Čebyšev inequalities for co-ordinated \(QC\)-convex and \((s,QC)\)-convex

Author(s): B. Meftah1, A. Souahi2
1Laboratoire des Télécommunications, Faculté des Sciences et de la Technologie, University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria
2Laboratory of Advanced Materials, University of Badji Mokhtar-Annaba, P.O. Box 12, 23000 Annaba, Algeria.
Copyright © B. Meftah, A. Souahi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we establish some new Čebyšev type inequalities for functions whose modulus of the mixed derivatives are co-ordinated quasi-convex and \(\alpha\)-quasi-convex and \(s\)-quasi-convex functions.

Keywords: Čebyšev inequalities, quasi-convexity, \((s,QC)\)-convexity, \((\alpha ,QC)\)-convexity.

1. Introduction

In 1882, Cebyšev [1] gave the following inequality

\begin{equation} \label{1.1} \left\vert T\left( f,g\right) \right\vert \leq \tfrac{1}{12}\left( b-a\right) ^{2}\left\Vert f^{\prime }\right\Vert _{\infty }\left\Vert g^{\prime }\right\Vert _{\infty }, \end{equation}
(1)
where \(f,g:\left[ a,b\right] \rightarrow \mathbb{R}\) are absolutely continuous function, whose first derivatives \(f^{\prime }\) and \(g^{\prime }\) are bounded and
\begin{equation} \label{1.2} T\left( f,g\right) =\tfrac{1}{b-a}\overset{b}{\underset{a}{\int }}f\left( x\right) g\left( x\right) dx-\left( \tfrac{1}{b-a}\overset{b}{\underset{a}{ \int }}f\left( x\right) dx\right) \left( \tfrac{1}{b-a}\overset{b}{\underset{ a}{\int }}g\left( x\right) dx\right) , \end{equation}
(2)
and \(\left\Vert .\right\Vert _{\infty }\) denotes the norm in \(L_{\infty }% \left[ a,b\right] \) defined as \(\left\Vert f\right\Vert _{\infty }=\underset{% t\in \left[ a,b\right] }{ess\sup }\left\vert f\left( t\right) \right\vert \).

During the past few years, many researchers have given considerable attention to the inequality (1). Various generalizations, extensions and variants have been appeared in the literature [2,3,4,5,6].

Recently, Guezane-Lakoud and Aissaoui [2] gave the analogue of the functional (2) for functions of two variables and established the following Cebyšev type inequalities for functions whose mixed derivatives are bounded as follows;

\begin{equation} \label{1.3} \left\vert T(f,g)\right\vert \leq \tfrac{49}{3600}k^{2}\left\Vert f_{_{\lambda \alpha }}\right\Vert _{\infty }\left\Vert g_{_{\lambda \alpha }}\right\Vert _{\infty }, \end{equation}
(3)
and
\begin{align} \left\vert T(f,g)\right\vert \leq \frac{1}{8k^{2}}\overset{b}{\underset{a} {\int }}\overset{d}{\underset{c}{\int }}\left[ \left( \left\vert g(x,y)\right\vert \left\Vert f_{_{\lambda \alpha }}\right\Vert _{\infty }+\left\vert f(x,y)\right\vert \left\Vert g_{_{\lambda \alpha }}\right\Vert _{\infty }\right) \right. \left. \left[ \left( \left( x-a\right) ^{2}+\left( b-x\right) ^{2}\right) \left( \left( y-c\right) ^{2}+\left( d-y\right) ^{2}\right) \right] \right] dydx, \label{1.4} \end{align}
(4)
where
\begin{align} T(f,g) =&\tfrac{1}{k}\underset{a}{\overset{b}{\int }}\underset{c}{\overset{d }{\int }}f\left( x,y\right) g\left( x,y\right) dydx-\tfrac{d-c}{k^{2}\ } \underset{a}{\overset{b}{\int }}\underset{c}{\overset{d}{\int }}g\left( x,y\right) \left( \underset{a}{\overset{b}{\int }}f\left( t,y\right) dt\right) dydx \notag\\ &-\tfrac{b-a}{k^{2}}\underset{a}{\overset{b}{\int }}\underset{c}{\overset{d} {\int }}g\left( x,y\right) \left( \underset{c}{\overset{d}{\int }}f\left( x,v\right) dv\right) dydx +\tfrac{1}{k^{2}\ }\left( \underset{a}{\overset{b}{\int }}\underset{c}{ \overset{d}{\int }}f\left( x,y\right) dydx\right) \left( \underset{a}{ \overset{b}{\int }}\underset{c}{\overset{d}{\int }}g\left( t,v\right) dvdt\right) . \label{1.5} \end{align}
(5)
Motivated by the existing results, in this paper we establish some new Cebyšev type inequalities for functions whose mixed derivatives are co-ordinates quasi-convex and co-ordinates \((\alpha ,QC)\) and \((s,QC)\) -convex.

