In this paper, we extend the one-dimensional Gabor transform discussed to the Weinstein harmonic analysis setting. We obtain the expected properties of extended Gabor transform such as inversion formula and Calderon’s reproducing formula.
The Fourier transform stands out as a significant discovery in mathematical sciences, that plays a crucial role in modern scientific and technological advancements. In signal processing, extensive research has utilized the Fourier transform to analyze stationary signals or processes with statistically invariant properties over time. Although, Fourier transforms have many successful applications that fascinated the mathematical, physical and engineering communities over decades, they still have numerous shortcomings.
One of the significant disadvantages of the Fourier transforms is that they do not give any information about the occurrence of the frequency component at a particular time. They only enable us to analyse the signals either in time domain or frequency domain, but not simultaneously in both domains [1, 2].
A suitable redress of these limitations was given by Gabor [3] in the form of windowed Fourier transform using a Gaussian distribution function as a window function in order to construct efficient time-frequency localized expansions of finite energy signals \(f\in L^2(\mathbb{R})\) as \[V_g(f)(\xi,b):=\int_{\mathbb{R}}f(x)\overline{g(x-b)}e^{-i\xi x}\mbox{d}x,\quad \xi,b\in \mathbb{R}.\]
The spectral contents of non-transient signals in localized neighbourhoods of time can be analyzed. This astonishing feature of the Gabor transform provides the local characteristics of the Fourier transform with a time resolution equal to the size of the window. The Gabor transform, also known as the short-time Fourier transform (STFT), marked a breakthrough in time-frequency analysis. This method involves decomposing non-transient signals using time and frequency-shifted basis functions, termed Gabor window functions. The STFT, with its clear resemblance to the classical Fourier transform, has gained considerable attention in the past few decades. Soon after its inception in quantum mechanics, the Gabor transform profound influenced diverse branches of science and engineering including harmonic analysis, signal and image processing, pseudo-differential operators, sampling theory, wave propagation, quantum optics, geophysics, astrophysics, medicine [3– 5], and others. Besides its applications, the theoretical skeleton of Gabor transform has likewise been extensively studied and investigated in other groups including the locally compact Abelian and non-Abelian groups [6– 8], hypergroups [9], Gelfand pairs [10] and so on. For more about Gabor transforms and their applications, we allude to [11– 14].
As the harmonic analysis associated with Weinstein operator has known remarkable development, it is natural that there is an equivalent of the Gabor transform in the Weinstein harmonic analysis setting [15]. This article aims to develop two applications of the Weinstein-Gabor transform (WGT) as an inversion formula and a Calderón’s reproducing formula by means of the theory of Weinstein transform. Precisely, let \(\alpha>-1/2\) and \(\mathbb{K}:=\mathbb{R}^{d-1}\times\mathbb{R}_+\). We denote by \(L^p(\mathbb{K},\nu_{\alpha})\), \(p \in [1, \infty]\), the space of measurable functions \(f\) on \(\mathbb{K}\), such that \[\begin{aligned} \|f\|_{L^p(\mathbb{K},\nu_{\alpha})}&:=& \left[\int_{\mathbb{K}} |f(x)|^p \mbox{d}\nu_{\alpha}(x)\right]^{1/p} < \infty,\quad p \in [1,\infty),\\ \|f\|_{L^{\infty}(\mathbb{K},\nu_{\alpha})}&:=& \mbox{ess} \sup_{x \in \mathbb{K}} |f(x)| < \infty, \end{aligned}\] where \[\mbox{d}\nu_{\alpha}(x):=\mbox{d}\nu_{\alpha}(x',x_d) =\frac{x_d^{2\alpha+1}}{\pi^{(d-1)/2}2^{\alpha+(d-1)/2}\Gamma(\alpha+1)}\mbox{d}x'\mbox{d}x_d,\] and \(\mbox{d}x'=\mbox{d}x_1\mbox{d}x_2\dots\mbox{d}x_{d-1}\).
For \(f\in L^1(\mathbb{K},\nu_{\alpha})\), the Weinstein transform \(\mathscr{F}_W\) (see [16, 17]) of \(f\) is defined by \[\mathscr{F}_W(f)(\xi):=\int_{\mathbb{K}}f(x)\Psi^{\alpha}_{\xi}(x)\mbox{d}\nu_{\alpha}(x),\quad \xi=(\xi',\xi_d)\in\mathbb{K},\] where \(\Psi^{\alpha}_{\xi}(x)\) is the Weinstein kernel given by \[\Psi^{\alpha}_{\xi}(x)=e^{-i\langle x',\xi'\rangle}j_{\alpha}(x_d\xi_d),\quad x=(x',x_d)\in \mathbb{K}.\]
Here \(j_{\alpha}\) is the spherical Bessel function, whose definition will be recalled from [18] in §2 below. This transform extends uniquely to an isometric isomorphism on \(L^2(\mathbb{K},\nu_{\alpha})\), that is \(\|f\|_{L^2(\mathbb{K},\nu_{\alpha})}=\|\mathscr{F}_{W}(f)\|_{L^2(\mathbb{K},\nu_{\alpha})}\). And its inverse is denoted by \(\mathscr{F}^{-1}_{W}\).
