This article considers the limit cycles of a class of Kukles polynomial differential systems of the form Eq. (5). We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a linear center \(\dot{x}=y, \dot{y}=-x,\) by using the averaging theory of first and second order.
The study of limit cycles, which are isolated periodic orbits in the set of solutions of differential equations, is one of the main problems in the theory of differential equations. It is done by checking their existence, number, and stability. Many mathematicians, physicists, chemists, biologists, and others were interested in knowing and discovering those properties related to the limit cycles. The origin or the motivation of limit cycles emerged from the second part of the \(16^{th}\) Hilbert problem [1], which involves finding the maximum number of limit cycles of polynomial vector fields with fixed degrees.
There are several methods exist to study the number of limit cycles that bifurcate from the periodic orbits such as the abelian integral method [2], the integrating factor [3], the Poincar\'{e} return map [4], Poincar\'{e}-Melnikov integral method [5] and averaging theory [6, 7]. The study of limit cycles for differential equations or planar differential systems by applying the averaging method has been considered by several authors see, for instance, [8, 9, 10, 11].
Here we consider a particular case of the \(16^{th}\) Hilbert problem to study the upper bound of the generalized polynomial Kukles system,In [9], Boulfoul et al., used the averaging theory to study the maximum number of limit cycles of a class of generalized polynomial Kukles differential system of the form
Theorem 1. For \(\left\vert {\varepsilon}\right\vert \) sufficiently small, the maximum number of limit cycles of the polynomial Kukles differential system 5 which can bifurcate from the periodic orbits of the linear center \(\dot{x}=y, \dot{y}=-x\),
Theorem 2. Consider the differential system
Lemma 1. Let \(A_{i,j}\left( \theta \right) =\cos ^{i}\theta \sin ^{j}\theta \) and \( \theta\xi _{i,j}\left( \theta \right) =\int_{0}^{\theta }A_{i,j}(s)ds,\) where \begin{eqnarray*} \int_{0}^{2\pi }A_{i,j}(\theta )d\theta &=&\left\{ \begin{array}{c} 0, \;\;\; if \;\;\; i\text{ is}\text{ odd}\text{ or}\; j \text{ is}\text{ odd}, \\ 2\pi\xi _{i,j}\left( 2\pi \right), \;\;\; if\;\; i\text{ }and\text{ }j \text{ }are\text{ }even, \end{array} \right. \\ && \end{eqnarray*} and \begin{eqnarray*} \xi_{2i,2j+4}(2\pi ) &=&\frac{2j+3}{2i+2j+4}\xi_{2i,2j+2}(2\pi ). \end{eqnarray*}
Using Lemma 1, we obtain the integral of the function \(F_{10}(r)\)Lemma 2. The integral \(\Upsilon _{1}(r)\) is given by the following
Proof. By using the integrals in Appendix, we get \begin{equation*} (a_{1})\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \(.\) \begin{equation*} (b_{1})\qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{ n_{1}}{2}\right] }a_{2s}r^{2s+2p}\left( \tilde{\beta}_{s,p,0}+ \sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}\sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{1}\right)\qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{% n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}% _{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}% \right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right)d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }\sum_{s=1}^{\mu }\frac{(2i+2p+1)}{2}a_{2i+1}d_{2s-2}\sum_{l=1}^{s+p+1}\delta _{s,p,l}D_{i,p,l}r^{2i+2s+4p+1}. \end{equation*} We observe that the sum of the integrals \(\left( a_{1}\right)-\left( g_{1}\right)\) is the polynomial (15). This ends the proof of Lemma (2).
Lemma 3. The integral \(\Upsilon _{2}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}% }{2}\right] }a_{2s}r^{2s+2p}\left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}% \tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{2}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}% \right] }b_{2s+1}r^{2s+2p+2}\sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }(i+p)a_{2i}b_{2s+1}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}C_{i,p,l}r^{2i+2s+4p+1}, \end{equation*} \begin{equation*} \left( d_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}% _{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}% _{s,p,l}\sin (2l+1)\theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }(i+p)a_{2i}d_{2s+1}\sum_{l=0}^{s+p+2}\bar{\gamma} _{s,p,l}C_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( g_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{2}\right)-\left( g_{2}\right)\) is the polynomial (16). This ends the proof of Lemma (3).