2. Preliminaries

Throughout this paper, we denote by \(\Delta \), the bidimensional interval in \(% [0,\infty )^{2}\), \(\Delta =:[a,b]\times \lbrack c,d]\) with \(a< b\) and \(c< d\), \(% k=:\left( b-a\right) (d-c)\) and \(\frac{\partial ^{2}f}{\partial \lambda \partial w}\) by \(f_{\lambda w}.\)

Definition 1. [7] A function \(f:\Delta \rightarrow \mathbb{R}\) is said to be convex on the co-ordinates on \(\Delta \) if \begin{align*} f\left( \lambda x+\left( 1-\lambda \right) t,wy+\left( 1-w\right) v\right) \leq &\lambda wf(x,y)+\lambda \left( 1-w\right) f(x,v)+\left( 1-\lambda \right) wf(t,y)+\left( 1-\lambda \right) \left( 1-w\right) f(t,v) \end{align*} holds for all \(\lambda ,w\in \lbrack 0,1]\) and \((x,y),(x,v),(t,y),(t,v)\in \Delta \).

Definition 2. [8] A function \(f:\Delta \rightarrow \mathbb{R}\) is said to be quasi-convex on the co-ordinates on \(\Delta \) if \begin{equation*} f\left( \lambda x+\left( 1-\lambda \right) t,wy+\left( 1-w\right) v\right) \leq \max \left\{ f(x,y)+f(x,v)+f(t,y)+f(t,v)\right\} \end{equation*} holds for all \(\lambda ,w\in \lbrack 0,1]\) and \((x,y),(x,v),(t,y),(t,v)\in \Delta \).

Definition 3. [9] For some \(\alpha \in \left( 0,1\right] \), a function \(f:\Delta \rightarrow \mathbb{R}\) is said to be \(\left( \alpha ,QC\right) \)-convex on the co-ordinates on \(\Delta \), if \begin{align*} f\left( \lambda x+\left( 1-\lambda \right) t,wy+\left( 1-w\right) v\right) \leq &\lambda ^{\alpha }\max \left\{ f(x,y)+f(x,v)\right\} +\left( 1-\lambda ^{\alpha }\right) \max \left\{ f(t,y)+f(t,v)\right\} \end{align*} holds for all \(\lambda ,w\in \lbrack 0,1]\) and \((x,y),(x,v),(t,y),(t,v)\in \Delta \).

Definition 4. [10] For some \(s\in \left[ -1,1\right] \), a function \(f:\Delta \rightarrow \left[ 0,\infty \right) \) is said to be \(\left( s,QC\right) \)-convex on co-ordinates on \(\Delta \), if \begin{align*} f\left( \lambda x+\left( 1-\lambda \right) t,wy+\left( 1-w\right) v\right) \leq &\lambda ^{s}\max \left\{ f(x,y)+f(x,v)\right\} +\left( 1-\lambda \right) ^{s}\max \left\{ f(t,y)+f(t,v)\right\} \end{align*} holds for all \(\lambda \in \left( 0,1\right),\ w\in \lbrack 0,1]\) and \(% (x,y),(x,v),(t,y),(t,v)\in \Delta \).