For \(f,g\in L^2(\mathbb{K},\nu_{\alpha})\). The Weinstein convolution product (see [19]) of \(f\) and \(g\) is defined by \[f\ast g(y):=\int_{\mathbb{K}}f(x)\tau_yg(-x',x_d) \mbox{d}\nu_{\alpha}(x),\quad y\in \mathbb{K},\] where \(\tau_y\), \(y\in \mathbb{K}\) are the Weinstein translation operators (see [15]) defined in Section 2 below.
Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\). The Weinstein-Gabor transform \(\mathscr{S}_g\) is the mapping defined for \(f\in L^2(\mathbb{K},\nu_{\alpha})\) by \[\mathscr{S}_g(f)(x,y):=f\ast g_y(x),\quad x,y\in \mathbb{K},\] where \(g_y\) is the modulation of \(g\) by \(y\) defined by \[g_y:=\mathscr{F}^{-1}_{W}\Big(\sqrt{\tau_y|\mathscr{F}_{W}(g)|^2}\Big).\]
The Weinstein-Gabor transform \(\mathscr{S}_g\) is studied in [15]; and in this work we will
establish the following inversion formula.
Theorem 1 (Inversion formula). Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\) be a non-zero function. For all \(f\in L^1\cap L^2(\mathbb{K},\nu_{\alpha})\) such that \(\mathscr{F}_W(f)\in L^1(\mathbb{K},\nu_{\alpha})\), we have \[f(z)=\frac{1}{\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}}\int_{\mathbb{K}}\mathscr{S}_g(f)(.,y)\ast g_y(z)\mbox{d}\nu_{\alpha}(y),\quad z \in \mathbb{K}.\]
Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\) be a non-zero function, such that \(\mathscr{F}_W(g) \in L^\infty(\mathbb{K},\nu_{\alpha})\). For \(f \in L^2(\mathbb{K},\nu_{\alpha})\), we define the reconstruction function \(f_{\Delta}\) associated with \(\mathscr{S}_g\), by \[f_{\Delta}(z):=\frac{1}{\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}}\int_{\Delta}\mathscr{S}_g(f)(.,y)\ast g_y(z)\mbox{d}\nu_{\alpha}(y),\quad z\in \mathbb{K},\] where \(\Delta\) is the pavement of \(\mathbb{K}\) defined by \(\Delta:=\prod^d_{j=1}[a_j,b_j]\), with \[-\infty<a_j<b_j<\infty,\quad j=1,\dots,d-1,\quad 0<a_d<b_d<\infty.\]
We prove the following Calderón’s reproducing formula.
Theorem 2 (Calderón’s reproducing formula). Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\) be a non-zero function, such that \(\mathscr{F}_W(g) \in L^\infty(\mathbb{K},\nu_{\alpha})\). Then, for \(f \in L^2(\mathbb{K},\nu_{\alpha})\), the function \(f_{\Delta}\) belongs to \(L^2(\mathbb{K},\nu_{\alpha})\) and satisfies \[\lim_{\Delta\rightarrow \mathbb{K}}\|f_{\Delta}-f\|_{L^2(\mathbb{K},\nu_{\alpha})}=0.\]
The paper is organized as follows. In §2, we recall some results about the harmonic analysis associated to Weinstein operator on \(\mathbb{K}\) (Weinstein transform \(\mathscr{F}_W\), Weinstein translation operators \(\tau_y\), \(y\in \mathbb{K}\), Weinstein convolution product \(\ast\),…). In §3 we recall some results about the Weinstein-Gabor transform \(\mathscr{S}_g\), and we establish an inversion formula. Finally, in §4, we prove Calderón’s reproducing formula for the Weinstein-Gabor transform \(\mathscr{S}_g\).
