients \(|\rho_{m+1}|\) and \(|\rho_{2m+1}|\) are found in this study. Also certain special cases are indicated.

Keywords: \(m\)-fold symmetric bi-univalent functions, analytic functions, univalent function.

1. Introduction

Let \(\mathcal{A}\) be the family of holomorphic functions, normalized by the conditions \(f(0)=f'(0)-1=0\) which is of the form

\begin{equation} \label{main} f(z)=z+\rho_2z^2+\rho_3z^3+\cdots \end{equation}
(1)
in the open unit disk \(\varOmega=\{z;z\in \mathbb{C}\;\text{and}\;|z|< 1\}\). We denote by \(\mathcal{G}\) the subclass of functions in \(\mathcal{A} \) which are univalent in \(\varOmega\) (for more details see [1]).

The Keobe-One Quarter Theorem [1] state that the image of \(\varOmega\) under all univalent function \(f\in \mathcal{A}\) contains a disk of radius \(\frac{1}{4}\). Hence all univalent function \(f\in \mathcal{A}\) has an inverse \(f^{-1}\) satisfy \(f^{-1}(f(z))\) and \(f(f^{-1}(\upsilon))=\upsilon\) \((|\upsilon|< r_0(f),\;r_0(f)\ge\frac{1}{4})\), where

\begin{equation} \label{main2} g(\upsilon)=f^{-1}(\upsilon)=\upsilon-\rho_2\upsilon^2+(2\rho_2^2-\rho_3)\upsilon^3-(5\rho_2^3-5\rho_2\rho_3+\rho_4)\upsilon^4+\cdots \end{equation}
(2)
A function \(f\in \mathcal{A}\) denoted by \(\varSigma\) is said to be bi-univalent in \(\varOmega\) if both \(f^{-1}(z)\) ans \(f(z)\) are univalent in \(\varOmega\) (see for details [2,3,4,5,6,7,8,9,10,11]).

A domain \(\varPsi\) is said to be \(m\)-fold symmetric if a rotation of \(\varPsi\) about the origin through an angle \(2\pi/m\) carries \(\varPsi\) on itself. Therefore, a function \(f(z)\) holomorphic in \(\varOmega\) is said to be \(m\)-fold symmetric if

\begin{equation*} f\left(e^{\frac{2\pi i}{m}}z\right) =e^{\frac{2\pi i}{m}}f(z).\end{equation*} A function is said to be \(m\)-fold symmetric if it has the following normalized form
\begin{equation} \label{4} f(z)=z+\sum_{\phi=1}^{\infty}\rho_{m\phi+1}z^{m\phi+1}\qquad(z\in \varOmega,\;\; m\in\mathcal{N}=\{1,2,3,\cdots\}). \end{equation}
(3)
Let \(\mathfrak{S}_m\) the class of \(m\)-fold symmetric univalent functions in \(\varOmega\), that are normalized by (3), in which, the functions in the class \(\mathfrak{S}\) are \(one\)-fold symmetric. Similar to the concept of \(m\)-fold symmetric univalent functions, we introduced the concept of \(m\)-fold symmetric bi-univalent functions which is denoted by \(\varSigma_m\). Each of the function \(f\in \varSigma\) produces \(m\)-fold symmetric bi-univalent function for each integer \(m\in\mathcal{N}\).

The normalized form of \(f(z)\) is given as in (3) and the series expansion for \(f^{-1}(z)\), which has been investigated by Srivastava et al., [12], is given below:

\begin{align} \label{1.4} g(\upsilon)=&f^{-1}(\upsilon)\notag\\=&\upsilon-\rho_{m+1}\upsilon^{m+1}+\left[(m+1)\rho^2_{m-1}-\rho_{2m+1}\right]\upsilon^{2m+1}\notag\\&-\Biggl[\frac{1}{2}(m+1)(3m+2)\rho^3_{m+1}-(3m+2)\rho_{m+1}\rho_{2m+1}+\rho_{3m+1}\Biggr]. \end{align}
(4)
Some of the examples of \(m\)-fold symmetric bi-univalent functions are \[\Biggl\{\frac{z^m}{1-z^m}\Biggr\}^{\frac{1}{m}},\] \[\left[-\log(1-z^{m})\right]^{\frac{1}{m}},\] and \[\Biggl\{\frac{1}{2}\log \left(\frac{1+z^m}{1-z^m}\right)^{\frac{1}{m}}\Biggr\}.\] For more details on \(m\)-fold symmetric analytic bi-univalent functions (see [5,12,13,14,15,16,17]).