Lemma 1. [11] Let f : \(\Delta \ \rightarrow \mathbb{R}\) be a partial differentiable mapping on \(\Delta \) in \(\mathbb{R}^{2}\). If \(f_{\lambda w}\in L_{1}\left( \Delta \ \right) \) then for any \(\left( x,y\right) \in \Delta \), we have the equality;

\begin{align} f(x,y) =&\tfrac{1}{b-a}\overset{b}{\underset{a}{\int }}f(t,y)dt+\tfrac{1}{ d-c}\overset{d}{\underset{c}{\int }}f(x,v)dv-\tfrac{1}{k}\overset{b}{ \underset{a}{\int }}\overset{d}{\underset{c}{\int }}f(t,v)dvdt +\tfrac{1}{k}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left( x-t\right) \left( y-v\right) \notag\\ &\times \left( \overset{1}{\underset{0}{\int }}\overset{1}{\underset{0}{ \int }}f_{_{\lambda w}}\left( \lambda x+(1-\lambda )t,wy-(1-w)v\right) dwd\lambda \right) dvdt. \label{2.1} \end{align}
(6)

3. Main result

Theorem 1. Let \(f,g\) \(:\Delta \ \rightarrow \mathbb{R}\) be partially differentiable functions such that their second derivatives \(f_{\lambda w}\) and \(% g_{\lambda w}\) are integrable on \(\Delta \). If \(\left\vert f_{\lambda w}\right\vert \) and \(\left\vert g_{\lambda w}\right\vert \) are co-ordinated quasi-convex on \(\Delta \), then

\begin{equation} \label{3.1} \left\vert T(f,g)\right\vert \leq \tfrac{49}{3600}MNk^{2}, \end{equation}
(7)
where \(T(f,g)\) is defined as in (5), \(M=\underset{x,t\in \left[ a,b\right] ,y,v\in \left[ c,d\right] }{\max }\) \(% \left[ \left\vert f_{\lambda w}\left( x,y\right) \right\vert +\left\vert f_{\lambda w}\left( x,v\right) \right\vert +\left\vert f_{\lambda w}\left( t,y\right) \right\vert +\left\vert f_{\lambda w}\left( t,v\right) \right\vert \right] \), and \(N=\underset{x,t\in \left[ a,b\right] ,y,v\in \left[ c,d\right] }{\max }% \left[ \left\vert g_{\lambda w}\left( x,y\right) \right\vert +\left\vert g_{\lambda w}\left( x,v\right) \right\vert +\left\vert g_{\lambda w}\left( t,y\right) \right\vert +\left\vert g_{\lambda w}\left( t,v\right) \right\vert \right] \), and \(k=\left( b-a\right) \left( d-c\right) \).

Proof. From Lemma 1, we have

\begin{align} f(x,y)&-\tfrac{1}{b-a}\overset{b}{\underset{a}{\int }}f(t,y)dt-\tfrac{1}{d-c }\overset{d}{\underset{c}{\int }}f(x,v)dv+\tfrac{1}{k}\overset{b}{\underset{a }{\int }}\overset{d}{\underset{c}{\int }}f(t,v)dvdt \notag\\ =&\tfrac{1}{k}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left( x-t\right) \left( y-v\right) \left( \overset{1}{\underset{0}{\int }} \overset{1}{\underset{0}{\int }}f_{_{\lambda w}}\left( \lambda x+(1-\lambda )t,wy-(1-w)v\right) d\alpha d\lambda \right) dvdt, \label{3.2} \end{align}
(8)
and
\begin{align} g(x,y)&-\tfrac{1}{b-a}\overset{b}{\underset{a}{\int }}g(t,y)dt-\tfrac{1}{d-c }\overset{d}{\underset{c}{\int }}g(x,v)dv+\tfrac{1}{k}\overset{b}{\underset{a }{\int }}\overset{d}{\underset{c}{\int }}g(t,v)dvdt \notag\\ =&\tfrac{1}{k}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left( x-t\right) \left( y-v\right) \left( \overset{1}{\underset{0}{\int }} \overset{1}{\underset{0}{\int }}g_{_{\lambda w}}\left( \lambda x+(1-\lambda )t,wy-(1-w)v\right) dwd\lambda \right) dvdt. \label{3.3} \end{align}
(9)
Multiplying (8) by (9), and then integrating the resulting equality with respect to \(x\) and \(y\) over \(\Delta \), using modulus and Fubini’s Theorem, and multiplying the result by \(\frac{1}{k}\), we get
\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{k^{3}}\overset{b}{\underset{a}{ \int }}\overset{d}{\underset{c}{\int }}\left[ \overset{b}{\underset{a}{\int } }\overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \times \left. \left( \overset{1}{\underset{0}{\int }}\overset{1}{\underset{ 0}{\int }}\left\vert f_{_{\lambda w}}\left( \lambda x+(1-\lambda )t,wy-(1-w)v\right) \right\vert dwd\lambda \right) dvdt\right] \notag\\ &\times \left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \times \left. \left. \left( \overset{1}{\underset{0}{\int }}\overset{1}{ \underset{0}{\int }}g_{_{\lambda w}}\left\vert \left( \lambda x+(1-\lambda )t,wy-(1-w)v\right) \right\vert dwd\lambda \right) \right] dvdt\right] dydx. \label{3.4} \end{align}
(10)
Since \(\left\vert f_{\lambda \alpha }\right\vert \) and \(\left\vert g_{\lambda \alpha }\right\vert \) are co-ordinated quasi-convex, we deduce
\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{k^{3}}MN\overset{b}{\underset{a }{\int }}\overset{d}{\underset{c}{\int }}\left( \overset{b}{\underset{a}{ \int }}\overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt\right) ^{2}dydx =\tfrac{49}{3600}k^{2}MN, \label{3.5} \end{align}
(11)
where we have used the fact that
\begin{equation} \label{3.6} \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left( \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt\right) ^{2}dydx=\tfrac{49}{3600 }k^{5}. \end{equation}
(12)
The proof is completed.