In this section we recall some basic results related the Weinstein harmonic analysis [17, 19– 22]. We consider the Weinstein operator \(\Delta_W\) (also called Laplace-Bessel operator), defined on \(\mathbb{R}^{d-1}\times\mathbb{R}^{\ast}_+\) by \[\Delta_W:=\sum_{i=1}^d\frac{\partial^2}{\partial x^2_i}+\frac{2\alpha+1}{x_d}\frac{\partial}{\partial x_d}=\Delta_{d-1}+B_{\alpha},\quad d\geq2,\; \alpha>-1/2,\] where \(\Delta_{d-1}\) is the Laplacian operator in \(\mathbb{R}^{d-1}\) and \(B_{\alpha}\) is the Bessel operator with respect to the variable \(x_d\) defined on \(\mathbb{R}^{\ast}_+\) by \[B_{\alpha}:=\frac{\partial^2}{\partial x^2_d}+\frac{2\alpha+1}{x_d}\frac{\partial}{\partial x_d}.\]
The Weinstein operator has several applications in pure and applied mathematics especially in fluid mechanics [23, 24].
For all \(\xi \in \mathbb{K}\), the system (see [21]) \[B_{\alpha} u(x) = – \xi^2_du(x),\quad\frac{\partial^2 u}{\partial x^2_j}(x)= -\xi^2_ju(x),\quad j=1,\dots,d-1,\] \[u(0)= 1,\quad\frac{\partial u}{\partial x_d}(0)=0,\quad \frac{\partial u}{\partial x_j}(0)= -i\xi_j,\quad j=1,\dots,d-1,\] admits a unique solution \(\Psi^{\alpha}_{\xi}(x)\), given by \[\Psi^{\alpha}_{\xi}(x)=e^{-i\langle x',\xi'\rangle}j_{\alpha}(x_d\xi_d),\quad x\in \mathbb{K},\] where \(j_{\alpha}\) is the spherical Bessel function [18] given by \[j_{\alpha}(x):=\Gamma(\alpha+1)\sum^{\infty}_{n=0}\frac{(-1)^n}{n!\Gamma(n+\alpha+1)}\left(\frac{x}{2}\right)^{2n}.\]
For all \(x,\xi\in \mathbb{K}\), the Weinstein kernel \(\Psi^{\alpha}_{\xi}(x)\) satisfies \[|\Psi^{\alpha}_{\xi}(x)|\leq 1.\]
The Weinstein kernel \(\Psi^{\alpha}_{\xi}(x)\) gives rise to an integral transform, which is called Weinstein transform on \(\mathbb{R}^d_+\), where many basic properties had been established [17, 19, 20]. The Weinstein transform (or Laplace-Bessel transform) \(\mathscr{F}_W\) is defined for \(f\in L^1(\mathbb{K},\nu_{\alpha})\) by \[\mathscr{F}_W(f)(\xi):=\int_{\mathbb{K}}f(x)\Psi^{\alpha}_{\xi}(x)\mbox{d}\nu_{\alpha}(x),\quad \xi\in\mathbb{K}.\]
Moreover if \(f\in L^1(\mathbb{K},\nu_{\alpha})\), then \[\|\mathscr{F}_W(f)\| _{L^\infty(\mathbb{K},\nu_{\alpha})}\leq \|f\|_{ L^1(\mathbb{K},\nu_{\alpha})}.\]
Theorem 3 (See [17]).
(i) (Plancherel formula). The Weinstein transform \(\mathscr{F}_W\) extends uniquely to an isometric isomorphism on \(L^2(\mathbb{K},\nu_{\alpha})\), that is, \[\|\mathscr{F}_W(f)\|_{L^2(\mathbb{K},\nu_{\alpha})}=\|f\|_{L^2(\mathbb{K},\nu_{\alpha})},\quad f\in L^2(\mathbb{K},\nu_{\alpha}).\]
(ii) (Inversion formula). If \(f\) and \(\mathscr{F}_W(f)\) are both in \(L^1(\mathbb{K},\nu_{\alpha})\), the inverse Weinstein transform is defined by \[f(x)=\int_{\mathbb{K}}\mathscr{F}_W(f)(\xi)\Psi^{\alpha}_{-\xi}(x)\mbox{d}\nu_{\alpha}(\xi),\quad \mbox{a.e} \quad x\in \mathbb{K}.\]
The Weinstein kernel \(\Psi^{\alpha}_{\xi}(x)\) satisfies also the following product formula.