Jackson [18,19] introduced the \(q\)-derivative operator \(\mathcal{D}_q\) of a function as follows;

\begin{equation} \label{a2} \mathcal{D}_{q}f(z)=\frac{f(qz)-f(z)}{(q-1)z} \end{equation}
(5)
and \(\mathcal{D}_qf(0)=f'(0)\). In case of \(g(z)=z^{k}\) for \(k\) is a positive integer, the \(q\)-derivative of \(f(z)\) is given by \begin{equation*} \mathcal{D}_{q}z^{k}=\frac{z^{k}-(zq)^{k}}{(q-1)z}=[k]_qz^{k-1}. \end{equation*} As \(q\longrightarrow1^{-}\) and \(k\in \mathcal{N}\), we get
\begin{equation} \label{a3} [k]_q=\frac{1-q^{k}}{1-q}=1+q+\cdots+q^{k}\longrightarrow k, \end{equation}
(6)
where \((z\neq 0,\;q\neq0)\). For more details on the concepts of \(q\)-derivative (see [5,20,21,22,23,24,25,26,27]).

Definition 1. [28] Let \(f(z)\in \mathcal{A}\), \(0\leq\chi< 1\) and \(\sigma\ge 1\) is real. Then \(f(z)\in L_{\sigma}(\chi)\) of \(\sigma\)-pseodu-starlike function of order \(\chi\) in \(\varOmega\) if and only if

\begin{equation} \Re\left(\frac{z[f'(z)]^{\sigma}}{f(z)}\right)>\chi. \end{equation}
(7)
Babalola [28] verified that, all pseodu-starlike function are Bazilevic of type \(\left(1-\frac{1}{\sigma}\right)\), order \(\chi^{\frac{1}{\sigma}}\) and univalent in \(\varOmega\).

Lemma 1. [1] Let the function \(\omega\in \mathcal{P}\) be given by the following series \(\omega(z)=1+\omega_1z+\omega_2z^2+\cdots\quad(z\in \varOmega).\) The sharp estimate given by \(|\omega_n|\leq2\quad(n\in \mathcal{N})\) holds true.

In [29] Girgaonkar et al., introduced a new subclasses of holomorphic and bi-univalent functions as follows:

Definition 2. A function \(f(z)\) given by (1) is said to be in the class \(\mathcal{M}_{\varSigma}(\chi)\;(0< \chi\leq1,(z,\upsilon)\in\varOmega)\) if \( f\in\mathcal{E}\), \(|\arg(f'(z))^{\sigma}|< \frac{\chi\pi}{2} \) and \( |\arg(g'(\upsilon))^{\sigma}|< \frac{\chi\pi}{2}, \) where \(g(\upsilon)\) is given by (2).

Definition 3. A function \(f(z)\) given by (1) is said to be in the class \(\mathcal{M}_{\varSigma}(\psi)\;(0\leq\psi\psi \) and \( \Re[(g'(\upsilon))^{\sigma}]>\psi,\) where \(g(\upsilon)\) is given by (2).

In this current research, we introduced two new subclasses denoted by \(\mathcal{M}^{q,\sigma}_{\varSigma,m}(\chi)\) and \(\mathcal{M}^{q,\sigma}_{\varSigma,m}(\psi)\) of the function class \(\varSigma_m\) and obtain estimates coefficient \(|\rho_{m+1}|\) and \(|\rho_{2m+1}|\) for functions in these two new subclasses.

2. Main 4esults

Definition 4. A function \(f(z)\) given by (3) is said to be in the class \(\mathcal{M}^{q,\sigma}_{\varSigma,m}(\chi)\;(m\in \mathcal{N}, 0< q< 1, \sigma\ge1,0< \chi\leq1,(z,\upsilon)\in\varOmega)\) if

\begin{equation} \label{2.1} f\in\varSigma\quad and \quad |\arg(\mathcal{D}_{q}f(z))^{\sigma}|< \frac{\chi\pi}{2}, \end{equation}
(8)
and
\begin{equation} \label{2.2} |\arg(\mathcal{D}_{q}g(\upsilon))^{\sigma}|< \frac{\chi\pi}{2}, \end{equation}
(9)
where \(g(\upsilon)\) is given by (2).

Remark 1. We have the class \(\lim_{q\longrightarrow1^{-1}}\mathcal{M}^{\sigma}_{\varSigma,1}(\chi)=\mathcal{M}^{\sigma}_{\varSigma}(\chi)\) which was introduced and studied by Girgaonkar et al., [29].