Theorem 2. Under the assumptions of Theorem 1, we have

\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{8k^{2}}\left[ \overset{b}{ \underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left[ M\left\vert g(x,y)\right\vert +N\left\vert f(x,y)\right\vert \right] \left[ \left( x-a\right) ^{2}+\left( b-x\right) ^{2}\right] \right. \times \left. \ \left[ \left( y-c\right) ^{2}+\left( d-y\right) ^{2}\right] \right] dydx, \label{3.7} \end{align}
(13)
where \(T(f,g)\) is defined as in (5), \(M,\) \(N,\) and \(k\) are as in Theorem 1.

Proof. From Lemma 1, (8) and (9) are valid. Let \(G(x,y)=\frac{1}{2k}g(x,y)\) and \(F(x,y)=\frac{1}{2k}f(x,y)\). Multiplying \(G(x,y)\) by \(F(x,y)\), then integrating the resultant equalities with respect to \(x\) and \(y\) over \(% \Delta \), and by using the modulus, we get

\begin{align} \left\vert T(f,g)\right\vert \leq& \tfrac{1}{2k^{2}}\left[ \overset{b}{ \underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left\vert g(x,y)\right\vert \left[ \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \right. \notag\\&\times \left. \left( \overset{1}{\underset{0}{\int }}\overset{1}{\underset{ 0}{\int }}\left\vert f_{_{\lambda w}}\left( \lambda x+(1-\lambda )t,wy-(1-w)v\right) \right\vert dwd\lambda \right) dvdt\right] dydx+\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }} \left\vert f(x,y)\right\vert \left[ \overset{b}{\underset{a}{\int }}\overset{ d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \notag\\ & \times \left. \left( \overset{1}{\underset{0}{\int }}\overset{1}{\underset{ 0}{\int }}\left\vert g_{_{\lambda w}}\left( \lambda x+(1-\lambda )t,wy-(1-w)v\right) \right\vert dwd\lambda \right) dvdt\right] dydx. \label{3.8} \end{align}
(14)
Since \(\left\vert f_{\lambda w}\right\vert \) and \(\left\vert g_{\lambda w}\right\vert \) are co-ordinated quasi-convex, (14) implies
\begin{align} \left\vert T(f,g)\right\vert \leq& \tfrac{1}{2k^{2}}\left[ \overset{b}{ \underset{a}{\int }}\overset{d}{\underset{c}{\int }}M\left\vert g(x,y)\right\vert \left( \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt\right) dydx\right. \notag\\&+\left. \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }} N\left\vert f(x,y)\right\vert \left( \overset{b}{\underset{a}{\int }}\overset {d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt\right) \right] dydx \notag\\ =&\tfrac{1}{2k^{2}}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left( M\left\vert g(x,y)\right\vert +N\left\vert f(x,y)\right\vert \right) \left( \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt\right) dydx. \label{3.9} \end{align}
(15)
By a simple computation, we easily obtain
\begin{align} \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt =&\tfrac{1}{4}\left[ \left( x-a\right) ^{2}+\left( b-x\right) ^{2}\right] \left[ \left( y-c\right) ^{2}+\left( d-y\right) ^{2}\right] . \label{3.10} \end{align}
(16)
Substituting (16) in (15), we get the desired result.