Theorem 4 (See [18]) For \(\xi\in \mathbb{K}\) and \(x,y\in \mathbb{K}\), the product \(\Psi^{\alpha}_{\xi}(x)\Psi^{\alpha}_{\xi}(y)\) admits the following integral representation \[\Psi^{\alpha}_{\xi}(x)\Psi^{\alpha}_{\xi}(y)=\int^{\infty}_0\Psi^{\alpha}_{\xi}(x'+y',\rho)q_{\alpha}(x_d,y_d,\rho)\rho^{2\alpha+1}\mbox{d}\rho,\] where \[q_{\alpha}(x_d,y_d,\rho)=a_{\alpha}\frac{\left[(x_d+y_d)^2-\rho^2\right]^{{\alpha}-\frac{1}{2}}\left[\rho^2-(x_d-y_d)^2\right]^{{\alpha}-\frac{1}{2}}}{(x_dy_d\rho)^{2{\alpha}}}\textbf{1}_A,\] where \(a_{\alpha}=\frac{\Gamma(\alpha+1)}{\sqrt{\pi}2^{2\alpha-1}\Gamma(\alpha+\frac{1}{2})}\) and \(\textbf{1}_A\) is the characteristic function of the interval \[A=(|x_d-y_d|,x_d+y_d).\]
We denote by \(C(\mathbb{K})\), the space of continuous functions \(f\) on \(\mathbb{K}\). For \(f\in C(\mathbb{K})\), the linear operator \[\tau_{y}f(x):=\int_{0}^{\infty}f(x'+y',\rho) q_{\alpha}(x_d,y_d,\rho)\rho^{2\alpha+1}\mbox{d}\rho,\quad x,y\in \mathbb{K},\] will be called the Weinstein translation operator (see [19]).
As a first remark, we note that \[\int_{\mathbb{K}}\tau_{y}f(x)\mbox{d}\nu_{\alpha}(x)= \int_{\mathbb{K}}f(x)\mbox{d}\nu_{\alpha}(x),\quad f\in L^1(\mathbb{K},\nu_{\alpha}),\label{eq2.1} \tag{1}\] and \[\|\tau_{y}f\|_{L^1(\mathbb{K},\nu_{\alpha})}\leq \|f\|_{L^1(\mathbb{K},\nu_{\alpha})},\quad f\in L^1(\mathbb{K},\nu_{\alpha}).\]
Let \(f,g\in L^1(\mathbb{K},\nu_{\alpha})\). The Weinstein convolution product (see [17]) of \(f\) and \(g\) is defined by \[f\ast g(y):=\int_{\mathbb{K}}f(x)\tau_yg(-x',x_d) \mbox{d}\nu_{\alpha}(x),\quad y\in \mathbb{K}.\] The Weinstein translation operator is connected with the Weinstein transform \(\mathscr{F}_{W}\) via the following formula.
Theorem 5 (See [17, page 6]). For \(f\in L^2(\mathbb{K},\nu_{\alpha})\) and \(y\in \mathbb{K}\), we have \[\mathscr{F}_{W}(\tau_{y}f)(\xi)= \Psi^{\alpha}_{\xi}(-y)\mathscr{F}_{W}(f)(\xi),\quad \xi\in \mathbb{K}.\]
Remark 1. From Theorem 3 (i) and Theorem 5 we have \[\|\tau_{y}f\|_{L^2(\mathbb{K},\nu_{\alpha})}\leq \|f\|_{L^2(\mathbb{K},\nu_{\alpha})},\quad y\in \mathbb{K},\;f\in L^2(\mathbb{K},\nu_{\alpha}).\label{eq2.2}\]
(i) For \(f\in L^1(\mathbb{K},\nu_{\alpha})\) and \(g\in L^2(\mathbb{K},\nu_{\alpha})\), the function \(f\ast g\) belongs to \(L^2(\mathbb{K},\nu_{\alpha})\), and \[\mathscr{F}_{W}(f\ast g)(\xi)= \mathscr{F}_{W}(f)(\xi)\mathscr{F}_{W}(g)(\xi),\quad \xi\in \mathbb{K}.\]
(ii) Let \(f,g\in L^2(\mathbb{K},\nu_{\alpha})\). Then \[f\ast g(x)=\mathscr{F}^{-1}_{W}(\mathscr{F}_{W}(f)\mathscr{F}_{W}(g))(x),\quad x\in \mathbb{K}.\]
(iii) Let \(f,g\in L^2(\mathbb{K},\nu_{\alpha})\). Then \(f\ast g\) belongs to \(L^2(\mathbb{K},\nu_{\alpha})\) if and only if \(\mathscr{F}_{W}(f)\mathscr{F}_{W}(g)\) belongs to \(L^2(\mathbb{K},\nu_{\alpha})\), and \[\mathscr{F}_{W}(f \ast g)= \mathscr{F}_{W}(f)\mathscr{F}_{W}(g),\quad \mbox{ in the } L^2(\mathbb{K},\nu_{\alpha})-\mbox{case}.\]
(iv) Let \(f,g\in L^2(\mathbb{K},\nu_{\alpha})\). Then \[\int_{\mathbb{K}}|f \ast g(x)|^2\mbox{d}\nu_{\alpha}(x) = \int_{\mathbb{K}}|\mathscr{F}_{W}(f)(\xi)|^2 |\mathscr{F}_{W}(g)(\xi)|^2 \mbox{d}\nu_{\alpha}(\xi),\]where both sides are finite or infinite.