Remark 2. We have the class \(\lim_{q\longrightarrow1^{-1}}\mathcal{M}^{1}_{\varSigma,1}(\chi)=\mathcal{M}_{\varSigma}(\chi)\) which was introduced and studied by Srivastava et al., [11].

Theorem 1. Let \(f(z)\in \mathcal{M}^{q,\sigma}_{\varSigma,m}(\chi)\), \((m\in \mathcal{N}, 0< q< 1, \sigma\ge1,0< \chi\leq1,(z,\upsilon)\in\varOmega)\) be given (3). Then

\begin{equation} |\rho_{m+1}|\leq\frac{2\chi}{\sqrt{(m+1)\sigma\chi[2m+1]_q-(\chi-\sigma)\sigma[m+1]_q^2}}, \end{equation}
(10)
and
\begin{equation} |\rho_{2m+1}|\leq\frac{2\chi}{\sigma[2m+1]_q}+\frac{2(m+1)\chi^2}{\sigma^2[m+1]_q^2}. \end{equation}
(11)

Proof. Using inequalities (1) and (9), we get

\begin{equation} \label{2.5} (\mathcal{D}_{q}f(z))^{\sigma}=[\tau(z)]^{\chi}, \end{equation}
(12)
and
\begin{equation} \label{2.6} (\mathcal{D}_{q}g(\upsilon))^{\sigma}=[\varsigma(\upsilon)]^{\chi} \end{equation}
(13)
respectively, where \(\tau(z)\) and \(\varsigma(\upsilon)\) in \(\mathcal{P}\) are given by the following series
\begin{equation} \label{2.6a} \tau(z)=1+\tau_mz^m+\tau_{2m}z^{2m}+\tau_{3m}z^{3m}+\cdots, \end{equation}
(14)
and
\begin{equation} \label{2.7a} \varsigma(\upsilon)=1+\varsigma_m\upsilon^m+\varsigma_{2m}\upsilon^{2m}+\varsigma_{3m}\upsilon^{3m}+\cdots. \end{equation}
(15)
Clearly, \begin{equation*} [\tau(z)]^{\chi}=1+\chi\tau_{m}z^{m}+\left(\chi\tau_{2m}+\frac{\chi(\chi-1)}{2}\tau_{m}^2\right)z^{2m}+\cdots, \end{equation*} and \begin{equation*} [\varsigma(\upsilon)]^{\chi}=1+\chi\varsigma_{m}\upsilon^{m}+\left(\chi\varsigma_{2m}+\frac{\chi(\chi-1)}{2}\varsigma_{m}^2\right)\upsilon^{2m}+\cdots. \end{equation*} Also \begin{equation*} (\mathcal{D}_{q}f(z))^{\sigma}=1+\sigma[m+1]_q\rho_{m+1}z^{m}+\left(\sigma[2m+1]_q\rho_{2m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\rho_{m+1}^2\right)z^{2m}+\cdots, \end{equation*} and \begin{align*} (\mathcal{D}_{q}g(\upsilon))^{\sigma}=&1-\sigma[m+1]_q\rho_{m+1}\upsilon^{m}-\sigma[2m+1]_q\rho_{2m+1}\upsilon^{2m}\\&+\Biggl(\sigma(m+1)[2m+1]_q\rho_{m+1}^2+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\rho_{m+1}^2\Biggr)\upsilon^{2m}+\cdots \end{align*} Comparing the coefficients in (12) and (13), we have
\begin{align} \label{2.8} &\sigma[m+1]_q\rho_{m+1}=\chi\tau_{m}, \end{align}
(16)
\begin{align} \label{2.9} &\sigma[2m+1]_q\rho_{2m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\rho_{m+1}^2=\chi\tau_{2m}+\frac{\chi(\chi-1)}{2}\tau_{m}^2, \end{align}
(17)
\begin{align} \label{2.10} -&\sigma[m+1]_q\rho_{m+1}=\chi\varsigma_{m}, \end{align}
(18)
\begin{align} \label{2.11} -&\sigma[2m+1]_q\rho_{2m+1}+\Biggl(\sigma(m+1)[2m+1]_q+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\Biggr)\rho_{m+1}^2=\chi\varsigma_{2m}+\frac{\chi(\chi-1)}{2}\varsigma_{m}^2. \end{align}
(19)
From (16) and (18), we obtain
\begin{equation} \label{2.12} \tau_{m}=-\varsigma_{m}, \end{equation}
(20)
and
\begin{equation} \label{2.13} 2\sigma[m+1]_q^2\rho_{m+1}^2=\chi^2(\tau_{m}^2+\varsigma_{m}^2). \end{equation}
(21)
Further from (17), (19) and (21), we obtain that \begin{equation*} \sigma(\sigma-1)\chi[m+1]_q^2\rho_{m+1}^2+(m+1)\sigma\chi[2m+1]_q\rho_{m+1}^2-(\chi-1)\sigma^2[m+1]_q^2\rho_{m+1}^2=\chi^2(\tau_{2m}+\varsigma_{2m}). \end{equation*} Therefore, we have
\begin{equation} \label{2.14} \rho_{m+1}^2=\frac{\chi^2(\tau_{2m}+\varsigma_{2m})}{\sigma[m+1]_q^2(\sigma-\chi)+(m+1)\sigma\chi[2m+1]_q}. \end{equation}
(22)
By applying Lemma 1 for the coefficients \(\tau_{2m}\) and \(\varsigma_{2m}\), then we have \begin{equation*} |\rho_{m+1}|\leq\frac{2\chi}{\sqrt{(m+1)\sigma\chi[2m+1]_q-(\chi-\sigma)\sigma[m+1]_q^2}}. \end{equation*} Also, to find the bound on \(|\rho_{2m+1}|\), using the relation (19) and (17), we obtain
\begin{equation} \label{2.15} 2\sigma[2m+1]_q\rho_{2m+1}-(m+1)\sigma[2m+1]_q\rho_{m+1}^2=\chi(\tau_{2m}-\varsigma_{2m})+\frac{\chi(\chi-1)}{2}(\tau_{m}^2-\varsigma_{m}^2). \end{equation}
(23)
It follows from (20), (21) and (23),
\begin{equation} \rho_{2m+1}=\frac{(m+1)\chi^2\tau_{m}^2}{2\sigma^2[m+1]_q^2}+\frac{\chi(\tau_{2m}-\varsigma_{2m})}{2\sigma[2m+1]_q}. \end{equation}
(24)
Applying Lemma 1 for the coefficients \(\tau_{m},\tau_{2m},\varsigma_{m},\varsigma_{2m}\), then we have \begin{equation*} |\rho_{2m+1}|\leq\frac{2\chi}{\sigma[2m+1]_q}+\frac{2(m+1)\chi^2}{\sigma^2[m+1]_q^2}. \end{equation*} Choosing \(q\longrightarrow1^{-1}\) in Theorem 1, we get the following result:

Corollary 1. Let \(f(z)\in \mathcal{M}^{\sigma}_{\varSigma,m}(\chi)\), \((m\in \mathcal{N}, \sigma\ge1,0< \chi\leq1,(z,\upsilon)\in\varOmega)\) be given (3). Then

\begin{equation} |\rho_{m+1}|\leq\frac{2\chi}{\sqrt{(m+1)[\sigma\chi m+\sigma^2m+\sigma^2]}}, \end{equation}
(25)
and
\begin{equation} |\rho_{2m+1}|\leq\frac{2\chi}{\sigma(2m+1)}+\frac{2\chi^2}{\sigma^2(m+1)}. \end{equation}
(26)
Choosing \(m=1\) (0ne-fold case) in Theorem 1, we get the following result:

Corollary 2. Let \(f(z)\in \mathcal{M}^{q,\sigma}_{\varSigma}(\chi)\), \((0< q< 1, \sigma\ge1,0< \chi\leq1,(z,\upsilon)\in\varOmega)\) be given (1). Then

\begin{equation} |\rho_{2}|\leq\frac{2\chi}{\sqrt{2\sigma\chi[3]_q-(\chi-\sigma)\sigma[2]_q^2}}, \end{equation}
(27)
and
\begin{equation} |\rho_{3}|\leq\frac{2\chi}{\sigma[3]_q}+\frac{4\chi^2}{\sigma^2[2]_q^2}, \end{equation}
(28)
Choosing \(q\longrightarrow1^{-1}\) in Corollary 2, we get the following result:

Corollary 3. [29] Let \(f(z)\in \mathcal{M}^{\sigma}_{\varSigma}(\chi)\), \(( \sigma\ge1,0< \chi\leq1,(z,\upsilon)\in\varOmega)\) be given (1). Then

\begin{equation} |\rho_{2}|\leq\frac{2\chi}{\sqrt{2\sigma(2\sigma+\chi)}}, \end{equation}
(29)
and
\begin{equation} |\rho_{3}|\leq\frac{\chi(2\sigma+3\chi)}{3\sigma^2}. \end{equation}
(30)

Remark 3. For one-fold case, we have \(\lim_{q\longrightarrow1^{-1}}\mathcal{M}^{q,1}_{\varSigma,1}(\chi)=\mathcal{M}_{\varSigma}(\chi)\), and we can get the results of Srivastava et al., [11].