Theorem 3. Let \(f,g\) \(:\Delta \ \rightarrow \mathbb{R}\) be partially differentiable functions, such that their second derivatives \(f_{\lambda w}\) and \(% g_{\lambda w}\) are integrable on \(\Delta \). If \(\left\vert f_{\lambda w}\right\vert \) and \(\left\vert g_{\lambda w}\right\vert \) are co-ordinated \(% \alpha \)-quasi-convex on \(\Delta \), for some \(\alpha \in \left( 0,1\right] \) , then

\begin{equation} \label{3.11} \left\vert T(f,g)\right\vert \leq \tfrac{49}{3600}MNk^{2}, \end{equation}
(17)
where \(T(f,g)\) is defined as in (5), \(M,N\), and \(k\) are as in Theorem 1.

Proof. Clearly the inequalities (8)-(10) are valid, using the co-ordinated \(% \alpha \)-quasi-convexity of \(\left\vert f_{\lambda w}\right\vert \) and \(% \left\vert g_{\lambda w}\right\vert \), (10) gives

\begin{align*} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{k^{3}}\overset{b}{\underset{a}{ \int }}\overset{d}{\underset{c}{\int }}\left[ \overset{b}{\underset{a}{\int } }\overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \overset{1}{\underset{0}{\int }}\overset{1}{\underset{0}{\int }}\left[ \lambda ^{\alpha }\max \left\{ \left\vert f_{_{\lambda w}}(x,y)\right\vert +\left\vert f_{_{\lambda w}}(x,v)\right\vert \right\} \right. \right. \notag\\ &+\left. \left. \left. \left( 1-\lambda ^{\alpha }\right) \max \left\{ \left\vert f_{_{\lambda w}}(t,y)\right\vert +\left\vert f_{_{\lambda w}}(t,v)\right\vert \right\} \right] dwd\lambda \right) dvdt\right] \notag\\ &\times \left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \overset{1}{ \underset{0}{\int }}\overset{1}{\underset{0}{\int }}\left[ \lambda ^{\alpha }\max \left\{ \left\vert g_{_{\lambda w}}(x,y)\right\vert +\left\vert g_{_{\lambda w}}(x,v)\right\vert \right\} \right. \right. \notag\\ &+\left. \left. \left. \left( 1-\lambda ^{\alpha }\right) \max \left\{ \left\vert g_{_{\lambda w}}(t,y)\right\vert +\left\vert g_{_{\lambda w}}(t,v)\right\vert \right\} \right] dwd\lambda \right] dvdt\right] dydx\\ \notag =&\tfrac{1}{k^{3}}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int } }\left\vert x-t\right\vert \left\vert y-v\right\vert \left[ \max \left\{ \left\vert f_{_{\lambda w}}(x,y)\right\vert +\left\vert f_{_{\lambda w}}(x,v)\right\vert \right\} \overset{1}{\underset{0}{\int }}\overset{1}{ \underset{0}{\int }}\lambda ^{\alpha }dwd\lambda \right. \right. \end{align*} \begin{align} \notag &+\left. \left. \max \left\{ \left\vert f_{_{\lambda w}}(t,y)\right\vert +\left\vert f_{_{\lambda w}}(t,v)\right\vert \right\} \overset{1}{\underset{0 }{\int }}\overset{1}{\underset{0}{\int }}\left( 1-\lambda ^{\alpha }\right) dwd\lambda \right] dvdt\right] \notag\\ &\times \left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \left[ \max \left\{ \left\vert g_{_{\lambda w}}(x,y)\right\vert +\left\vert g_{_{\lambda w}}(x,v)\right\vert \right\} \overset{1}{\underset{0}{\int }}\overset{1}{ \underset{0}{\int }}\lambda ^{\alpha }dwd\lambda \right. \right. \notag\\ &+\left. \left. \max \left\{ \left\vert g_{_{\lambda w}}(t,y)\right\vert +\left\vert g_{_{\lambda w}}(t,v)\right\vert \right\} \overset{1}{\underset{0 }{\int }}\overset{1}{\underset{0}{\int }}\left( 1-\lambda ^{\alpha }\right) dwd\lambda \right] dvdt\right] dydx \notag\\ \leq &\tfrac{1}{k^{3}}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{ c}{\int }}\left[ \left[ \left( \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \left( \tfrac{1}{\alpha +1}+1-\tfrac{1}{\alpha +1}\right) Mdvdt\right) \right] \right. \notag\\ &\times \left. \left[ \left( \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \left( \tfrac{1}{\alpha +1}+1-\tfrac{1}{\alpha +1}\right) Ndvdt\right) \right] \right] dydx \notag\\ =&\tfrac{MN}{k^{3}}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left( \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int } }\left\vert x-t\right\vert \left\vert y-v\right\vert \right) ^{2}dydx. \label{3.12} \end{align}
(18)
Using (12) in (18), we obtain the desired result.