In the following we establish a reproducing inversion formula for the Weinstein-Gabor transform \(\mathscr{S}_g\).
Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\) and \(y\in \mathbb{K}\). The modulation of \(g\) by \(y\) is the function \(g_y\) defined by \[g_y:=\mathscr{F}^{-1}_{W}\Big(\sqrt{\tau_y|\mathscr{F}_{W}(g)|^2}\Big).\]
From Theorem 3 (i) and (1) we have \[\|g_y\|_{L^2(\mathbb{K},\nu_{\alpha})}=\|g\|_{L^2(\mathbb{K},\nu_{\alpha})}.\label{eq3.1} \tag{3}\]
Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\). The Weinstein-Gabor transform is the mapping \(\mathscr{S}_g\) defined for \(f\in L^2(\mathbb{K},\nu_{\alpha})\) by \[\mathscr{S}_g(f)(x,y):=f\ast g_y(x)=\int_{\mathbb{K}}f(t)\tau_x g_y(-t',t_d)\mbox{d}\nu_{\alpha}(t),\quad x, y \in \mathbb{K}. \label{eq3.2} \tag{4}\]
From Remark 1 and (3) we have \[\|\mathscr{S}_g(f)\|_{L^{\infty}(\mathbb{K}\times \mathbb{K},\nu_{\alpha}\otimes\nu_{\alpha})}\leq \|f\|_{L^2(\mathbb{K},\nu_{\alpha})}\|g\|_{L^2(\mathbb{K},\nu_{\alpha})}.\]
The Weinstein-Gabor transform \(\mathscr{S}_g\) possesses the following property.
Theorem 7. Let \(f,g\in L^2(\mathbb{K},\nu_{\alpha})\). Then \[\mathscr{S}_g(f)(x,y)=\int_{\mathbb{K}} \Psi^{\alpha}_{-\xi}(x)\mathscr{F}_W(f)(\xi)\sqrt{\tau_y|\mathscr{F}_{W}(g)|^2(\xi)}\mbox{d}\nu_{\alpha}(\xi),\quad x, y \in \mathbb{K}.\]
Proof. From Theorem 3 (ii) and Theorem 6 (ii) we have \[\mathscr{S}_g(f)(x,y)=\int_{\mathbb{K}}\Psi^{\alpha}_{-\xi}(x)\mathscr{F}_W(f)(\xi) \mathscr{F}_W(g_{y})(\xi)\mbox{d}\nu_{\alpha}(\xi).\]
We obtain the result from the fact that \[\mathscr{F}_W(g_{y})(\xi) =\sqrt{\tau_y|\mathscr{F}_{W}(g)|^2(\xi)}.\label{eq3.3} \tag{5}\]
The theorem is proved. ◻
Theorem 8 (See [15]). Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\).