Definition 5. A function \(f(z)\) given by (3) is said to be in the class \(\mathcal{M}^{q,\sigma}_{\varSigma,m}(\psi)\;(m\in \mathcal{N}, 0< q< 1, \sigma\ge1,0\leq\psi< 1,(z,\upsilon)\in\varOmega)\) if

\begin{equation} \label{3.1} f\in\varSigma\quad and \quad \Re[(\mathcal{D}_{q}f(z))^{\sigma}]>\psi, \end{equation}
(31)
and
\begin{equation} \label{3.2} \Re[(\mathcal{D}_{q}g(\upsilon))^{\sigma}]>\psi, \end{equation}
(32)
where \(g(\upsilon)\) is given by (2).

Remark 4. We have the class \(\lim_{q\longrightarrow1^{-1}}\mathcal{M}^{\sigma}_{\varSigma,1}(\psi)=\mathcal{M}^{\sigma}_{\varSigma}(\chi)\) which was introduced and studied by Girgaonkar et al., [29].

Remark 5. We have the class \(\lim_{q\longrightarrow1^{-1}}\mathcal{M}^{1}_{\varSigma,1}(\psi)=\mathcal{M}_{\varSigma}(\chi)\) which was introduced and studied by Srivastava et al., [11].

Theorem 2. Let \(f(z)\in \mathcal{M}^{q,\sigma}_{\varSigma,m}(\psi)\), \((m\in \mathcal{N}, 0< q< 1, \sigma\ge1,0\leq\psi< 1,(z,\upsilon)\in\varOmega)\) be given (3). Then

\begin{equation} |\rho_{m+1}|\leq\min\Biggl\{\frac{2(1-\psi)}{\sigma[m+1]_q},2\sqrt{\frac{1-\psi}{\sigma(\sigma-1)[m+1]_q^2+(m+1)\sigma[2m+1]_q}}\Biggr\}, \end{equation}
(33)
and
\begin{equation} |\rho_{2m+1}|\leq\frac{2(m+1)(1-\psi)}{\sigma(\sigma-1)[m+1]_q^2+(m+1)\sigma[2m+1]_q}+\frac{2(1-\psi)}{\sigma[2m+1]_q}. \end{equation}
(34)