Theorem 4. Under the assumptions of Theorem 3, we have

\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{8k^{2}}\left[ \overset{b}{ \underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left( M\left\vert g(x,y)\right\vert +N\left\vert f(x,y)\right\vert \right) \right. \times \left[ \left( x-a\right) ^{2}+\left( b-x\right) ^{2}\right] \left[ \left( y-c\right) ^{2}+\left( d-y\right) ^{2}\right] dydx, \label{3.13} \end{align}
(19)
where \(T(f,g)\) is defined as in (5) and \(M,N,\) and \(k\) are as in Theorem 3.

Proof. By the same argument given in Theorem 2, we easly obtain the inequality (14), using the \(\alpha \)-quasi-convexity on the co-ordinates of \(% \left\vert f_{\lambda w}\right\vert \) and \(\left\vert g_{\lambda w}\right\vert \), we get

\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{2k^{2}}\left[ \overset{b}{ \underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left\vert g(x,y)\right\vert \left[ \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \right. \times \left. \left( M\overset{1}{\underset{0}{\int }}\overset{1}{\underset {0}{\int }}\lambda ^{\alpha }dwd\lambda +M\overset{1}{\underset{0}{\int }} \overset{1}{\underset{0}{\int }}\left( 1-\lambda ^{\alpha }\right) dwd\lambda \right) dvdt\right] dydx \notag\\ &\ +\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }} \left\vert f(x,y)\right\vert \left[ \overset{b}{\underset{a}{\int }}\overset{ d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \times \left. \left( N\overset{1}{\underset{0}{\int }}\overset{1}{\underset {0}{\int }}\lambda ^{\alpha }dwd\lambda +N\overset{1}{\underset{0}{\int }} \overset{1}{\underset{0}{\int }}\left( 1-\lambda ^{\alpha }\right) dwd\lambda \right) dvdt\right] dydx. \notag\\ =&\tfrac{1}{2k^{2}}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left[ \left( M\left\vert g(x,y)\right\vert +N\left\vert f(x,y)\right\vert \right) \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt \right] dydx. \label{3.14} \end{align}
(20)
Substituting (16) in (20), we get the desired result.

Theorem 5. Let \(f,g\) \(:\Delta \ \rightarrow \mathbb{R}\) be partially differentiable functions such that their second derivatives \(f_{\lambda w}\) and \(% g_{\lambda w}\) are integrable on \(\Delta \), and let \(s\in \left( -1,1\right] \) fixed. If \(\left\vert f_{\lambda \alpha }\right\vert \) and \(\left\vert g_{\lambda \alpha }\right\vert \) are co-ordinated \(s\)-quasi-convex on \(% \Delta \), then

\begin{equation} \label{3.15} \left\vert T(f,g)\right\vert \leq \tfrac{49}{900\left( s+1\right) ^{2}} MNk^{2}, \end{equation}
(21)
where \(T(f,g)\) is defined as in (5) and \(M,N,\) and \(k\) are as in Theorem 1.

Proof. Clearly inequalities (8)-(10) are satisfied. Using second definition of the co-ordinated \(s\)-quasi-convex of \(\left\vert f_{\lambda w}\right\vert \) and \(\left\vert g_{\lambda w}\right\vert \), (10) gives;