(i) (Plancherel formula). For all \(f\in L^2(\mathbb{K},\nu_{\alpha})\), we have \[\|\mathscr{S}_g(f)\|^2_{L^2(\mathbb{K}\times \mathbb{K},\nu_{\alpha}\otimes \nu_{\alpha})}=\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})} \|f\|^2_{L^2(\mathbb{K},\nu_{\alpha})}.\]
(ii) (Parseval formula). For all \(f,h\in L^2(\mathbb{K},\nu_{\alpha})\), we have \[\langle\mathscr{S}_g(f),\mathscr{S}_g(h)\rangle_{L^2(\mathbb{K}\times \mathbb{K},\nu_{\alpha}\otimes \nu_{\alpha})}=\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})} \langle f,h\rangle_{L^2(\mathbb{K},\nu_{\alpha})}.\]
Proof. From (4) and Theorem 6 (iv), we obtain \[\begin{aligned} \int_{\mathbb{K}}\int_{\mathbb{K}}|\mathscr{S}_g (f)(x,y)|^2\mbox{d}\nu_{\alpha}(x)\mbox{d}\nu_{\alpha}(y)&=&\int_{\mathbb{K}}\int_{\mathbb{K}} |f\ast g_{y}(x)|^2\mbox{d}\nu_{\alpha}(x)\mbox{d}\nu_{\alpha}(y)\\&=&\int_{\mathbb{K}}\int_{\mathbb{K}} |\mathscr{F}_W(f)(\xi)|^2|\mathscr{F}_W(g_{y})(\xi)|^2 \mbox{d}\nu_{\alpha}(\xi)\mbox{d}\nu_{\alpha}(y). \end{aligned}\]
Using Theorem 3 (i), (1), (5) and Fubini-Tonelli theorem, we deduce \[\begin{aligned} \int_{\mathbb{K}}\int_{\mathbb{K}}|\mathscr{S}_g (f)(x,y)|^2\mbox{d}\nu_{\alpha}(x)\mbox{d}\nu_{\alpha}(y) &=&\int_{\mathbb{K}}\int_{\mathbb{K}}|\mathscr{F}_W(f)(\xi)|^2 \tau_y|\mathscr{F}_W(g)|^2(\xi) \mbox{d}\nu_{\alpha}(\xi)\mbox{d}\nu_{\alpha}(y) \\&=&\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})} \|f\|^2_{L^2(\mathbb{K},\nu_{\alpha})}. \end{aligned}\]
The (i) is proved and as in the same way we prove (ii). ◻
Theorem 9 (Inversion formula). Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\) be a non-zero function. For all \(f\in L^1\cap L^2(\mathbb{K},\nu_{\alpha})\) such that \(\mathscr{F}_W(f)\in L^1(\mathbb{K},\nu_{\alpha})\), we have \[f(z)=\frac{1}{\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}}\int_{\mathbb{K}}\mathscr{S}_g(f)(.,y)\ast g_y(z)\mbox{d}\nu_{\alpha}(y),\quad z \in \mathbb{K}.\]
Proof. By Theorem 6 (i), we have \(\mathscr{S}_g(f)(.,y) \in L^2(\mathbb{K},\nu_{\alpha})\). Then, by Theorem 6 (ii), we obtain \[\mathscr{S}_g(f)(.,y)\ast g_y(z)=\int_{\mathbb{K}}\Psi^{\alpha}_{-\xi}(z)\mathscr{F}_W(\mathscr{S}_g(f)(.,y))(\xi)\mathscr{F}_W(g_y)(\xi)\mbox{d}\nu_{\alpha}(\xi).\]
But by Theorem 6 (i) and (5), we have \[\mathscr{F}_W(\mathscr{S}_g(f)(.,y))(\xi)=\mathscr{F}_W(f)(\xi)\mathscr{F}_W(g_y)(\xi)=\mathscr{F}_W(f)(\xi) \sqrt{\tau_y|\mathscr{F}_W(g)|^2(\xi)}.\]
Thus, \[\mathscr{S}_g(f)(.,y)\ast g_y(z)= \int_{\mathbb{K}}\Psi^{\alpha}_{-\xi}(z)\mathscr{F}_W(f)(\xi)\tau_y|\mathscr{F}_W(g)|^2(\xi)\mbox{d}\nu_{\alpha}(\xi).\]
Therefore, by Fubini’s theorem, Theorem 3 (ii) and (1), we deduce that \[\begin{aligned} \int_{\mathbb{K}}\mathscr{S}_g(f)(.,y)\ast g_y(z)\mbox{d}\nu_{\alpha}(y)&=& \|g\|^2_{L^2(\mathbb{K},{\alpha})} \int_{\mathbb{K}}\Psi_{-\xi}(z)\mathscr{F}_W(f)(\xi)\mbox{d}\nu_{\alpha}(\xi)\\ &=& \|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}f(z). \end{aligned}\]
This completes the proof of the theorem. ◻
In the following we establish a Calderón’s reproducing inversion formula for the Weinstein-Gabor transform \(\mathscr{S}_g\).