Proof. Using inequalities (31) and (32), we get

\begin{equation} \label{3.5} (\mathcal{D}_{q}f(z))^{\sigma}=\psi+(1-\psi)\tau(z), \end{equation}
(35)
and
\begin{equation} \label{3.5a} (\mathcal{D}_{q}g(\upsilon))^{\sigma}=\psi+(1-\psi)\varsigma(\upsilon), \end{equation}
(36)
here \(\tau(z)\) and \(\varsigma(\upsilon)\) in \(\mathcal{P}\) are given by the following series \begin{equation*} \tau(z)=1+\tau_mz^m+\tau_{2m}z^{2m}+\tau_{3m}z^{3m}+\cdots, \end{equation*} and \begin{equation*} \varsigma(\upsilon)=1+\varsigma_m\upsilon^m+\varsigma_{2m}\upsilon^{2m}+\varsigma_{3m}\upsilon^{3m}+\cdots. \end{equation*} Clearly, \begin{equation*} \psi+(1-\psi)\tau(z)=1+(1-\psi)\tau_{m}z^{m}+(1-\psi)\tau_{2m}z^{2m}+\cdots, \end{equation*} and \begin{equation*} \psi+(1-\psi)\varsigma(\upsilon)=1+(1-\psi)\varsigma_{m}\upsilon^{m}+(1-\psi)\varsigma_{2m}\upsilon^{2m}+\cdots. \end{equation*} Also \begin{equation*} (\mathcal{D}_{q}f(z))^{\sigma}=1+\sigma[m+1]_q\rho_{m+1}z^{m}+\left(\sigma[2m+1]_q\rho_{2m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\rho_{m+1}^2\right)z^{2m}+\cdots, \end{equation*} and \begin{align*} (\mathcal{D}_{q}g(\upsilon))^{\sigma}=&1-\sigma[m+1]_q\rho_{m+1}\upsilon^{m}-\sigma[2m+1]_q\rho_{2m+1}\upsilon^{2m}\\&+\Biggl(\sigma(m+1)[2m+1]_q\rho_{m+1}^2+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\rho_{m+1}^2\Biggr)\upsilon^{2m}+\cdots. \end{align*} Now comparing the coefficients in (35) and (36), we get
\begin{align} \label{3.6} &\sigma[m+1]_q\rho_{m+1}=(1-\psi)\tau_{m},\\ \end{align}
(37)
\begin{align} \label{3.7} &\sigma[2m+1]_q\rho_{2m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\rho_{m+1}^2=(1-\psi)\tau_{2m},\\ \end{align}
(38)
\begin{align} \label{3.8} -&\sigma[m+1]_q\rho_{m+1}=(1-\psi)\varsigma_{m},\\ \end{align}
(39)
\begin{align} \label{3.9} -&\sigma[2m+1]_q\rho_{2m+1}+\Biggl(\sigma(m+1)[2m+1]_q+\frac{\sigma(\sigma-1)}{2}[m+1]^2_q\Biggr)\rho_{m+1}^2=(1-\psi)\varsigma_{2m}. \end{align}
(40)
From (37) and (39), we obtain
\begin{equation} \label{3.10} \tau_{m}=-\varsigma_{m}, \end{equation}
(41)
and
\begin{equation} \label{3.11} 2\sigma[m+1]_q^2\rho_{m+1}^2=(1-\psi)^2(\tau_{m}^2+\varsigma_{m}^2). \end{equation}
(42)
Also, from (38) and (40), we get
\begin{equation} \label{3.12} \sigma(\sigma-1)\chi[m+1]_q^2\rho_{m+1}^2+(m+1)\sigma[2m+1]_q\rho_{m+1}^2=(1-\psi)(\tau_{2m}+\varsigma_{2m}). \end{equation}
(43)
Applying the Lemma 1 for the coefficients \(\tau_{m},\tau_{2m},\varsigma_{m},\varsigma_{2m}\), we find that \begin{equation*} |\rho_{m+1}|\leq2\sqrt{\frac{(1-\psi)}{\sigma(\sigma-1)[m+1]_q^2+(m+1)\sigma[2m+1]_q}}. \end{equation*} Also, to find the bound on \(|\rho_{2m+1}|\), using the relation (40) and (38), we obtain
\begin{equation} -(m+1)\sigma[2m+1]_q\rho_{m+1}^2+ 2\sigma[2m+1]_q\rho_{2m+1}=(1-\psi)(\tau_{2m}-\varsigma_{2m}), \end{equation}
(44)
or equivalently
\begin{equation} \label{3.13} \rho_{2m+1}=\frac{(1-\psi)(\tau_{2m}-\varsigma_{2m})}{2\sigma[2m+1]_q}+\frac{(m+1)}{2}\rho_{m+1}^2. \end{equation}
(45)
By substituting the value of \(\rho_{m+1}^2\) from (42), we have
\begin{equation} \rho_{2m+1}=\frac{(1-\psi)(\tau_{2m}-\varsigma_{2m})}{2\sigma[2m+1]_q}+\frac{(m+1)(1-\psi)^2(\tau_{m}^2+\varsigma_{m}^2)}{4\sigma^2[m+1]_q^2}. \end{equation}
(46)
Applying the Lemma 1 for the coefficients \(\tau_{m},\tau_{2m},\varsigma_{m},\varsigma_{2m}\), we get \begin{equation*} |\rho_{2m+1}|\leq\frac{2(1-\psi)}{\sigma[2m+1]_q}+\frac{2(m+1)(1-\psi)^2}{2\sigma^2[m+1]_q^2}. \end{equation*} Also, by using (43) and (45), and applying Lemma 1 we obtain \begin{equation*} |\rho_{2m+1}|\leq\frac{2(m+1)(1-\psi)}{\sigma(\sigma-1)[m+1]_q^2+(m+1)\sigma[2m+1]_q}+\frac{2(1-\psi)}{\sigma[2m+1]_q}. \end{equation*} This complete the proof.