\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{k^{3}}\overset{b}{\underset{a}{ \int }}\overset{d}{\underset{c}{\int }}\left[ \overset{b}{\underset{a}{\int } }\overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \overset{1}{\underset{0}{\int }}\overset{1}{\underset{0}{\int }}\left[ \lambda ^{s}\max \left\{ \left\vert f_{_{\lambda w}}(x,y)\right\vert +\left\vert f_{_{\lambda w}}(x,v)\right\vert \right\} \right. \right. \notag\\ &+\left. \left. \left. \left( 1-\lambda \right) ^{s}\max \left\{ \left\vert f_{_{\lambda w}}(t,y)\right\vert +\left\vert f_{_{\lambda w}}(t,v)\right\vert \right\} \right] dwd\lambda \right) dvdt\right] \notag\\ &\times \left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \overset{1}{ \underset{0}{\int }}\overset{1}{\underset{0}{\int }}\left[ \lambda ^{s}\max \left\{ \left\vert g_{_{\lambda w}}(x,y)\right\vert +\left\vert g_{_{\lambda w}}(x,v)\right\vert \right\} \right. \right. \notag\\ &+\left. \left. \left. \left( 1-\lambda \right) ^{s}\max \left\{ \left\vert g_{_{\lambda w}}(t,y)\right\vert +\left\vert g_{_{\lambda w}}(t,v)\right\vert \right\} \right] dwd\lambda \right] dvdt\right] dydx \notag\\ =&\tfrac{1}{k^{3}}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int } }\left\vert x-t\right\vert \left\vert y-v\right\vert \left[ \max \left\{ \left\vert f_{_{\lambda w}}(x,y)\right\vert +\left\vert f_{_{\lambda w}}(x,v)\right\vert \right\} \overset{1}{\underset{0}{\int }}\overset{1}{ \underset{0}{\int }}\lambda ^{s}dwd\lambda \right. \right. \notag\\ &+\left. \left. \max \left\{ \left\vert f_{_{\lambda w}}(t,y)\right\vert +\left\vert f_{_{\lambda w}}(t,v)\right\vert \right\} \overset{1}{\underset{0 }{\int }}\overset{1}{\underset{0}{\int }}\left( 1-\lambda \right) ^{s}dwd\lambda \right] dvdt\right] \notag\\ &\times \left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{ \int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \left[ \max \left\{ \left\vert g_{_{\lambda w}}(x,y)\right\vert +\left\vert g_{_{\lambda w}}(x,v)\right\vert \right\} \overset{1}{\underset{0}{\int }}\overset{1}{ \underset{0}{\int }}\lambda ^{s}dwd\lambda \right. \right. \notag\\ &+\left. \left. \max \left\{ \left\vert g_{_{\lambda w}}(t,y)\right\vert +\left\vert g_{_{\lambda w}}(t,v)\right\vert \right\} \overset{1}{\underset{0 }{\int }}\overset{1}{\underset{0}{\int }}\left( 1-\lambda \right) ^{s}dwd\lambda \right] dvdt\right] dydx \notag\\ \leq &\frac{1}{k^{3}}\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c }{\int }}\left[ \left[ \left( \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \left( \tfrac{M}{s+1}+\tfrac{M}{s+1}\right) dvdt\right) \right] \right. \notag\\ &\times \left. \left[ \left( \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \left( \tfrac{N}{s+1}+\tfrac{N}{s+1}\right) dvdt\right) \right] \right] dydx \notag\\ =&\tfrac{4MN}{\left( s+1\right) ^{2}k^{3}}\overset{b}{\underset{a}{\int }} \overset{d}{\underset{c}{\int }}\left( \overset{b}{\underset{a}{\int }} \overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right) ^{2}dydx. \label{3.16} \end{align}
(22)
Substituting (12) in (22), we get the desired result.

Theorem 6. Under the assumptions of Theorem 5, we have

\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{4\left( s+1\right) k^{2}}\left[ \overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left( M\left\vert g(x,y)\right\vert +N\left\vert f(x,y)\right\vert \right) \right. \times \left[ \left( x-a\right) ^{2}+\left( b-x\right) ^{2}\right] \left[ \left( y-c\right) ^{2}+\left( d-y\right) ^{2}\right] dydx, \label{3.17} \end{align}
(23)
where \(T(f,g)\) is defined as in (5) and \(M,N\), and \(k\) are as in Theorem 1.