Lemma 4. The integral \(\Upsilon _{3}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( b_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1} }{2}\right] }a_{2s}r^{2s+2p}\left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1} \tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta = \end{equation*} \begin{eqnarray*} && \\ &&\sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{1}% }{2}\right] }(i+p+1)b_{2i+1}a_{2s}\sum_{l=1}^{s+p+1}\tilde{\beta}% _{s,p,l}E_{i,p,l}r^{2i+2s+4p+1}, \end{eqnarray*} \begin{equation*} \left( c_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{ n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}\sum_{l=0}^{s+p+1}\bar{\beta} _{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2} \right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}% _{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{2}-1}{2 }\right] }\sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }(i+p+1)b_{2i+1}c_{2s}% \sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}E_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( f_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{ n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}% _{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{3}\right)-\left( g_{3}\right)\) is the polynomial 17. This ends the proof of Lemma 4.
Lemma 5. The integral \(\Upsilon _{4}(r)\) is given by the following
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{4}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{4}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{4}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}% \left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }\sum_{s=1}^{\mu }\frac{(2i+2p+3) }{2}c_{2i+1}d_{2s-2}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\tilde{D}_{i,p,l}r^{2i+2s+4p+3}. \end{equation*} We observe that the sum of the integrals \(\left( a_{4}\right)-\left( g_{4}\right)\) is the polynomial 18. This ends the proof of Lemma 5.
Lemma 6. The integral \(\Upsilon _{5}(r)\) is given by the following
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{2}-1}{% 2}\right] }(i+p+1)c_{2i}b_{2s+1}\sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\tilde{C% }_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( d_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \end{equation*} \begin{eqnarray*} &&\left( f_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{% \left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \\ && \end{eqnarray*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{4}-1}{% 2}\right] }(i+p+1)c_{2i}d_{2s+1}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}% \tilde{C}_{i,p,l}r^{2i+2s+4p+5}, \end{equation*} \begin{equation*} \left( g_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{5}\right)-\left( g_{5}\right)\) is the polynomial (19). This ends the proof of Lemma 6.
Lemma 7. The integral \(\Upsilon _{6}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right)\right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{1}}{% 2}\right] }(i+p+2)d_{2i+1}a_{2s}\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}% \tilde{E}_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( c_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \end{equation*} \begin{equation*} \left( d_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{3}}{% 2}\right] }(i+p+2)d_{2i+1}c_{2s}\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}% \tilde{E}_{i,p,l}r^{2i+2s+4p+5}, \end{equation*} \begin{equation*} \left( f_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}% \sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{6}\right)-\left( g_{6}\right)\) is the polynomial (20). This ends the proof of Lemma 7.
Lemma 8. The integral \(\Upsilon _{7}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}% \left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right)\right)d\theta = \end{equation*} \begin{equation*} \sum_{i=1}^{\mu }\sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }\frac{(2i+2p+1)% }{2}d_{2i-2}a_{2s+1}\sum_{l=0}^{s+p+1}\beta _{s,p,l}\left( \tilde{F}_{i,p,l}-% \frac{2p+3}{2i-1}F_{i,p,l}\right) r^{2i+2s+4p+1}, \end{equation*} \begin{equation*} \left( b_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}% \left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=1}^{\mu }\sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }\frac{(2i+2p+1)% }{2}d_{2i-2}c_{2s+1}\sum_{l=0}^{s+p+2}\gamma _{s,p,l}\left( \tilde{F}% _{i,p,l}-\frac{2p+3}{2i-1}F_{i,p,l}\right) r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( e_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}% \sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{7}\right)-\left( g_{7}\right)\) is the polynomial (21). This ends the proof of Lemma 8.