Let \(\Delta\) be the pavement of \(\mathbb{K}\) defined by \(\Delta:=\prod^d_{j=1}[a_j,b_j]\), where \[-\infty<a_j<b_j<\infty,\quad j=1,\dots,d-1,\quad 0<a_d<b_d<\infty.\]
We use the notation \(\Delta\rightarrow \mathbb{K}\) if and only if \[a_j\rightarrow -\infty,\quad b_j\rightarrow \infty,\quad j=1,\dots,d-1,\quad a_d\rightarrow 0,\quad b_d\rightarrow \infty.\]
Theorem 10(Calderón’s reproducing formula). Let \(g\in L^2(\mathbb{K},\nu_{\alpha})\) be a non-zero function, such that \(\mathscr{F}_W(g) \in L^\infty(\mathbb{K},\nu_{\alpha})\). Then, for \(f \in L^2(\mathbb{K},\nu_{\alpha})\), the function \(f_{\Delta}\) given by \[f_{\Delta}(z):=\frac{1}{\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}}\int_{\Delta}\mathscr{S}_g(f)(.,y)\ast g_y(z)\mbox{d}\nu_{\alpha}(y),\quad z\in \mathbb{K},\] belongs to \(L^2(\mathbb{K},\nu_{\alpha})\) and satisfies \[\lim_{\Delta\rightarrow \mathbb{K}}\|f_{\Delta}-f\|_{L^2(\mathbb{K},\nu_{\alpha})}=0.\label{eq4.1} \tag{6}\]
Proof. By Theorem 6 (iii), we have \(\mathscr{S}_g(f)(.,y) \in L^2(\mathbb{K},\nu_{\alpha})\), then by Theorem 6 (ii), we obtain \[\mathscr{S}_g(f)(.,y)\ast g_y(z)=\int_{\mathbb{K}}\Psi^{\alpha}_{-\xi}(z)\mathscr{F}_W(\mathscr{S}_g(f)(.,y))(\xi)\mathscr{F}_W(g_y)(\xi)\mbox{d}\nu_{\alpha}(\xi).\] But by Theorem 6 (iii) and (5), we deduce that \[\mathscr{F}_W(\mathscr{S}_g(f)(.,y))(\xi)=\mathscr{F}_W(f)(\xi)\mathscr{F}_W(g_y)(\xi)=\mathscr{F}_W(f)(\xi) \sqrt{\tau_y|\mathscr{F}_W(g)|^2(\xi)}.\]
Thus, \[\mathscr{S}_g(f)(.,y)\ast g_y(z)= \int_{\mathbb{K}}\Psi^{\alpha}_{-\xi}(z)\mathscr{F}_W(f)(\xi)\tau_y|\mathscr{F}_W(g)|^2(\xi)\mbox{d}\nu_{\alpha}(\xi),\] and \[f_{\Delta}(z)=\frac{1}{\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}} \int_{\Delta} \int_{\mathbb{K}}\Psi^{\alpha}_{-\xi}(z)\mathscr{F}_W(f)(\xi)\tau_y|\mathscr{F}_W(g)|^2(\xi)\mbox{d}\nu_{\alpha}(\xi)\mbox{d}\nu_{\alpha}(y).\]
Then, by Fubini’s theorem we get \[f_{\Delta}(z)= \int_{\mathbb{K}}\Psi^{\alpha}_{-\xi}(z)\mathscr{F}_W(f)(\xi)K_{\Delta}(\xi)\mbox{d}\nu_{\alpha}(\xi),\label{eq4.2} \tag{7}\] where \[K_{\Delta}(\xi)=\frac{1}{\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}}\int_{\Delta} \tau_y|\mathscr{F}_W(g)|^2(\xi)\mbox{d}\nu_{\alpha}(y).\]
From (1), it is easily to see that \[\|K_{\Delta}\|_{L^{\infty}(\mathbb{K},\nu_{\alpha})}\leq 1.\]
On the other hand, by Hölder’s inequality, we deduce that \[|K_{\Delta}(\xi)|^2\leq \frac{\nu_{\alpha}(\Delta)}{\|g\|^4_{L^2(\mathbb{K},\nu_{\alpha})}}\int_{\Delta} |\tau_y|\mathscr{F}_W(g)|^2(\xi)|^2\mbox{d}\nu_{\alpha}(y).\]
Hence, by (2) we find \[\begin{aligned} \|K_{\Delta}\|^2_{L^2(\mathbb{K},\nu_{\alpha})}\leq \frac{(\nu_{\alpha}(\Delta))^2}{\|g\|^4_{L^2(\mathbb{K},\nu_{\alpha})}}\int_{\mathbb{K}} |\mathscr{F}_W(g)(\xi)|^4\mbox{d}\nu_{\alpha}(\xi)\leq \frac{(\nu_{\alpha}(\Delta))^2\|\mathscr{F}_W(g)\|^2_{L^{\infty}(\mathbb{K},\nu_{\alpha})}} {\|g\|^2_{L^2(\mathbb{K},\nu_{\alpha})}}. \end{aligned}\]
Thus \(K_{\Delta}\in L^{\infty}\cap L^2(\mathbb{K},\nu_{\alpha})\). Therefore and by (7), we have \(f_{\Delta}=\mathscr{F}^{-1}_W(K_{\Delta}\mathscr{F}_W(f))\) and by Theorem 3 (i), \(f_{\Delta} \in L^2(\mathbb{K},\nu_{\alpha})\) and \[\mathscr{F}_W(f_{\Delta})=K_{\Delta}\mathscr{F}_W(f).\]
From this relation it follows that \[\|f_{\Delta}-f\|^2_{L^2(\mathbb{K},\nu_{\Delta})} = \int_{\mathbb{K}}|\mathscr{F}_W(f)(\xi)|^2(1 -K_{\Delta}(\xi))^2\mbox{d}\nu_{\alpha}(\xi).\]
But by (1) we have \[\lim_{\Delta\rightarrow \mathbb{K}}K_{\Delta}(\xi) = 1, \quad \mbox{ for all }\; \xi \in \mathbb{K},\] and \[|\mathscr{F}_W(f)(\xi)|^2(1 -K_{\Delta}(\xi))^2\leq |\mathscr{F}_W(f)(\xi)|^2, \quad \mbox{ for all }\; \xi \in \mathbb{K}.\]
So, the relation (6) follows from the dominated convergence theorem. ◻
Debnath, L., & Bhatta, D. (2016). Integral Transforms and Their Applications. Chapman and Hall/CRC.