Proof. By the same argument given in Theorem 2, we easily obtain the inequality (14), using the second definition of \(s\)-quasi-convexity on the co-ordinates of \(\left\vert f_{\lambda w}\right\vert \) and \(\left\vert g_{\lambda w}\right\vert \), we get

\begin{align} \left\vert T(f,g)\right\vert \leq &\tfrac{1}{2k^{2}}\left[ \overset{b}{ \underset{a}{\int }}\overset{d}{\underset{c}{\int }}\left\vert g(x,y)\right\vert \left[ \overset{b}{\underset{a}{\int }}\overset{d}{ \underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \right. \times \left. \left( M\overset{1}{\underset{0}{\int }}\overset{1}{\underset {0}{\int }}\lambda ^{s}dwd\lambda +M\overset{1}{\underset{0}{\int }}\overset{ 1}{\underset{0}{\int }}\left( 1-\lambda \right) ^{s}dwd\lambda \right) dvdt \right] dydx \notag\\ &\ +\overset{b}{\underset{a}{\int }}\overset{d}{\underset{c}{\int }} \left\vert f(x,y)\right\vert \left[ \overset{b}{\underset{a}{\int }}\overset{ d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert \right. \times \left. \left( N\overset{1}{\underset{0}{\int }}\overset{1}{\underset {0}{\int }}\lambda ^{s}dwd\lambda +N\overset{1}{\underset{0}{\int }}\overset{ 1}{\underset{0}{\int }}\left( 1-\lambda \right) ^{s}dwd\lambda \right) dvdt \right] dydx. \notag\\ =&\tfrac{1}{\left( s+1\right) k^{2}}\overset{b}{\underset{a}{\int }}\overset {d}{\underset{c}{\int }}\left[ \left( M\left\vert g(x,y)\right\vert +N\left\vert f(x,y)\right\vert \right) \overset{b}{\underset{a}{\int }} \overset{d}{\underset{c}{\int }}\left\vert x-t\right\vert \left\vert y-v\right\vert dvdt\right] dydx. \label{3.18} \end{align}
(24)
Substituting (16) in (24), we get the desired result.

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interests

The authors declare no conflict of interest.

References:

  1. Cebyšev, P. L. (1882). Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. In Proc. Math. Soc. Charkov, 2, 93-98.[Google Scholor]
  2. Guezane-Lakoud, A., & Aissaoui, F. (2011). New Cebyšev type inequalities for double integrals. Journal of Mathematical Inequalities, 5(4), 453-462. <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=New+Cebyšev+type+inequalities+for+double+integrals.+[Google Scholor]
  3. Meftah, B., & Boukerrioua, K. (2015). New Cebyšev type inequalities for functions whose second derivatives are \((s_1, m_1)-(s_2, m_2)\) convex on the co-ordinates. Theory and Applications of Mathematics & Computer Science, 5(2), 116-125. [Google Scholor]
  4. Meftah, B., & Boukerrioua, K. (2015). Cebyšev inequalities whose second derivatives are \((s, r)-\)convex on the co-ordinates. Journal of Advanced Research in Applied Mathematics, 7(3), 76-87.[Google Scholor]
  5. Meftah, B., & Boukerrioua, K. (2015). On some Cebyšev yupe inequalities for functions whose second derivative are \((h_1; h_2\))-convex on the co-ordinates. Konuralp Journal of Mathematics, 3(2), 77-88. [Google Scholor]
  6. Sarikaya, M. Z., Budak, H., & Yaldiz, H. (2014). Cebyšev type inequalities for co-ordinated convex functions. Pure and Applied Mathematics Letters, 2, 44-48. [Google Scholor]
  7. Dragomir, S. S. (2001). On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese Journal of Mathematics, 5(4), 775-788. [Google Scholor]
  8. Latif, M. A., Hussain, S., & Dragomir, S. S. (2012). Refinements of Hermite-Hadamard type inequalities for co-ordinated quasi-convex functions. International Journal of Mathematical Archive, 3(1), 161-171.[Google Scholor]
  9. Xi, B. Y., Sun, J., & Bai, S. P. (2015). On some Hermite-Hadamard type integral inequalities for co-ordinated \((a, QC)\) and \((a, CJ)-\)convex functions. Tbilisi Mathematical Journal, 8(2), 75-86. [Google Scholor]
  10. Wu, Y., & Qi, F. (2016). On some Hermite-Hadamard type inequalities for (s, QC)-convex functions. SpringerPlus, 5(1), 1-13. [Google Scholor]
  11. Sarikaya, M. Z. (2014). On the Hermite-Hadamard type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms and Special Functions, 25(2), 134-147. [Google Scholor]