Choosing \(q\longrightarrow1^{-1}\) in Theorem 2, we get the following result:

Corollary 4. Let \(f(z)\in \mathcal{M}^{\sigma}_{\varSigma,m}(\psi)\), \((m\in \mathcal{N}, \sigma\ge1,0\leq\psi< 1,(z,\upsilon)\in\varOmega)\) be given (3). Then \begin{equation*} |\rho_{m+1}|\leq\left \{ \begin{array}{cc} 2\sqrt{\frac{(1-\psi)}{\sigma(\sigma-1)[m+1]^2+(m+1)\sigma[2m+1]}} & 0\leq\psi\leq\frac{m}{1+2m},\\ \frac{2(1-\psi)}{\sigma[m+1]} & \frac{m}{1+2m}\leq\psi< 1, \end{array} \right. \end{equation*} and \begin{equation*} |\rho_{2m+1}|\leq\frac{2(m+1)(1-\psi)}{\sigma(\sigma-1)[m+1]^2+(m+1)\sigma[2m+1]}+\frac{2(1-\psi)}{\sigma[2m+1]}. \end{equation*} For one fold case, Corollary 4, yields the following Corollary:

Corollary 5. Let \(f(z)\in \mathcal{M}^{\sigma}_{\varSigma}(\psi)\), \(( \sigma\ge1,0\leq\psi< 1,(z,\upsilon)\in\varOmega)\) be given (1). Then \begin{equation*} |\rho_{2}|\leq\left \{ \begin{array}{cc} \sqrt{\frac{2(1-\psi)}{\sigma(2\sigma+1)}} & 0\leq\psi\leq\frac{1}{3},\\ \frac{(1-\psi)}{\sigma} & \frac{1}{3}\leq\psi< 1, \end{array} \right. \end{equation*} and \begin{equation*} |\rho_{3}|\leq\frac{(1-\psi)(2\sigma-3\psi+3)}{3\sigma^2}. \end{equation*}

Remark 6. Corollary 5 gives above is the improvement of the estimates for coefficients on \(|\rho_{2}|\) and \(|\rho_{3}|\) investigated by Girgaonkar et al., [29].

Corollary 6. [29] Let \(f(z)\in \mathcal{M}^{\sigma}_{\varSigma}(\psi)\), \(( \sigma\ge1,0\leq\psi< 1,(z,\upsilon)\in\varOmega)\) be given (1). Then \begin{equation*} |\rho_{2}|\leq\sqrt{\frac{2(1-\psi)}{\sigma(2\sigma+1)}}, \end{equation*} and \begin{equation*} |\rho_{3}|\leq\frac{(1-\psi)(2\sigma-3\psi+3)}{3\sigma^2}. \end{equation*} Taking \(\sigma=1\) in Corollary 7, we get the following result:

Corollary 7. [11] Let \(f(z)\in \mathcal{M}^{\sigma}_{\varSigma}(\psi)\), \(( \sigma\ge1,0\leq\psi< 1,(z,\upsilon)\in\varOmega)\) be given (1). Then \begin{equation*} |\rho_{2}|\leq\sqrt{\frac{2(1-\psi)}{3}}, \end{equation*} and \begin{equation*} |\rho_{3}|\leq\frac{(1-\psi)(5-3\psi)}{3}. \end{equation*}

3. Conclusion

In this present paper, two new subclasses indicated by \(\mathcal{M}^{q,\sigma}_{\varSigma,m}(\chi)\) and \(\mathcal{M}^{q,\sigma}_{\varSigma,m}(\psi)\) of function class of \(\mathcal{E}_m\) was obtained and worked on. Also, the estimates coefficients for \(|\rho_{m+1}|\) and \(|\rho_{2m+1}|\) of functions in these classes are determined.

Conflicts of Interest

The author declares no conflict of interest.

References:

  1. Duren, P. L. (2001). Univalent Functions (Vol. 259). Springer, New York, NY, USA. [Google Scholor]
  2. Brannan, D. A., & Taha, T. S. (1988). On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications (pp. 53-60). Pergamon. [Google Scholor]
  3. Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24(9), 1569-1573. [Google Scholor]
  4. Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18(1), 63-68. [Google Scholor]
  5. Sakar, F. M.,& Güney, M. O. (2018). Coefficient estimates for certain subclasses of \(m\)-mold symmetric bi-univalent functions defined by the \(q\)-derivative operator. Konuralp Journal of Mathematics, 6(2), 279-285. [Google Scholor]
  6. Patil, A. B., & Naik, U. H. (2018). Bounds on initial coefficients for a new subclass of bi-univalent functions. New Trends in Mathematical Sciences, 6(1), 85-90. [Google Scholor]
  7. Shaba, T.G., Ibrahim, A. A., & Jimoh, A. A. (2020). On a new subclass of bi-pseudo-starlike functions defined by frasin differential operator. Advances in Mathematics: Scientific Journal, 9(7) (2020), 4829-4841. [Google Scholor]
  8. Shaba, T.G. (2020). On some new subclass of bi-univalent functions associated with the Opoola differential operator. Open Journal of Mathematical Analysis, 4(2), 74-79. [Google Scholor]
  9. Shaba, T. G. (2020). Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator. Turkish Journal of Inequalities,4(2), 50-58.[Google Scholor]
  10. Shaba, T. G. (2020). Certain new subclasses of analytic and bi-univalent functions using salagean operator. Asia Pacific Journal of Mathematics, 7(29), 7-29.[Google Scholor]
  11. Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10), 1188-1192. [Google Scholor]
  12. Srivastava, H. M., Sivasubramanian, S., & Sivakumar, R. (2014). Initial coefficient bounds for a subclass of \(m\)-fold symmetric bi-univalent functions. Tbilisi Mathematical Journal, 7(2), 1-10. [Google Scholor]
  13. Akgül, A., & Campus, U. (2017). On the coefficient estimates of analytic and bi-univalent \(m\)-fold symmetric functions. Mathematica Aeterna, 7(3), 253-260.[Google Scholor]
  14. Altinkaya, S., & Yalçin, S. (2018). On some subclasses of m-fold symmetric bi-univalent functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 29-36. [Google Scholor]
  15. Bulut, S. (2016). Coefficient estimates for general subclasses of \(m\)-fold symmetric analytic bi-univalent functions. Turkish Journal of Mathematics, 40(6), 1386-1397. [Google Scholor]
  16. Hamidi, S. G., & Jahangiri, J. M. (2014). Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. International Journal of Mathematics, 25(07), 1450064. [Google Scholor]
  17. Eker, S. S. (2016). Coefficient bounds for subclasses of \(m\)-fold symmetric bi-univalent functions. Turkish Journal of Mathematics, 40(3), 641-646. [Google Scholor]
  18. Jackson, D. O., Fukuda, T., Dunn, O., & Majors, E. (1910). On q-definite integrals. Quarterly Journal of Pure and Applied Mathematics, 41, 193-203. [Google Scholor]
  19. Jackson, F. H. (1909). XI.-on \(q\)-functions and a certain difference operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 46(2), 253-281. [Google Scholor]
  20. Akgül, A. (2018, January). Finding initial coefficients for a class of bi-univalent functions given by q-derivative. In AIP Conference Proceedings (Vol. 1926, No. 1, p. 020001). AIP Publishing LLC. [Google Scholor]
  21. Aldweby, H., & Darus, M. (2013). A subclass of harmonic univalent functions associated with \(q\)-analogue of Dziok-Srivastava operator. ISRN Mathematical Analysis, 2013 , Article ID 382312. [Google Scholor]
  22. Aldweby, H., & Darus, M. (2017). Coefficient estimates for initial taylor-maclaurin coefficients for a subclass of analytic and bi-univalent functions associated with q-derivative operator. Recent Trends in Pure and Applied Mathematics, 2017, 109-117 [Google Scholor]
  23. Aral, A., Gupta, V., & Agarwal, R. P. (2013). Applications of q-calculus in operator theory (p. 262). New York: Springer. [Google Scholor]
  24. Bulut, S. (2017). Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 108-114. [Google Scholor]
  25. Mohammed, A., & Darus, M. (2013). A generalized operator involving the \(q\)-hypergeometric function. Matematicki Vesnik, 65(254), 454-465. [Google Scholor]
  26. Seoudy, T. M., & Aouf, M. K. (2014). Convolution properties for certain classes of analytic functions defined by \(q\)-derivative operator, Abstract and Applied Analysis, 2014, Article ID 846719. [Google Scholor]
  27. Seoudy, T. M., & Aouf, M. K. (2016). Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. Journal of Mathematical Inequalities, 10(1), 135-145. [Google Scholor]
  28. Babalola, K.O.(2013). On \(\lambda\)-pseudo-starlike function. Journal of Classical Analysis, 3, 137-147. [Google Scholor]
  29. Girgaonkar, V. B., Joshi, S. B., & Yadav, P. P. (2017). Certain special subclasses of analytic function associated with bi-univalent functions. Palestine Journal of Mathematics, 6(2), 617-623. [Google Scholor]