Shah, F. A., & Tantary, A. Y. (2022). Wavelet Transforms: Kith and Kin. Chapman and Hall/CRC.
Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-part III: Radio and Communication Engineering, 93(26), 429-441.
Brémaud, P. (2002). Mathematical Principles of Signal Processing: Fourier and Wavelet Analysis (p. 10). New York: Springer.
Wilczok, E. (2000). New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Documenta Mathematica, 5, 207-226.
Farashahi, A. G., & Kamyabi-Gol, R. (2012). Continuous Gabor transform for a class of non-Abelian groups. Bulletin of the Belgian Mathematical Society-Simon Stevin, 19(4), 683-701.
Ghaani Farashahi, A. (2015). Continuous partial Gabor transform for semi-direct product of locally compact groups. Bulletin of the Malaysian Mathematical Sciences Society, 38, 779-803.
Feichtinger, H. G., Kozek, W., & Luef, F. (2009). Gabor analysis over finite abelian groups. Applied and Computational Harmonic Analysis, 26(2), 230-248.
Czaja, W., & Gigante, G. (2003). Continuous Gabor transform for strong hypergroups. Journal of Fourier Analysis and Applications, 9, 321-339.
Trimeche, K. (1997). Generalized Wavelets and Hypergroups (1st ed.). Routledge. https://doi.org/10.1201/9780203753712.
Feichtinger, H. G., & Strohmer, T. (Eds.). (2012). Advances in Gabor Analysis. Springer Science & Business Media.
Gröchenig, K. (1998). Aspects of Gabor analysis on locally compact abelian groups. In Gabor Analysis and Algorithms: Theory and Applications (pp. 211-231). Boston, MA: Birkhäuser Boston.
Gröchenig, K. (2001). Foundations of Time-Frequency Analysis. Springer Science & Business Media.
Gröchenig, K. (2003). Uncertainty principles for time-frequency representations. Advances in Gabor Analysis, 11-30.
Mejjaoli, H., & Salem, A. O. A. (2012). Weinstein Gabor transform and applications. Advances in Pure Mathematics, 2(03), 203-210.
Abouelaz, A., Achak, A., Daher, R., & Safouane, N. (2019). Quantitative uncertainty principles for the Weinstein transform. Boletín de la Sociedad Matemática Mexicana, 25, 375-383.
Salem, N. B., & Nasr, A. R. (2015). Heisenberg-type inequalities for the Weinstein operator. Integral Transforms and Special Functions, 26(9), 700-718.
Watson, G. N. (1922). A Treatise on the Theory of Bessel Functions (Vol. 3). The University Press.
Nefzi, W. (2020). Fractional integrals for the Weinstein operator. Integral Transforms and Special Functions, 31(11), 906-920.
Nefzi, W. (2018). Weinstein multipliers of Laplace transform type. Integral Transforms and Special Functions, 29(6), 470-488.
Saoudi, A. (2021). Calderón’s reproducing formulas for the Weinstein L 2-multiplier operators. Asian-European Journal of Mathematics, 14(01), 2150003.
Saoudi, A. (2022). Two-wavelet theory in Weinstein setting. International Journal of Wavelets, Multiresolution and Information Processing, 20(05), 2250020.
Brelot, M. (1978). Equation de Weinstein et potentiels de Marcel Riesz. In Séminaire de Théorie du Potentiel Paris, No. 3 (pp. 18-38). Springer Berlin Heidelberg.