By Lemmas 2-8, we obtain \(F_{20}^{1}\left( r\right) =r^{1+4p}P_{1}\left( r^{2}\right) \), where \(% P_{1}\left( r^{2}\right) \) is a polynomial of degree \[ \max \left\{ \left[ \frac{n_{1}}{2}\right] \right. +\left[ \frac{n_{2}-1}{2}\right], \left[ \frac{n_{1}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right]+1,\left[ \frac{n_{1}-1}{2}\right] +\mu, \] \[ \left. \left[ \frac{n_{2}-1}{2}\right] + \left[ \frac{n_{3}}{2}\right]+1,\left[ \frac{n_{3}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right]+2,\left[ \frac{n_{3}-1}{2}\right] +\mu+1\right\} . \] Again by substituting (14) in (13) and (12), we obtain \(F_{2}(r,\theta ) =\sum\limits_{i=0}^{n_{1}}\bar{a}_{i}r^{i+2p}A_{i,2p+1}\left( \theta \right) +\sum\limits_{i=0}^{n_{2}}\bar{b}_{i}r^{i+2p+1}A_{i,2p+2}\left( \theta \right)+ \sum\limits_{i=0}^{n_{3}}\bar{c}_{i}r^{i+2p+2}A_{i,2p+3}\left( \theta \right) +\sum\limits_{i=0}^{n_{4}}\bar{d}_{i}r^{i+2p+3}A_{i,2p+4}\left( \theta \right) – \dfrac{1}{r}\left( \sum\limits_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2i+1}A_{2i+1,2p+1}% \left( \theta \right) r^{2i+2p+1}+\sum\limits_{i=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p}+\right. \sum\limits_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+2}+\sum\limits_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+3}+ \sum\limits_{i=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2i}A_{2i,2p+3}% \left( \theta \right) r^{2i+2p+2}+\sum\limits_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+4}+ \left. \sum\limits_{i=1}^{\mu }\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1}A_{2i,2p+2}\left( \theta \right) \right) d_{2i-2}r^{2i+2p+1}\right) \times \left( \sum\limits_{k=0}^{\left[ \frac{n_{1}-1}{2}% \right] }a_{2k+1}A_{2k+2,2p}\left( \theta \right) r^{2k+2p+1}+\sum\limits_{k=0}^{% \left[ \frac{n_{1}}{2}\right] }a_{2k}A_{2k+1,2p}\left( \theta \right) r^{2k+2p}+\right. \sum\limits_{k=0}^{\left[ \frac{n_{2}-1}{2% }\right] }b_{2k+1}A_{2k+2,2p+1}\left( \theta \right) r^{2k+2p+2}+\sum\limits_{k=0}^{% \left[ \frac{n_{3}-1}{2}\right] }c_{2k+1}A_{2k+2,2p+2}\left( \theta \right) r^{2k+2p+3}+ \sum\limits_{k=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2k}A_{2k+1,2p+2}\left( \theta \right) r^{2k+2p+2}+\sum\limits_{k=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2k+1}A_{2k+2,2p+3}\left( \theta \right) r^{2k+2p+4}+ \left. \sum\limits_{k=1}^{\mu }\left( A_{2k-1,2p+3}\left( \theta \right) -\frac{2p+3}{2k-1}A_{2k+1,2p+1}\left( \theta \right) \right) d_{2k-2}r^{2k+2p+1}\right). \) To find the explicit expression of \(F_{20}^{2}(r)=\dfrac{1}{2\pi}\int_{0}^{2\pi}F_{2}(r,\theta)d\theta\), we use the Lemma 1. So, we get \(F_{20}^{2}(r)=\left( \sum\limits_{i=0}^{\left[ \frac{n_{2}}{2}\right] }\bar b_{2i}r^{2i}\xi _{2i,2p+2}\left( 2\pi \right) +\sum\limits_{i=0}^{\left[ \frac{% n_{4}}{2}\right] }\bar d_{2i}r^{2i+2}\xi _{2i,2p+4}\left( 2\pi \right) \right)r^{2p+1}- \sum\limits_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }\sum\limits_{k=1}^{\mu }a_{2i+1}d_{2k-2}\left( \xi _{2i+2k,4p+4}(2\pi )-\frac{2p+3}{2k-1}\xi _{2i+2k+2,4p+2}(2\pi )\right) r^{2i+2k+4p+1}- \sum\limits_{i=0}^{\left[ \frac{n_{1}}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{2}-1% }{2}\right] }a_{2i}b_{2k+1}\xi _{2i+2k+2,4p+2}(2\pi )r^{2i+2k+4p+1}- \sum\limits_{i=0}^{\left[ \frac{n_{1}}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{4}-1% }{2}\right] }a_{2i}d_{2k+1}\xi _{2i+2k+2,4p+4}(2\pi )r^{2i+2k+4p+3}- \sum\limits_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{1}% }{2}\right] }b_{2i+1}a_{2k}\xi _{2i+2k+2,4p+4}\left( 2\pi \right) r^{2i+2k+4p+1}- \sum\limits_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{3}% }{2}\right] }b_{2i+1}c_{2k}\xi _{2i+2k+2,4p+4}\left( 2\pi \right) r^{2i+2k+4p+3}- \sum\limits_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }\sum\limits_{k=1}^{\mu }c_{2i+1}d_{2k-2}\left( \xi _{2i+2k,4p+6}\left( 2\pi \right) -\frac{2p+3}{% 2k-1}\xi _{2i+2k+2,4p+4}\left( 2\pi \right) \right) r^{2i+2k+4p+3}- \sum\limits_{i=0}^{\left[ \frac{n_{3}}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{2}-1% }{2}\right] }c_{2i}b_{2k+1}\xi _{2i+2k+2,4p+4}\left( 2\pi \right) r^{2i+2k+4p+3}- \sum\limits_{i=0}^{\left[ \frac{n_{3}}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{4}-1% }{2}\right] }c_{2i}d_{2k+1}\xi _{2i+2k+2,4p+6}\left( 2\pi \right) r^{2i+2k+4p+5}- \sum\limits_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{1}% }{2}\right] }d_{2i+1}a_{2k}\xi _{2i+2k+2,4p+4}\left( 2\pi \right) r^{2i+2k+4p+3}- \sum\limits_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }\sum\limits_{k=0}^{\left[ \frac{n_{3}% }{2}\right] }d_{2i+1}c_{2k}\xi _{2i+2k+2,4p+6}\left( 2\pi \right) r^{2i+2k+4p+5}- \sum\limits_{i=1}^{\mu }\sum\limits_{k=0}^{\left[ \frac{n_{1}-1}{2}\right] }d_{2i-2}a_{2k+1}\left( \xi _{2i+2k,4p+4}\left( 2\pi \right) -\frac{2p+3}{% 2i-1}\xi _{2i+2k+2,4p+2}\left( 2\pi \right) \right) r^{2i+2k+4p+1}- \sum\limits_{i=1}^{\mu }\sum\limits_{k=0}^{\left[ \frac{n_{3}-1}{2}\right] }d_{2i-2}c_{2k+1}\left( \xi _{\substack{ 2i+2k,4p+6 \\ }}\left( 2\pi \right) -\frac{2p+3}{2i-1}\xi _{2i+2k+2,4p+4}\left( 2\pi \right) \right) r^{2i+2k+4p+3} =r^{1+2p}\left(P_{2}(r^{2})+r^{2p}P_{3}(r^{2})\right).\) Where \(P_{2}(r^{2})\) is a polynomial of degree \[ \max \left\{ \left[ \frac{n_{2}}{2}\right],\left[\frac{n_{4}}{2}\right]+1\right\}, \] and \(P_{3}(r^{2})\) is a polynomial of degree \[ \max \left\{ \left[ \frac{n_{1}}{2}\right] \right. +\left[ \frac{n_{2}-1}{2}\right],% \left[ \frac{n_{1}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right]+1,\left[ \frac{n_{1}-1}{2}\right] +\mu, \] \[ \left. \left[ \frac{n_{2}-1}{2}\right] +% \left[ \frac{n_{3}}{2}\right]+1,\left[ \frac{n_{3}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right]+2,\left[ \frac{n_{3}-1}{2}\right] +\mu+1\right\} . \] Therefore \(F_{20}(r)\) is a polynomial in the variable \(r^{2}\) of the form \[ F_{20}\left( r\right) =F_{20}^{1}\left( r\right) +F_{20}^{2}\left( r\right) =r^{1+2p}\left( r^{2p}P_{1}\left( r^{2}\right) +P_{2}\left( r^{2}\right) +r^{2p}P_{3}\left( r^{2}\right) \right). \] Thus, \(F_{20}(r)\) has at most \[ \max \left\{ \left[ \frac{n_{2}}{2}\right] ,\left[ \frac{n_{4}}{2}\right]+1 ,% \left[ \frac{n_{1}}{2}\right] \right. +\left[ \frac{n_{2}-1}{2}\right] +p,% \left[ \frac{n_{1}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right] +p+1, \left[ \frac{n_{1}-1}{2}\right] +\] \[ \mu +p,\left[ \frac{n_{2}-1}{2}\right] +% \left[ \frac{n_{3}}{2}\right] +p+1,\left[ \frac{n_{3}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right] +p+2, \left. \left[ \frac{n_{3}-1}{2}\right] +\mu +p+1\right\} , \] positive roots. Hence statement (b) of Theorem 1 is proved.Example 1.
Example 2. We consider an example that corresponds to statement (b) of Theorem 1